diff --git a/cmake/operators.cmake b/cmake/operators.cmake index a396af570f3242f04536511277645fc69372ec7a..24c7d3f07f430e91fd87221b913fff77d32ecd26 100644 --- a/cmake/operators.cmake +++ b/cmake/operators.cmake @@ -217,7 +217,8 @@ function(op_library TARGET) "fusion_transpose_flatten_concat_op" "fusion_conv_inception_op" "sync_batch_norm_op" "sparse_attention_op" "dgc_op" "fused_fc_elementwise_layernorm_op" "skip_layernorm_op" "multihead_matmul_op" "fusion_group_op" "fused_bn_activation_op" "fused_embedding_eltwise_layernorm_op" "fusion_gru_op" "fusion_lstm_op" -"fused_bn_add_activation_op" "fused_attention_op" "resnet_unit_op") +"fused_bn_add_activation_op" "fused_attention_op" "resnet_unit_op" "fused_feedforward_op") + if ("${TARGET}" STREQUAL "${manual_pybind_op}") set(pybind_flag 1) endif() diff --git a/paddle/fluid/operators/fused/CMakeLists.txt b/paddle/fluid/operators/fused/CMakeLists.txt index 845e5659a8836b398c25836682ad3234576773ee..0e2dae75071e7fa1a0b1287a9c0140aa73880d35 100644 --- a/paddle/fluid/operators/fused/CMakeLists.txt +++ b/paddle/fluid/operators/fused/CMakeLists.txt @@ -18,6 +18,7 @@ register_operators(EXCLUDES fused_bn_add_activation_op fused_attention_op fused_transformer_op + fused_feedforward_op resnet_unit_op) # fusion_gru_op does not have CUDA kernel @@ -79,6 +80,11 @@ if (WITH_GPU OR WITH_ROCM) nv_test(test_fused_residual_dropout_bias SRCS fused_residual_dropout_bias_test.cu DEPS tensor op_registry dropout_op layer_norm_op device_context generator memory) nv_test(test_fused_dropout_act_bias SRCS fused_dropout_act_bias_test.cu DEPS tensor op_registry dropout_op layer_norm_op device_context generator memory) nv_test(test_fused_layernorm_residual_dropout_bias SRCS fused_layernorm_residual_dropout_bias_test.cu DEPS tensor op_registry dropout_op layer_norm_op device_context generator memory) + + + op_library(fused_feedforward_op) + file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(fused_feedforward);\n") + # fused_attention_op op_library(fused_attention_op) file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(fused_attention);\n") diff --git a/paddle/fluid/operators/fused/fused_dropout_common.h b/paddle/fluid/operators/fused/fused_dropout_common.h index 3fb58eab077bca9af95a26aac15f54cfba48cc99..049c37f1ea0c44e9d699413e2525cf10e166009c 100644 --- a/paddle/fluid/operators/fused/fused_dropout_common.h +++ b/paddle/fluid/operators/fused/fused_dropout_common.h @@ -110,27 +110,34 @@ inline __device__ void CalculateDBias(const T *tmp_sum, T *dbias, } __syncthreads(); // reduce sum - T sum = static_cast(0); + T sum[2] = {static_cast(0)}; int tid = threadIdx.y * blockDim.x + threadIdx.x; int x = tid >> 5; // warp id int y = tid & 31; // thread id on warp 0~31 // need BlockSizeX * VecSize warps - if (x < BlockSizeX * VecSize) { + for (int j = x; j < BlockSizeX * VecSize; j += 32) { // reduce 128 to 32 #pragma unroll for (int i = 0; i < (BlockSizeY >> 5); i++) { - sum += cache[x][y + i * 32]; + sum[(j >> 5)] += cache[j][y + i * 32]; } } + int reduce_num_pre_thread = (BlockSizeX * VecSize + 31) / 32; // reduce 32 to 1 - sum = WarpReduceSum(sum); + for (int i = 0; i < reduce_num_pre_thread; i++) { + sum[i] = WarpReduceSum(sum[i]); + } // save sum to dbias - int bias_id = blockIdx.x * blockDim.x * VecSize + x; - if (y == 0 && x < VecSize * BlockSizeX && bias_id < cols) { - dbias[bias_id] = sum; + if (y == 0 && x < BlockSizeX * VecSize) { + for (int i = 0; i < reduce_num_pre_thread; i++) { + int bias_id = blockIdx.x * BlockSizeX * VecSize + x + i * 32; + if (bias_id < cols) { + dbias[bias_id] = sum[i]; + } + } } } diff --git a/paddle/fluid/operators/fused/fused_feedforward_op.cc b/paddle/fluid/operators/fused/fused_feedforward_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..0b23b30b171767248e0838419b4b7a2b9cde0c36 --- /dev/null +++ b/paddle/fluid/operators/fused/fused_feedforward_op.cc @@ -0,0 +1,214 @@ +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/op_version_registry.h" +#include "paddle/fluid/operators/math/blas.h" +#include "paddle/fluid/operators/matmul_v2_op.h" + +namespace paddle { +namespace operators { +using Tensor = framework::Tensor; + +class FusedFeedForwardOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *context) const override { + OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "fused_feedforward"); + OP_INOUT_CHECK(context->HasInput("Linear1Weight"), "Input", "Linear1Weight", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasInput("Linear2Weight"), "Input", "Linear2Weight", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Dropout1Mask"), "Output", "Dropout1Mask", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Dropout2Mask"), "Output", "Dropout2Mask", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Ln1Mean"), "Output", "Ln1Mean", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Ln1Variance"), "Output", "Ln1Variance", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Ln2Mean"), "Output", "Ln2Mean", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Ln2Variance"), "Output", "Ln2Variance", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Linear1Out"), "Output", "Linear1Out", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Ln1Out"), "Output", "Ln1Out", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Dropout1Out"), "Output", "Dropout1Out", + "fused_feedforward"); + OP_INOUT_CHECK(context->HasOutput("Dropout2Out"), "Output", "Dropout2Out", + "fused_feedforward"); + + auto dim_x = context->GetInputDim("X"); + auto mat_dim_x = + math::CreateMatrixDescriptor(RowMatrixFromVector(dim_x), 