diff --git a/demo/image_classification/.gitignore b/demo/image_classification/.gitignore deleted file mode 100644 index 6a05b8f6632db0977fceade8b48a89b9f7f6e6cc..0000000000000000000000000000000000000000 --- a/demo/image_classification/.gitignore +++ /dev/null @@ -1,9 +0,0 @@ -data/cifar-10-batches-py -data/cifar-out -cifar_vgg_model/* -plot.png -train.log -image_provider_copy_1.py -*pyc -train.list -test.list diff --git a/demo/image_classification/api_v2_resnet.py b/demo/image_classification/api_v2_resnet.py deleted file mode 100644 index 19d20540780becf504973a23b50445d4b65dc2ef..0000000000000000000000000000000000000000 --- a/demo/image_classification/api_v2_resnet.py +++ /dev/null @@ -1,74 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import paddle.v2 as paddle - -__all__ = ['resnet_cifar10'] - - -def conv_bn_layer(input, - ch_out, - filter_size, - stride, - padding, - active_type=paddle.activation.Relu(), - ch_in=None): - tmp = paddle.layer.img_conv( - input=input, - filter_size=filter_size, - num_channels=ch_in, - num_filters=ch_out, - stride=stride, - padding=padding, - act=paddle.activation.Linear(), - bias_attr=False) - return paddle.layer.batch_norm(input=tmp, act=active_type) - - -def shortcut(ipt, n_in, n_out, stride): - if n_in != n_out: - return conv_bn_layer(ipt, n_out, 1, stride, 0, - paddle.activation.Linear()) - else: - return ipt - - -def basicblock(ipt, ch_out, stride): - ch_in = ch_out * 2 - tmp = conv_bn_layer(ipt, ch_out, 3, stride, 1) - tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, paddle.activation.Linear()) - short = shortcut(ipt, ch_in, ch_out, stride) - return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu()) - - -def layer_warp(block_func, ipt, features, count, stride): - tmp = block_func(ipt, features, stride) - for i in range(1, count): - tmp = block_func(tmp, features, 1) - return tmp - - -def resnet_cifar10(ipt, depth=32): - # depth should be one of 20, 32, 44, 56, 110, 1202 - assert (depth - 2) % 6 == 0 - n = (depth - 2) / 6 - nStages = {16, 64, 128} - conv1 = conv_bn_layer( - ipt, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1) - res1 = layer_warp(basicblock, conv1, 16, n, 1) - res2 = layer_warp(basicblock, res1, 32, n, 2) - res3 = layer_warp(basicblock, res2, 64, n, 2) - pool = paddle.layer.img_pool( - input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg()) - return pool diff --git a/demo/image_classification/api_v2_train.py b/demo/image_classification/api_v2_train.py deleted file mode 100644 index 53cffa6fb4e8b2e19725f4f44bf7b9ffffb25232..0000000000000000000000000000000000000000 --- a/demo/image_classification/api_v2_train.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License - -import sys - -import paddle.v2 as paddle - -from api_v2_vgg import vgg_bn_drop - - -def main(): - datadim = 3 * 32 * 32 - classdim = 10 - - # PaddlePaddle init - paddle.init(use_gpu=False, trainer_count=1) - - image = paddle.layer.data( - name="image", type=paddle.data_type.dense_vector(datadim)) - - # Add neural network config - # option 1. resnet - # net = resnet_cifar10(image, depth=32) - # option 2. vgg - net = vgg_bn_drop(image) - - out = paddle.layer.fc(input=net, - size=classdim, - act=paddle.activation.Softmax()) - - lbl = paddle.layer.data( - name="label", type=paddle.data_type.integer_value(classdim)) - cost = paddle.layer.classification_cost(input=out, label=lbl) - - # Create parameters - parameters = paddle.parameters.create(cost) - - # Create optimizer - momentum_optimizer = paddle.optimizer.Momentum( - momentum=0.9, - regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128), - learning_rate=0.1 / 128.0, - learning_rate_decay_a=0.1, - learning_rate_decay_b=50000 * 100, - learning_rate_schedule='discexp', - batch_size=128) - - # End batch and end pass event handler - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - print "\nPass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics) - else: - sys.stdout.write('.') - sys.stdout.flush() - if isinstance(event, paddle.event.EndPass): - result = trainer.test( - reader=paddle.batch( - paddle.dataset.cifar.test10(), batch_size=128), - feeding={'image': 