0, false); + // verify for the pre layer_norm, the feature size must be larger than 1 + PADDLE_ENFORCE_GT( + mat_dim_x.width_, static_cast(1), + platform::errors::InvalidArgument("Product from the X shape[1] to " + "shape[n-1] must be larger than 1!")); + auto dim_Linear1Weight = context->GetInputDim("Linear1Weight"); + auto tmp_dim_x = dim_x; + tmp_dim_x[dim_x.size() - 1] = + dim_Linear1Weight[dim_Linear1Weight.size() - 1]; + context->SetOutputDim("Out", dim_x); + if (context->Attrs().Get("dropout1_is_test") == false) { + context->SetOutputDim("Dropout1Mask", tmp_dim_x); + } + context->SetOutputDim("Dropout1Out", tmp_dim_x); + context->SetOutputDim("Linear1Out", tmp_dim_x); + context->SetOutputDim("Ln1Out", dim_x); + context->SetOutputDim("Dropout2Out", dim_x); + + if (context->Attrs().Get("dropout2_is_test") == false) { + context->SetOutputDim("Dropout2Mask", dim_x); + } + framework::DDim mean_dim = + framework::make_ddim({mat_dim_x.batch_size_ * mat_dim_x.height_}); + context->SetOutputDim("Ln1Mean", mean_dim); + context->SetOutputDim("Ln1Variance", mean_dim); + context->SetOutputDim("Ln2Mean", mean_dim); + context->SetOutputDim("Ln2Variance", mean_dim); + context->ShareLoD("X", "Out"); + } + + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace()); + } +}; + +class FusedFeedForwardOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("X", "The input of FusedFeedForward op"); + AddInput( + "Dropout1Seed", + "The seed of first dropout op, it has higher priority than the attr " + "fix_seed and seed") + .AsDispensable(); + AddInput( + "Dropout2Seed", + "The seed of second dropout op, it has higher priority than the attr " + "fix_seed and seed") + .AsDispensable(); + + AddInput("Linear1Weight", "The linear1 weight of FusedFeedForward op"); + AddInput("Linear1Bias", "The linear1 bias of FusedFeedForward op") + .AsDispensable(); + AddInput("Linear2Weight", "The linear2 weight of FusedFeedForward op"); + AddInput("Linear2Bias", "The linear2 bias input of FusedFeedForward op") + .AsDispensable(); + AddInput("Ln1Scale", "The layer_norm1 scale of FusedFeedForward op") + .AsDispensable(); + AddInput("Ln1Bias", "The layer_norm1 bias of FusedFeedForward op") + .AsDispensable(); + AddInput("Ln2Scale", "The layer_norm2 scale of FusedFeedForward op") + .AsDispensable(); + AddInput("Ln2Bias", "The layer_norm2 bias of FusedFeedForward op") + .AsDispensable(); + AddOutput("Out", "The output of FusedFeedForward op"); + AddOutput("Dropout1Mask", "The mask of dropout1").AsIntermediate(); + AddOutput("Dropout2Mask", "The mask of dropout2").AsIntermediate(); + AddOutput("Ln1Mean", "The mean of layer_norm1").AsIntermediate(); + AddOutput("Ln1Variance", "The variance of layer_norm1").AsIntermediate(); + AddOutput("Ln2Mean", "The mean of layer_nomr2").AsIntermediate(); + AddOutput("Ln2Variance", "The variance of layer_norm2").AsIntermediate(); + AddOutput("Linear1Out", "The output of linear1").AsIntermediate(); + AddOutput("Ln1Out", "The output of layer_norm1").AsIntermediate(); + AddOutput("Dropout1Out", "The output of dropout1").AsIntermediate(); + AddOutput("Dropout2Out", "The output of dropout2").AsIntermediate(); + + AddAttr("pre_layer_norm", "true is pre layernorm").SetDefault(false); + AddAttr("ln1_epsilon", "epsilon of pre layer_norm") + .SetDefault(1e-5f); + AddAttr("ln2_epsilon", "epsilon of post layer_norm") + .SetDefault(1e-5f); + AddAttr("act_method", "act_method").SetDefault("gelu"); + AddAttr("dropout1_rate", "the dropout rate of first dropout") + .SetDefault(.5f) + .AddCustomChecker([](const float &drop_p) { + PADDLE_ENFORCE_EQ( + drop_p >= 0.0f && drop_p <= 1.0f, true, + platform::errors::InvalidArgument( + "'dropout1_rate' must be between 0.0 and 1.0.")); + }); + AddAttr("dropout2_rate", "the dropout rate of second dropout") + .SetDefault(.5f) + .AddCustomChecker([](const float &drop_p) { + PADDLE_ENFORCE_EQ( + drop_p >= 0.0f && drop_p <= 1.0f, true, + platform::errors::InvalidArgument( + "'dropout2_rate' must be between 0.0 and 1.0.")); + }); + AddAttr("dropout1_implementation", + "the dropout implementation of first dropout") + .SetDefault("downgrade_in_infer") + .AddCustomChecker([](const std::string &type) { + PADDLE_ENFORCE_EQ( + type == "downgrade_in_infer" || type == "upscale_in_train", true, + platform::errors::InvalidArgument( + "dropout1_implementation can only be downgrade_in_infer or " + "upscale_in_train")); + }); + AddAttr("dropout2_implementation", + "the dropout implementation of second dropout") + .SetDefault("downgrade_in_infer") + .AddCustomChecker([](const std::string &type) { + PADDLE_ENFORCE_EQ( + type == "downgrade_in_infer" || type == "upscale_in_train", true, + platform::errors::InvalidArgument( + "dropout2_implementation can only be downgrade_in_infer or " + "upscale_in_train")); + }); + AddAttr("dropout1_is_test", "the is_test of first dropout") + .SetDefault(false); + AddAttr("dropout2_is_test", "the is_test of second dropout") + .SetDefault(false); + AddAttr("dropout1_fix_seed", "the is_test of first dropout") + .SetDefault(false); + AddAttr("dropout2_fix_seed", "the is_test of second dropout") + .SetDefault(false); + AddAttr("dropout1_seed", "Dropout1 random seed.").SetDefault(0); + AddAttr("dropout2_seed", "Dropout2 random seed.").SetDefault(0); + AddComment(R"DOC( + the function of fused_feedforward operator is the same as the following pseudo code: + residual = src; + ln1_out = src; + if(pre_layer_norm){ + ln1_out = layer_norm(src); + } + out = linear(dropout(activation(dropout(linear(ln1_out))))); + if(!pre_layer_norm) { + out = layer_norm(out); + } + )DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(fused_feedforward, ops::FusedFeedForwardOp, + ops::FusedFeedForwardOpMaker); diff --git a/paddle/fluid/operators/fused/fused_feedforward_op.cu b/paddle/fluid/operators/fused/fused_feedforward_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..03f94372517e733ffafdd129024ff90dffe35868 --- /dev/null +++ b/paddle/fluid/operators/fused/fused_feedforward_op.cu @@ -0,0 +1,183 @@ +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/op_version_registry.h" +#include "paddle/fluid/operators/math/blas.h" +#include "paddle/fluid/operators/matmul_v2_op.h" + +#include "paddle/fluid/operators/fused/fused_dropout_helper.h" +#include "paddle/fluid/operators/layer_norm_kernel.cu.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class FusedFeedForwardKernel : public framework::OpKernel { + public: + void MatMul(const platform::CUDADeviceContext& ctx, + const framework::Tensor& a, const framework::Tensor& b, + framework::Tensor* c) const { + auto blas = math::GetBlas(ctx); + auto a_2d = FoldInitDims(a); + auto b_2d = FoldInitDims(b); + auto mat_dim_a = math::CreateMatrixDescriptor(a_2d.dims(), 0, false); + auto mat_dim_b = math::CreateMatrixDescriptor(b_2d.dims(), 0, false); + T alpha = static_cast(1.0); + blas.MatMul(a, mat_dim_a, b, mat_dim_b, alpha, c, T(0)); + } + + void FFN(const framework::Tensor& x, const framework::Tensor& linear1_weight, + const framework::Tensor* linear1_bias, + const framework::Tensor& linear2_weight, + const framework::Tensor* linear2_bias, + const framework::Tensor* ln1_scale, + const framework::Tensor* ln1_bias, + const framework::Tensor* ln2_scale, + const framework::Tensor* ln2_bias, framework::Tensor* out, + framework::Tensor* dropout1_mask, framework::Tensor* dropout2_mask, + framework::Tensor* ln1_mean, framework::Tensor* ln1_variance, + framework::Tensor* ln2_mean, framework::Tensor* ln2_variance, + framework::Tensor* linear1_out, framework::Tensor* ln1_out, + framework::Tensor* dropout1_out, framework::Tensor* dropout2_out, + const int bsz_seq, const int d_model, const int dim_feedforward, + const std::string& act_method, const bool pre_layer_norm, + const float epsilon1, const float epsilon2, + const DropoutParam& dropout_param1, + const DropoutParam& dropout_param2, + const platform::CUDADeviceContext& ctx) const { + FusedDropoutLayerNormHelper pre_layernorm_helper( + bsz_seq, d_model, epsilon1); + FusedDropoutHelper fused_act_dropout_helper( + ctx, bsz_seq, dim_feedforward, dropout_param1); + FusedDropoutLayerNormHelper fused_dropout_layernorm_helper( + ctx, bsz_seq, d_model, dropout_param2, epsilon2); + + auto place = ctx.GetPlace(); + using U = LayerNormParamType; + const framework::Tensor* in = &x; + + const U* ln1_scale_ptr = + ln1_scale == nullptr ? nullptr : ln1_scale->data(); + const U* ln1_bias_ptr = ln1_bias == nullptr ? nullptr : ln1_bias->data(); + const U* ln2_scale_ptr = + ln2_scale == nullptr ? nullptr : ln2_scale->data(); + const U* ln2_bias_ptr = ln2_bias == nullptr ? nullptr : ln2_bias->data(); + const T* linear1_bias_ptr = + linear1_bias == nullptr ? nullptr : linear1_bias->data(); + const T* linear2_bias_ptr = + linear2_bias == nullptr ? nullptr : linear2_bias->data(); + + if (pre_layer_norm) { + pre_layernorm_helper.LayerNorm( + ctx, x.data(), ln1_scale_ptr, ln1_bias_ptr, ln1_out->data(), + ln1_mean->data(), ln1_variance->data()); + in = ln1_out; + } + MatMul(ctx, *in, linear1_weight, linear1_out); + fused_act_dropout_helper.DropoutActBias( + ctx, linear1_out->data(), linear1_bias_ptr, act_method, + dropout1_out->data(), dropout1_mask->data()); + framework::Tensor linear2_out; + linear2_out.mutable_data({bsz_seq, d_model}, place); + MatMul(ctx, *dropout1_out, linear2_weight, &linear2_out); + if (!pre_layer_norm) { + fused_dropout_layernorm_helper.LayernormResidualDropoutBias( + ctx, linear2_out.data(), x.data(), linear2_bias_ptr, + ln2_scale_ptr, ln2_bias_ptr, dropout2_out->data(), + dropout2_mask->data(), out->data(), ln2_mean->data(), + ln2_variance->data()); + } else { + fused_dropout_layernorm_helper.ResidualDropoutBias( + ctx, linear2_out.data(), x.data(), linear2_bias_ptr, + out->data(), dropout2_mask->data()); + } + } + + void Compute(const framework::ExecutionContext& context) const override { + auto* x = context.Input("X"); + auto* linear1_weight = context.Input("Linear1Weight"); + auto* linear1_bias = context.Input("Linear1Bias"); + auto* linear2_weight = context.Input("Linear2Weight"); + auto* linear2_bias = context.Input("Linear2Bias"); + auto* ln1_scale = context.Input("Ln1Scale"); + auto* ln1_bias = context.Input("Ln1Bias"); + auto* ln2_scale = context.Input("Ln2Scale"); + auto* ln2_bias = context.Input("Ln2Bias"); + + auto* ln1_mean = context.Output("Ln1Mean"); + auto* ln1_variance = context.Output("Ln1Variance"); + auto* ln2_mean = context.Output("Ln2Mean"); + auto* ln2_variance = context.Output("Ln2Variance"); + auto* out = context.Output("Out"); + auto* dropout1_mask = context.Output("Dropout1Mask"); + auto* dropout2_mask = context.Output("Dropout2Mask"); + auto* linear1_out = context.Output("Linear1Out"); + auto* ln1_out = context.Output("Ln1Out"); + auto* dropout1_out = context.Output("Dropout1Out"); + auto* dropout2_out = context.Output("Dropout2Out"); + + const std::string act_method = context.Attr("act_method"); + + const bool pre_layer_norm = context.Attr("pre_layer_norm"); + const float epsilon1 = context.Attr("ln1_epsilon"); + const float epsilon2 = context.Attr("ln2_epsilon"); + + DropoutParam dropout_param1(context, 