0, - 'label': 1}) - print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) - - # Create trainer - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=momentum_optimizer) - trainer.train( - reader=paddle.batch( - paddle.reader.shuffle( - paddle.dataset.cifar.train10(), buf_size=50000), - batch_size=128), - num_passes=5, - event_handler=event_handler, - feeding={'image': 0, - 'label': 1}) - - -if __name__ == '__main__': - main() diff --git a/demo/image_classification/api_v2_vgg.py b/demo/image_classification/api_v2_vgg.py deleted file mode 100644 index 1e0e6b93adde30425f17aa9cd07542275f4fec37..0000000000000000000000000000000000000000 --- a/demo/image_classification/api_v2_vgg.py +++ /dev/null @@ -1,47 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import paddle.v2 as paddle - -__all__ = ['vgg_bn_drop'] - - -def vgg_bn_drop(input): - def conv_block(ipt, num_filter, groups, dropouts, num_channels=None): - return paddle.networks.img_conv_group( - input=ipt, - num_channels=num_channels, - pool_size=2, - pool_stride=2, - conv_num_filter=[num_filter] * groups, - conv_filter_size=3, - conv_act=paddle.activation.Relu(), - conv_with_batchnorm=True, - conv_batchnorm_drop_rate=dropouts, - pool_type=paddle.pooling.Max()) - - conv1 = conv_block(input, 64, 2, [0.3, 0], 3) - conv2 = conv_block(conv1, 128, 2, [0.4, 0]) - conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) - conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) - conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) - - drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5) - fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear()) - bn = paddle.layer.batch_norm( - input=fc1, - act=paddle.activation.Relu(), - layer_attr=paddle.attr.Extra(drop_rate=0.5)) - fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear()) - return fc2 diff --git a/demo/image_classification/data/download_cifar.sh b/demo/image_classification/data/download_cifar.sh deleted file mode 100755 index 532178d627fe19ab8ea79ecae73e5328b5294bea..0000000000000000000000000000000000000000 --- a/demo/image_classification/data/download_cifar.sh +++ /dev/null @@ -1,21 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz -tar zxf cifar-10-python.tar.gz -rm cifar-10-python.tar.gz -rm -rf cifar-out/* -echo Converting CIFAR data to images..... -python process_cifar.py ./cifar-10-batches-py ./cifar-out diff --git a/demo/image_classification/data/process_cifar.py b/demo/image_classification/data/process_cifar.py deleted file mode 100644 index db6666189e5b8008a6b66fb64afcdf98980e72bb..0000000000000000000000000000000000000000 --- a/demo/image_classification/data/process_cifar.py +++ /dev/null @@ -1,89 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np -import sys -import os -import PIL.Image as Image -""" - Usage: python process_cifar input_dir output_dir -""" - - -def mkdir_not_exist(path): - """ - Make dir if the path does not exist. - path: the path to be created. - """ - if not os.path.exists(path): - os.mkdir(path) - - -def create_dir_structure(output_dir): - """ - Create the directory structure for the directory. - output_dir: the direcotry structure path. - """ - mkdir_not_exist(os.path.join(output_dir)) - mkdir_not_exist(os.path.join(output_dir, "train")) - mkdir_not_exist(os.path.join(output_dir, "test")) - - -def convert_batch(batch_path, label_set, label_map, output_dir, data_split): - """ - Convert CIFAR batch to the structure of Paddle format. - batch_path: the batch to be converted. - label_set: the set of labels. - output_dir: the output path. - data_split: whether it is training or testing data. - """ - data = np.load(batch_path) - for data, label, filename in zip(data['data'], data['labels'], - data['filenames']): - data = data.reshape((3, 32, 32)) - data = np.transpose(data, (1, 2, 0)) - label = label_map[label] - output_dir_this = os.path.join(output_dir, data_split, str(label)) - output_filename = os.path.join(output_dir_this, filename) - if not label in label_set: - label_set[label] = True - mkdir_not_exist(output_dir_this) - Image.fromarray(data).save(output_filename) - - -if __name__ == '__main__': - input_dir = sys.argv[1] - output_dir = sys.argv[2] - num_batch = 5 - create_dir_structure(output_dir) - label_map = { - 0: "airplane", - 1: "automobile", - 2: "bird", - 3: "cat", - 4: "deer", - 5: "dog", - 6: "frog", - 7: "horse", - 8: "ship", - 9: "truck" - } - labels = {} - for i in range(1, num_batch + 1): - convert_batch( - os.path.join(input_dir, "data_batch_%d" % i), labels, label_map, - output_dir, "train") - convert_batch( - os.path.join(input_dir, "test_batch"), {}, label_map, output_dir, - "test") diff --git a/demo/image_classification/image_provider.py b/demo/image_classification/image_provider.py deleted file mode 100644 index 6a315ff094c1af5f8250d8a22ff96740dddd9808..0000000000000000000000000000000000000000 --- a/demo/image_classification/image_provider.py +++ /dev/null @@ -1,89 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import io -import random - -import paddle.utils.image_util as image_util -from paddle.trainer.PyDataProvider2 import * - - -# -# {'img_size': 32, -# 'settings': a global object, -# 'color': True, -# 'mean_img_size': 32, -# 'meta': './data/cifar-out/batches/batches.meta', -# 'num_classes': 10, -# 'file_list': ('./data/cifar-out/batches/train_batch_000',), -# 'use_jpeg': True} -def hook(settings, img_size, mean_img_size, num_classes, color, meta, use_jpeg, - is_train, **kwargs): - settings.mean_img_size = mean_img_size - settings.img_size = img_size - settings.num_classes = num_classes - settings.color = color - settings.is_train = is_train - - if settings.color: - settings.img_raw_size = settings.img_size * settings.img_size * 3 - else: - settings.img_raw_size = settings.img_size * settings.img_size - - settings.meta_path = meta - settings.use_jpeg = use_jpeg - - settings.img_mean = image_util.load_meta(settings.meta_path, - settings.mean_img_size, - settings.img_size, settings.color) - - settings.logger.info('Image size: %s', settings.img_size) - settings.logger.info('Meta path: %s', settings.meta_path) - settings.input_types = { - 'image': dense_vector(settings.img_raw_size), - 'label': integer_value(settings.num_classes) - } - - settings.logger.info('DataProvider Initialization finished') - - -@provider(init_hook=hook, min_pool_size=0) -def processData(settings, file_list): - """ - The main function for loading data. - Load the batch, iterate all the images and labels in this batch. - file_list: the batch file list. - """ - with open(file_list, 'r') as fdata: - lines = [line.strip() for line in fdata] - random.shuffle(lines) - for file_name in lines: - with io.open(file_name.strip(), 'rb') as file: - data = cPickle.load(file) - indexes = list(range(len(data['images']))) - if settings.is_train: - random.shuffle(indexes) - for i in indexes: - if settings.use_jpeg == 1: - img = image_util.decode_jpeg(data['images'][i]) - else: - img = data['images'][i] - img_feat = image_util.preprocess_img( - img, settings.img_mean, settings.img_size, - settings.is_train, settings.color) - label = data['labels'][i] - yield { - 'image': img_feat.astype('float32'), - 'label': int(label) - } diff --git a/demo/image_classification/image_util.py b/demo/image_classification/image_util.py deleted file mode 100644 index f09605394a19e09d92e555eeefb0b5646625b618..0000000000000000000000000000000000000000 --- a/demo/image_classification/image_util.py +++ /dev/null @@ -1,221 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np -from PIL import Image -from cStringIO import StringIO - - -def resize_image(img, target_size): - """ - Resize an image so that the shorter edge has length target_size. - img: the input image to be resized. - target_size: the target resized image size. - """ - percent = (target_size / float(min(img.size[0], img.size[1]))) - resized_size = int(round(img.size[0] * percent)), int( - round(img.size[1] * percent)) - img = img.resize(resized_size, Image.ANTIALIAS) - return img - - -def flip(im): - """ - Return the flipped image. - Flip an image along the horizontal direction. - im: input image, (H x W x K) ndarrays - """ - if len(im.shape) == 3: - return im[:, :, ::-1] - else: - return im[:, ::-1] - - -def crop_img(im, inner_size, color=True, test=True): - """ - Return cropped image. - The size of the cropped image is inner_size * inner_size. - im: (K x H x W) ndarrays - inner_size: the cropped image size. - color: whether it is color image. - test: whether in test mode. - If False, does random cropping and flipping. - If True, crop the center of images. - """ - if color: - height, width = max(inner_size, im.shape[1]), max(inner_size, - im.shape[2]) - padded_im = np.zeros((3, height, width)) - startY = (height - im.shape[1]) / 2 - startX = (width - im.shape[2]) / 2 - endY, endX = startY + im.shape[1], startX + im.shape[2] - padded_im[:, startY:endY, startX:endX] = im - else: - im = im.astype('float32') - height, width = max(inner_size, im.shape[0]), max(inner_size, - im.shape[1]) - padded_im = np.zeros((height, width)) - startY = (height - im.shape[0]) / 2 - startX = (width - im.shape[1]) / 2 - endY, endX = startY + im.shape[0], startX + im.shape[1] - padded_im[startY:endY, startX:endX] = im - if test: - startY = (height - inner_size) / 2 - startX = (width - inner_size) / 2 - else: - startY = np.random.randint(0, height - inner_size + 1) - startX = np.random.randint(0, width - inner_size + 1) - endY, endX = startY + inner_size, startX + inner_size - if color: - pic = padded_im[:, startY:endY, startX:endX] - else: - pic = padded_im[startY:endY, startX:endX] - if (not test) and (np.random.randint(2) == 0): - pic = flip(pic) - return pic - - -def decode_jpeg(jpeg_string): - np_array = np.array(Image.open(StringIO(jpeg_string))) - if len(np_array.shape) == 3: - np_array = np.transpose(np_array, (2, 0, 1)) - return np_array - - -def preprocess_img(im, img_mean, crop_size, is_train, color=True): - """ - Does data augmentation for images. - If is_train is false, cropping the center region from the image. - If is_train is true, randomly crop a region from the image, - and randomy does flipping. - im: (K x H x W) ndarrays - """ - im = im.astype('float32') - test = not is_train - pic = crop_img(im, crop_size, color, test) - pic -= img_mean - return pic.flatten() - - -def load_meta(meta_path, mean_img_size, crop_size, color=True): - """ - Return the loaded meta file. - Load the meta image, which is the mean of the images in the dataset. - The mean image is subtracted from every input image so that the expected mean - of each input image is zero. - """ - mean = np.load(meta_path)['data_mean'] - border = (mean_img_size - crop_size) / 2 - if color: - assert (mean_img_size * mean_img_size * 3 == mean.shape[0]) - mean = mean.reshape(3, mean_img_size, mean_img_size) - mean = mean[:, border:border + crop_size, border:border + - crop_size].astype('float32') - else: - assert (mean_img_size * mean_img_size == mean.shape[0]) - mean = mean.reshape(mean_img_size, mean_img_size) - mean = mean[border:border + crop_size, border:border + - crop_size].astype('float32') - return mean - - -def load_image(img_path, is_color=True): - """ - Load image and return. - img_path: image path. - is_color: is color image or not. - """ - img = Image.open(img_path) - img.load() - return img - - -def oversample(img, crop_dims): - """ - image : iterable of (H x W x K) ndarrays - crop_dims: (height, width) tuple for the crops. - Returned data contains ten crops of input image, namely, - four corner patches and the center patch as well as their - horizontal reflections. - """ - # Dimensions and center. - im_shape = np.array(img[0].shape) - crop_dims = np.array(crop_dims) - im_center = im_shape[:2] / 2.0 - - # Make crop coordinates - h_indices = (0, im_shape[0] - crop_dims[0]) - w_indices = (0, im_shape[1] - crop_dims[1]) - crops_ix = np.empty((5, 4), dtype=int) - curr = 0 - for i in h_indices: - for j in w_indices: - crops_ix[curr] = (i, j, i + crop_dims[0], j + crop_dims[1]) - curr += 1 - crops_ix[4] = np.tile(im_center, (1, 2)) + np.concatenate( - [-crop_dims / 2.0, crop_dims / 2.0]) - crops_ix = np.tile(crops_ix, (2, 1)) - - # Extract crops - crops = np.empty( - (10 * len(img), crop_dims[0], crop_dims[1], im_shape[-1]), - dtype=np.float32) - ix = 0 - for im in img: - for crop in crops_ix: - crops[ix] = im[crop[0]:crop[2], crop[1]:crop[3], :] - ix += 1 - crops[ix - 