1); + DropoutParam dropout_param2(context, 2); + + using U = LayerNormParamType; + auto place = context.GetPlace(); + out->mutable_data(place); + dropout1_mask->mutable_data(place); + dropout2_mask->mutable_data(place); + ln1_mean->mutable_data(place); + ln1_variance->mutable_data(place); + ln2_mean->mutable_data(place); + ln2_variance->mutable_data(place); + linear1_out->mutable_data(place); + ln1_out->mutable_data(place); + dropout1_out->mutable_data(place); + dropout2_out->mutable_data(place); + + auto x_dim = x->dims(); + auto mat_dim_x = + math::CreateMatrixDescriptor(RowMatrixFromVector(x_dim), 0, false); + + auto dim = linear1_weight->dims(); + int d_model = dim[0]; + int dim_feedforward = dim[dim.size() - 1]; + int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_; + + FFN(*x, *linear1_weight, linear1_bias, *linear2_weight, linear2_bias, + ln1_scale, ln1_bias, ln2_scale, ln2_bias, out, dropout1_mask, + dropout2_mask, ln1_mean, ln1_variance, ln2_mean, ln2_variance, + linear1_out, ln1_out, dropout1_out, dropout2_out, bsz_seq, d_model, + dim_feedforward, act_method, pre_layer_norm, epsilon1, epsilon2, + dropout_param1, dropout_param2, context.cuda_device_context()); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + fused_feedforward, + ops::FusedFeedForwardKernel, + ops::FusedFeedForwardKernel, + ops::FusedFeedForwardKernel); diff --git a/paddle/fluid/pybind/op_function_generator.cc b/paddle/fluid/pybind/op_function_generator.cc index 08ab1d7d344662ec50cf7c1eba5808745ff47ed6..1e1f195c5c617112871780df21fddc8de4278072 100644 --- a/paddle/fluid/pybind/op_function_generator.cc +++ b/paddle/fluid/pybind/op_function_generator.cc @@ -71,6 +71,9 @@ std::map> op_ins_map = { {"sparse_momentum", {"Param", "Grad", "Velocity", "Index", "LearningRate"}}, {"rnn", {"Input", "PreState", "WeightList", "SequenceLength"}}, {"run_program", {"X", "Params"}}, + {"fused_feedforward", + {"Dropout1Seed", "Dropout2Seed", "Linear1Bias", "Linear2Bias", "Ln1Scale", + "Ln1Bias", "Ln2Scale", "Ln2Bias"}}, {"faster_tokenizer", {"Text", "Vocab", "TextPair"}}, {"matrix_rank", {"X", "TolTensor"}}, {"adam", diff --git a/python/paddle/fluid/tests/unittests/CMakeLists.txt b/python/paddle/fluid/tests/unittests/CMakeLists.txt index c6d90ee404fb5f9f796d95e177175b7103af30b6..f9fe024b4b4e631513007b4d5223199fc4babe1b 100644 --- a/python/paddle/fluid/tests/unittests/CMakeLists.txt +++ b/python/paddle/fluid/tests/unittests/CMakeLists.txt @@ -98,6 +98,8 @@ foreach(TEST_OP ${MIXED_DIST_TEST_OPS}) endforeach() if(NOT WITH_GPU) + + LIST(REMOVE_ITEM TEST_OPS test_fused_feedforward_op) LIST(REMOVE_ITEM TEST_OPS test_fused_attention_op) endif() @@ -377,14 +379,14 @@ function(bash_test_modules TARGET_NAME) if(WITH_COVERAGE) add_test(NAME ${TARGET_NAME} - COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python + COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python TEST_TARGET_NAME=${TARGET_NAME} TEST_TIMEOUT=${timeout} ${bash_test_modules_ENVS} WITH_COVERAGE=ON COVERAGE_FILE=${PADDLE_BINARY_DIR}/python-coverage.data bash ${CMAKE_CURRENT_BINARY_DIR}/${bash_test_modules_START_BASH} WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) else() add_test(NAME ${TARGET_NAME} - COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python + COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python TEST_TARGET_NAME=${TARGET_NAME} TEST_TIMEOUT=${timeout} ${bash_test_modules_ENVS} bash ${CMAKE_CURRENT_BINARY_DIR}/${bash_test_modules_START_BASH} WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) @@ -419,14 +421,14 @@ function(parallel_bash_test_modules TARGET_NAME) if(WITH_COVERAGE) add_test(NAME ${TARGET_NAME} - COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python + COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python TEST_TARGET_NAME=${TARGET_NAME} TEST_TIMEOUT=${timeout} ${parallel_bash_test_modules_ENVS} UnitTests=${uts_string} WITH_COVERAGE=ON COVERAGE_FILE=${PADDLE_BINARY_DIR}/python-coverage.data bash ${CMAKE_CURRENT_BINARY_DIR}/${parallel_bash_test_modules_START_BASH} WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) else() add_test(NAME ${TARGET_NAME} - COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python + COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python TEST_TARGET_NAME=${TARGET_NAME} TEST_TIMEOUT=${timeout} ${parallel_bash_test_modules_ENVS} UnitTests=${uts_string} bash ${CMAKE_CURRENT_BINARY_DIR}/${parallel_bash_test_modules_START_BASH} WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) diff --git a/python/paddle/fluid/tests/unittests/test_fused_feedforward_op.py b/python/paddle/fluid/tests/unittests/test_fused_feedforward_op.py new file mode 100644 index 0000000000000000000000000000000000000000..a0b341bf6cff26f7e9cc9ab539e14c28b73b8bca --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_fused_feedforward_op.py @@ -0,0 +1,314 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy as np + +import paddle +import paddle.fluid as fluid +import paddle.fluid.core as core +from paddle.nn.layer import transformer +import paddle.nn.functional as F +from paddle.nn.layer.norm import LayerNorm +from paddle.nn.layer.common import Linear, Dropout +import unittest +from op_test import OpTest + + +class TestFusedFFNOp(OpTest): + def getDtype(self): + self.dtype = "float32" + self.layer_norm_dtype = "float32" + + def getShape(self): + self.batch_size = np.random.randint(1, 64) + self.query_length = np.random.randint(32, 256) + self.d_model = np.random.randint(32, 1024) + self.dim_feedforward = np.random.randint(32, 1024) + + def getDiff(self): + self.rtol = 1e-3 + self.atol = 1e-4 + + def getActivation(self): + self.act_method = "gelu" + + def getNormalizeBefore(self): + self.pre_layer_norm = False + + def setUp(self): + paddle.disable_static() + self.__class__.op_type = "fused_feedforward" + self.getDtype() + self.getShape() + self.getDiff() + self.getActivation() + self.getNormalizeBefore() + paddle.set_default_dtype(self.dtype) + self.weight_attr = None + self.bias_attr = None + + self.weight_attrs = transformer._convert_param_attr_to_list( + self.weight_attr, 2) + self.bias_attrs = transformer._convert_param_attr_to_list( + self.bias_attr, 2) + self.linear1 = Linear( + self.d_model, + self.dim_feedforward, + self.weight_attrs[1], + bias_attr=self.bias_attrs[1]) + self.linear2 = Linear( + self.dim_feedforward, + self.d_model, + self.weight_attrs[1], + bias_attr=self.bias_attrs[1]) + + paddle.set_default_dtype(self.layer_norm_dtype) + self.norm1 = LayerNorm(self.d_model) + self.norm2 = LayerNorm(self.d_model) + self.dropout = Dropout(0.0, mode="upscale_in_train") + self.dropout1 = Dropout(0.0, mode="upscale_in_train") + self.dropout2 = Dropout(0.0, mode="upscale_in_train") + self.activation = getattr(F, self.act_method) + + self.src = np.random.random((self.batch_size, self.query_length, + self.d_model)).astype(self.dtype) + + def Base(self): + paddle.disable_static() + tensor_src = paddle.to_tensor(self.src, stop_gradient=False) + residual = paddle.to_tensor(self.src) + if self.pre_layer_norm: + ln1_out = self.norm1(tensor_src) + linear2_out = self.linear2( + self.dropout(self.activation(self.linear1(ln1_out)))) + dropout2_out = residual + self.dropout2(linear2_out) + else: + linear2_out = self.linear2( + self.dropout(self.activation(self.linear1(tensor_src)))) + dropout2_out = residual + self.dropout2(linear2_out) + dropout2_out = self.norm2(dropout2_out) + return dropout2_out + + def FusedFFN(self): + paddle.disable_static() + linear1_weight = paddle.to_tensor( + self.linear1.weight, stop_gradient=False) + linear1_bias = paddle.to_tensor(self.linear1.bias, stop_gradient=False) + linear2_weight = paddle.to_tensor( + self.linear2.weight, stop_gradient=False) + linear2_bias = paddle.to_tensor(self.linear2.bias, stop_gradient=False) + ln1_scale = paddle.to_tensor(self.norm1.weight, stop_gradient=False) + ln1_bias = paddle.to_tensor(self.norm1.bias, stop_gradient=False) + ln2_scale = paddle.to_tensor(self.norm2.weight, stop_gradient=False) + ln2_bias = paddle.to_tensor(self.norm2.bias, stop_gradient=False) + x = paddle.to_tensor(self.src, stop_gradient=False) + out = F.fused_feedforward( + x, + linear1_weight, + linear2_weight, + linear1_bias, + linear2_bias, + ln1_scale, + ln1_bias, + ln2_scale, + ln2_bias, + 0.0, + 0.0, + activation=self.act_method, + pre_layer_norm=self.pre_layer_norm) + return out + + def test_fused_ffn(self): + base_out = self.Base() + fused_out = self.FusedFFN() + np.testing.assert_allclose( + base_out.numpy(), fused_out.numpy(), rtol=self.rtol, atol=self.atol) + + +class TestFusedFFNOpFp16(TestFusedFFNOp): + def getDtype(self): + self.dtype = "float16" + self.layer_norm_dtype = "float32" + + def getDiff(self): + self.rtol = 1e-1 + self.atol = 1e-2 + + def getShape(self): + self.batch_size = 8 + self.query_length = 128 + self.d_model = 512 + self.dim_feedforward = 512 + + +class TestFusedFFNOpFp64(TestFusedFFNOp): + def getDtype(self): + self.dtype = "float64" + self.layer_norm_dtype = "float64" + + +class TestFusedFFNOpActivation(TestFusedFFNOp): + def getActivation(self): + self.act_method = "relu" + + +class TestFusedFFNOpNormalizeBefore(TestFusedFFNOp): + def getNormalizeBefore(self): + self.pre_layer_norm = True + + def getShape(self): + self.batch_size = 1 + self.query_length = 1 + self.d_model = 8 + self.dim_feedforward = 8 + + +class APITestStaticFusedFFN(unittest.TestCase): + def test_static(self): + paddle.enable_static() + dtype = "float32" + layer_norm_dtype = "float32" + batch_size = 1 + d_model = 8 + dim_feedforward = 8 + + x = paddle.static.data( + name='x', shape=[batch_size, d_model, dim_feedforward], dtype=dtype) + linear1_weight = paddle.static.data( + name='linear1_weight', + shape=[d_model, dim_feedforward], + dtype=dtype) + linear1_bias = paddle.static.data( + name='linear1_bias', shape=[dim_feedforward]) + linear2_weight = paddle.static.data( + name='linear2_weight', + shape=[dim_feedforward, d_model], + dtype=dtype) + linear2_bias = paddle.static.data(name='linear2_bias', shape=[d_model]) + ln1_scale = paddle.static.data(name='ln1_scale', shape=[d_model]) + ln1_bias = paddle.static.data(name='ln1_scale', shape=[d_model]) + ln2_scale = paddle.static.data(name='ln2_scale', shape=[d_model]) + ln2_bias = paddle.static.data(name='ln2_scale', shape=[d_model]) + + fused_out = F.fused_feedforward( + x, + linear1_weight, + linear2_weight, + linear1_bias, + linear2_bias, + ln1_scale, + ln1_bias, + ln2_scale, + ln2_bias, + 0.0, + 0.0, + activation="relu", + pre_layer_norm=False) + + ######base ffn###### + linear1_out = F.linear(x, linear1_weight, linear1_bias) + act_out = F.relu(linear1_out) + dropout1_out = F.dropout(x=act_out, p=0.0, training=False) + linear2_out = F.linear(dropout1_out, linear2_weight, linear2_bias) + dropout2_out = x + F.dropout(x=linear2_out, p=0.0, training=False) + ln_out = F.layer_norm( + dropout2_out, + normalized_shape=list([d_model]), + weight=ln2_scale, + bias=ln2_bias) + ######base ffn###### + + exe = paddle.static.Executor(paddle.CUDAPlace(0)) + + x_data = np.random.random( + (batch_size, d_model, dim_feedforward)).astype(dtype) + linear1_weight_data = np.random.random( + (d_model, dim_feedforward)).astype(dtype) + linear1_bias_data = np.zeros((dim_feedforward)).astype(dtype) + linear2_weight_data = np.random.random( + (dim_feedforward, d_model)).astype(dtype) + linear2_bias_data = np.zeros((d_model)).astype(dtype) + + ln1_scale_data = np.ones((d_model)).astype(layer_norm_dtype) + ln1_bias_data = np.zeros((d_model)).astype(layer_norm_dtype) + ln2_scale_data = np.ones((d_model)).astype(layer_norm_dtype) + ln2_bias_data = np.zeros((d_model)).astype(layer_norm_dtype) + + res_list = [fused_out, ln_out] + real_res = [] + + for res in res_list: + fetch = exe.run(feed={ + 'x': x_data, + 'linear1_weight': linear1_weight_data, + 'linear1_bias': linear1_bias_data, + 'linear2_weight': linear2_weight_data, + 'linear2_bias': linear2_bias_data, + 'ln1_scale': ln1_scale_data, + 'ln1_bias': ln1_bias_data, + 'ln2_scale': ln2_scale_data, + 'ln2_bias': ln2_bias_data + }, + fetch_list=[res]) + real_res.append(fetch) + self.assertTrue( + np.allclose( + real_res[0], real_res[1], atol=1e-5), + "two value is check diff") + + +class TestFusedFFNOpError(unittest.TestCase): + def test_errors(self): + paddle.enable_static() + with paddle.static.program_guard(paddle.static.Program(), + paddle.static.Program()): + + def test_dtype(): + x = paddle.static.data( + name='x', shape=[1, 10, 10], dtype="int32") + linear1_weight = paddle.static.data( + name='linear1_weight', shape=[1, 10, 10], dtype="float32") + linear2_weight = paddle.static.data( + name='linear2_weight', shape=[1, 10, 10], dtype="float32") + paddle.nn.functional.fused_feedforward(x, linear1_weight, + linear2_weight) + + self.assertRaises(TypeError, test_dtype) + + def test_dropout_rate_type(): + x = paddle.static.data( + name='x1', shape=[1, 10, 10], dtype="float32") + linear1_weight = paddle.static.data( + name='linear1_weight1', shape=[10, 10], dtype="float32") + linear2_weight = paddle.static.data( + name='linear2_weight1', shape=[10, 10], dtype="float32") + paddle.nn.functional.fused_feedforward( + x, linear1_weight, linear2_weight, dropout1_rate="a") + + self.assertRaises(TypeError, test_dropout_rate_type) + + def test_dropout_rate_value(): + x = paddle.static.data( + name='x2', shape=[1, 10, 10], dtype="float32") + linear1_weight = paddle.static.data( + name='linear1_weight2', shape=[10, 10], dtype="float32") + linear2_weight = paddle.static.data( + name='linear2_weight2', shape=[10, 10], dtype="float32") + paddle.nn.functional.fused_feedforward( + x, linear1_weight, linear2_weight, dropout2_rate=-1) + + self.assertRaises(ValueError, test_dropout_rate_value) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/nn/functional/__init__.py b/python/paddle/nn/functional/__init__.py index 8daae3d0ca90e7e3587a3b166643bb9342e79d18..2c0c4461330cd2dd1af546e79881a4ebc978e963 100644 --- a/python/paddle/nn/functional/__init__.py +++ b/python/paddle/nn/functional/__init__.py @@ -111,6 +111,7 @@ from .vision import grid_sample # noqa: F401 from .vision import pixel_shuffle # noqa: F401 from .input import one_hot # noqa: F401 from .input import embedding # noqa: F401 +from .fused_transformer import fused_feedforward # noqa: F401 from ...fluid.layers import gather_tree # noqa: F401 from ...fluid.layers import temporal_shift # noqa: F401 @@ -212,6 +213,7 @@ __all__ = [ #noqa 'layer_norm', 'instance_norm', 'class_center_sample', + 'fused_feedforward', 'fused_multi_head_attention', 'sparse_attention', ] diff --git a/python/paddle/nn/functional/fused_transformer.py b/python/paddle/nn/functional/fused_transformer.py index 565ef223a96cbb5829fb1a3f6341cd5a47c46973..d07927491491b87c194cac946acd3ec336971e39 100644 --- a/python/paddle/nn/functional/fused_transformer.py +++ b/python/paddle/nn/functional/fused_transformer.py @@ -12,13 +12,166 @@ # See the License for the specific language governing permissions and # limitations under the License. -import paddle +from ...fluid.layer_helper import LayerHelper from ...fluid.framework import in_dygraph_mode +from ...fluid.data_feeder import check_variable_and_dtype, check_dtype from paddle import _C_ops __all__ = [] +def _verify_dropout_rate(dropout_rate): + if not isinstance(dropout_rate, (float, int)): + raise TypeError("dropout_rate argument should be a number") + if dropout_rate < 0 or dropout_rate > 1: + raise ValueError("dropout_rate argument should between 0 and 1") + + +def fused_feedforward(x, + linear1_weight, + linear2_weight, + linear1_bias=None, + linear2_bias=None, + ln1_scale=None, + ln1_bias=None, + ln2_scale=None, + ln2_bias=None, + dropout1_rate=0.5, + dropout2_rate=0.5, + activation="relu", + ln1_epsilon=1e-5, + ln2_epsilon=1e-5, + pre_layer_norm=False, + name=None): + """ + This is a fusion operator to compute feed forward layer in transformer model architecture. + This operator only supports running on GPU. The function of the operator is consistent with + the following pseudo code: + + .. code-block:: python + + residual = src; + if pre_layer_norm: + src = layer_norm(src) + src = linear(dropout(activation(dropout(linear(src))))) + if not pre_layer_norm: + src = layer_norm(out) + + Args: + x (Tensor): the input tensor could be 3-D tensor, the input data type could be float16, float32 or float64, the shape is`[batch\_size, sequence\_length, d_model]`. + linear1_weight (Tensor): The weight of first linear, the data type is same as `x`, the shape is `[d\_model, dim\_feedforward]`. + linear2_weight (Tensor): The weight of second linear, the data type is same as `x`, the shape is `[dim\_feedforward, d\_model]`. + linear1_bias (Tensor, optional): The bias of first linear, the data type is same as `x`, the shape is `[dim_feedforward]`. Default None. + linear2_bias (Tensor, optional): The bias of second linear, the data type is same as `x`, the shape is `[d_model]`. Default None. + ln1_scale (Tensor, optional): the weight of first layer_norm, the data type is float32 or float64, the shape is same as `x`. Default None. + ln1_bias (Tensor, optional): The bias of first layer_norm, the data type is float32 or float64, the shape is `[d\_model]`. Default None. + ln2_scale (Tensor, optional): The weight of second layer_norm, the data type is float32 or float64, the shape is same as `x`. Default None. + ln2_bias (Tensor, optional): The bias of second layer_norm, the data type is float32 or float64, the shape is `[d\_model]`. Default None. + dropout1_rate (float, optional): The first dropout probability of setting units to zero. Default 0.5. + dropout2_rate (float, optional): The second dropout probability of setting units to zero. Default 0.5. + activation (str, optional): The activation. Default "relu". + ln1_epsilon (float, optional): Small float of first layer_norm added to denominator to avoid dividing by zero. Default is 1e-5. + ln2_epsilon (float, optional): Small float of second layer_norm added to denominator to avoid dividing by zero. Default is 1e-5. + pre_layer_norm (bool, optional): add layer_norm in the pre-processing stage or post-processing state. + name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. + + Returns: + Tensor: The output Tensor, the data type and shape is same as `x`. + + Examples: + .. code-block:: python + + # required: gpu + import paddle + import numpy as np + x_data = np.random.random((1, 8, 8)).astype("float32") + linear1_weight_data = np.random.random((8, 8)).astype("float32") + linear2_weight_data = np.random.random((8, 8)).astype("float32") + x = paddle.to_tensor(x_data) + linear1_weight = paddle.to_tensor(linear1_weight_data) + linear2_weight = paddle.to_tensor(linear2_weight_data) + out = paddle.nn.functional.fused_feedforward(x, linear1_weight, linear2_weight) + print(out.numpy().shape) + # (1, 8, 8) + """ + _verify_dropout_rate(dropout1_rate) + _verify_dropout_rate(dropout2_rate) + + if in_dygraph_mode(): + out, _, _, _, _, _, _, _, _, _, _ = _C_ops.fused_feedforward( + x, None, None, linear1_weight, linear1_bias, linear2_weight, + linear2_bias, ln1_scale, ln1_bias, ln2_scale, ln2_bias, + 'pre_layer_norm', pre_layer_norm, 'ln1_epsilon', ln1_epsilon, + 'ln2_epsilon', ln2_epsilon, 'act_method', activation, + 'dropout1_rate', dropout1_rate, 'dropout2_rate', dropout2_rate) + return out + + helper = LayerHelper("fused_feedforward") + dtype = x.dtype + check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], + 'fused_feedforward') + check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], + 'fused_feedforward') + + out = helper.create_variable_for_type_inference(x.dtype) + dropout1_mask = helper.create_variable_for_type_inference( + 'uint8', stop_gradient=True) + dropout2_mask = helper.create_variable_for_type_inference( + 'uint8', stop_gradient=True) + ln1_mean = helper.create_variable_for_type_inference( + x.dtype, stop_gradient=True) + ln1_variance = helper.create_variable_for_type_inference( + x.dtype, stop_gradient=True) + ln2_mean = helper.create_variable_for_type_inference( + x.dtype, stop_gradient=True) + ln2_variance = helper.create_variable_for_type_inference( + x.dtype, stop_gradient=True) + linear1_out = helper.create_variable_for_type_inference( + x.dtype, stop_gradient=True) + ln1_out = helper.create_variable_for_type_inference( + x.dtype, stop_gradient=True) + dropout1_out = helper.create_variable_for_type_inference( + x.dtype, stop_gradient=True) + dropout2_out = helper.create_variable_for_type_inference( + x.dtype, stop_gradient=True) + + helper.append_op( + type='fused_feedforward', + inputs={ + 'X': x, + 'Linear1Weight': linear1_weight, + 'Linear1Bias': linear1_bias, + 'Linear2Weight': linear2_weight, + 'Linear2Bias': linear2_bias, + 'Ln1Scale': ln1_scale, + 'Ln1Bias': ln1_bias, + 'Ln2Scale': ln2_scale, + 'Ln2Bias': ln2_bias, + }, + outputs={ + 'Out': out, + 'Dropout1Mask': dropout1_mask, + 'Dropout2Mask': dropout2_mask, + 'Ln1Mean': ln1_mean, + 'Ln1Variance': ln1_variance, + 'Ln2Mean': ln2_mean, + 'Ln2Variance': ln2_variance, + 'Linear1Out': linear1_out, + 'Ln1Out': ln1_out, + 'Dropout1Out': dropout1_out, + 'Dropout2Out': dropout2_out, + }, + attrs={ + 'dropout1_rate': dropout1_rate, + 'dropout2_rate': dropout2_rate, + 'act_method': activation, + 'pre_layer_norm': pre_layer_norm, + 'ln1_epsilon': ln1_epsilon, + 'ln2_epsilon': ln2_epsilon, + }) + return out + + def fused_multi_head_attention(x, qkv_weight, linear_weight, @@ -38,7 +191,7 @@ def fused_multi_head_attention(x, """ Attention mapps queries and a set of key-value pairs to outputs, and Multi-Head Attention performs multiple parallel attention to jointly attending - to information from different representation subspaces. This API only + to information from different representation subspaces. This API only support self_attention. The pseudo code is as follows: if pre_layer_norm: out = layer_norm(x); @@ -55,41 +208,41 @@ def fused_multi_head_attention(x, out = softmax(out); out = dropout(out); out = out * v; - out = transpose(out, perm=[0, 2, 1, 3]); + out = transpose(out, perm=[0, 2, 1, 3]); out = out_linear(out); out = layer_norm(x + dropout(linear_bias + out)); Parameters: - x (Tensor): The input tensor of fused_multi_head_attention. The shape is + x (Tensor): The input tensor of fused_multi_head_attention. The shape is `[batch\_size, sequence\_len, embed\_dim]`. qkv_weight (Tensor): The qkv weight tensor. The shape is `[3, num_head, dim_head, dim_embed]`. linear_weight (Tensor): The linear weight tensor. The shape is `[embed_dim, embed_dim]`. - pre_layer_norm (bool, optional): whether it is pre_layer_norm or post_layer_norm architecture. + pre_layer_norm (bool, optional): whether it is pre_layer_norm or post_layer_norm architecture. Default False. pre_ln_scale (Tensor, optional): The weight tensor of pre layernorm. Default None. pre_ln_bias (Tensor, optional): The bias tensor of pre layernorm. Default None. ln_scale (Tensor, optional): The weight tensor of layernorm. Default None. ln_bias (Tensor, optional): The bias tensor of layernorm. Default None. - pre_ln_epsilon (float, optional): Small float value added to denominator of the pre layer_norm + pre_ln_epsilon (float, optional): Small float value added to denominator of the pre layer_norm to avoid dividing by zero. Default is 1e-5. - qkv_bias (Tensor, optional): The bias of qkv computation. The shape is `[3, num_head, dim_head]`. + qkv_bias (Tensor, optional): The bias of qkv computation. The shape is `[3, num_head, dim_head]`. Default None. linear_bias (Tensor, optional): The bias of linear. The shape is `[embed_dim]`. Default None. attn_mask (Tensor, optional): dropout_rate (float, optional): The dropout probability used on attention - weights to drop some attention targets for the dropout after attention. + weights to drop some attention targets for the dropout after attention. 0 for no dropout. Default 0. attn_dropout_rate (float, optional): The dropout probability used on attention - weights to drop some attention targets for the dropout in attention. + weights to drop some attention targets for the dropout in attention. 0 for no dropout. Default 0. - ln_epsilon (float, optional): Small float value added to denominator of layer_norm + ln_epsilon (float, optional): Small float value added to denominator of layer_norm to avoid dividing by zero. Default is 1e-5. - + Examples: .. code-block:: python - - # required: gpu + + # required: gpu import paddle import paddle.nn.functional as F @@ -115,8 +268,8 @@ def fused_multi_head_attention(x, print(output.shape) """ if in_dygraph_mode(): - # pre_ln_mean, pre_ln_variance, pre_ln_out, qkv_out, qkv_bias_out, transpose_out, qk_out, - # qktv_out, softmax_out, attn_dropout_mask_out, attn_dropout_out, attn_mask_out, fmha_out, + # pre_ln_mean, pre_ln_variance, pre_ln_out, qkv_out, qkv_bias_out, transpose_out, qk_out, + # qktv_out, softmax_out, attn_dropout_mask_out, attn_dropout_out, attn_mask_out, fmha_out, # linear_out, dropout_mask_out, ln_mean_out, ln_var_out, bias_dropout_residual_out, final_out _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, final_out = _C_ops.fused_attention( x, pre_ln_scale, pre_ln_bias, qkv_weight, qkv_bias, attn_mask, diff --git a/python/paddle/nn/functional/norm.py b/python/paddle/nn/functional/norm.py index 89843885c8a127fd107e5b57271c284a494ec752..9b765a1d7c78243f13bda15f2bbbbd485ee7432a 100644 --- a/python/paddle/nn/functional/norm.py +++ b/python/paddle/nn/functional/norm.py @@ -12,7 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. -# TODO: define normalization api +# TODO: define normalization api import paddle import paddle.fluid as fluid from ...fluid.data_feeder import check_variable_and_dtype, check_type @@ -35,7 +35,7 @@ def normalize(x, p=2, axis=1, epsilon=1e-12, name=None): .. math:: y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) } - + .. math:: \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p} \right)^{1/p} @@ -45,7 +45,7 @@ def normalize(x, p=2, axis=1, epsilon=1e-12, name=None): Parameters: x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64. p (float|int, optional): The exponent value in the norm formulation. Default: 2 - axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension. + axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension. epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. @@ -123,13 +123,13 @@ def batch_norm(x, Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift . nn.functional.batch_norm is uesd for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm. - + Parameters: x(Tesnor): input value. It's data type should be float32, float64. running_mean(Tensor): running mean. running_var(Tensor): running variance. weight(Tensor): The weight tensor of batch_norm, can not be None. - bias(Tensor): The bias tensor of batch_norm can not be None. + bias(Tensor): The bias tensor of batch_norm can not be None. epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5. momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9. training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Defalut False. @@ -252,7 +252,7 @@ def layer_norm(x, name=None): """ see more detail in paddle.nn.LayerNorm - + Parameters: x(Tensor): Input Tensor. It's data type should be float32, float64. normalized_shape(int|list|tuple): Input shape from an expected input of @@ -277,7 +277,7 @@ def layer_norm(x, np.random.seed(123) x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32') - x = paddle.to_tensor(x_data) + x = paddle.to_tensor(x_data) layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:]) print(layer_norm_out) """ @@ -378,7 +378,7 @@ def instance_norm(x, np.random.seed(123) x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32') - x = paddle.to_tensor(x_data) + x = paddle.to_tensor(x_data) instance_norm_out = paddle.nn.functional.instance_norm(x) print(instance_norm_out)