5:ix] = crops[ix - 5:ix, :, ::-1, :] # flip for mirrors - return crops - - -class ImageTransformer: - def __init__(self, - transpose=None, - channel_swap=None, - mean=None, - is_color=True): - self.transpose = transpose - self.channel_swap = None - self.mean = None - self.is_color = is_color - - def set_transpose(self, order): - if self.is_color: - assert 3 == len(order) - self.transpose = order - - def set_channel_swap(self, order): - if self.is_color: - assert 3 == len(order) - self.channel_swap = order - - def set_mean(self, mean): - # mean value, may be one value per channel - if mean.ndim == 1: - mean = mean[:, np.newaxis, np.newaxis] - else: - # elementwise mean - if self.is_color: - assert len(mean.shape) == 3 - self.mean = mean - - def transformer(self, data): - if self.transpose is not None: - data = data.transpose(self.transpose) - if self.channel_swap is not None: - data = data[self.channel_swap, :, :] - if self.mean is not None: - data -= self.mean - return data diff --git a/demo/image_classification/predict.sh b/demo/image_classification/predict.sh deleted file mode 100755 index 9d5785c9a1a4dac12f7940fa708b1a79c6ec8a93..0000000000000000000000000000000000000000 --- a/demo/image_classification/predict.sh +++ /dev/null @@ -1,20 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -model=cifar_vgg_model/pass-00299/ -image=data/cifar-out/test/airplane/seaplane_s_000978.png -use_gpu=1 -python prediction.py $model $image $use_gpu diff --git a/demo/image_classification/prediction.py b/demo/image_classification/prediction.py deleted file mode 100755 index 49c0ff600c40e0222093ff0a8a2f7e8e38ccba29..0000000000000000000000000000000000000000 --- a/demo/image_classification/prediction.py +++ /dev/null @@ -1,159 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os, sys -import numpy as np -import logging -from PIL import Image -from optparse import OptionParser - -import paddle.utils.image_util as image_util - -from py_paddle import swig_paddle, DataProviderConverter -from paddle.trainer.PyDataProvider2 import dense_vector -from paddle.trainer.config_parser import parse_config - -logging.basicConfig( - format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s') -logging.getLogger().setLevel(logging.INFO) - - -class ImageClassifier(): - def __init__(self, - train_conf, - use_gpu=True, - model_dir=None, - resize_dim=None, - crop_dim=None, - mean_file=None, - oversample=False, - is_color=True): - """ - train_conf: network configure. - model_dir: string, directory of model. - resize_dim: int, resized image size. - crop_dim: int, crop size. - mean_file: string, image mean file. - oversample: bool, oversample means multiple crops, namely five - patches (the four corner patches and the center - patch) as well as their horizontal reflections, - ten crops in all. - """ - self.train_conf = train_conf - self.model_dir = model_dir - if model_dir is None: - self.model_dir = os.path.dirname(train_conf) - - self.resize_dim = resize_dim - self.crop_dims = [crop_dim, crop_dim] - self.oversample = oversample - self.is_color = is_color - - self.transformer = image_util.ImageTransformer(is_color=is_color) - self.transformer.set_transpose((2, 0, 1)) - - self.mean_file = mean_file - mean = np.load(self.mean_file)['data_mean'] - mean = mean.reshape(3, self.crop_dims[0], self.crop_dims[1]) - self.transformer.set_mean(mean) # mean pixel - gpu = 1 if use_gpu else 0 - conf_args = "is_test=1,use_gpu=%d,is_predict=1" % (gpu) - conf = parse_config(train_conf, conf_args) - swig_paddle.initPaddle("--use_gpu=%d" % (gpu)) - self.network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - assert isinstance(self.network, swig_paddle.GradientMachine) - self.network.loadParameters(self.model_dir) - - data_size = 3 * self.crop_dims[0] * self.crop_dims[1] - slots = [dense_vector(data_size)] - self.converter = DataProviderConverter(slots) - - def get_data(self, img_path): - """ - 1. load image from img_path. - 2. resize or oversampling. - 3. transformer data: transpose, sub mean. - return K x H x W ndarray. - img_path: image path. - """ - image = image_util.load_image(img_path, self.is_color) - if self.oversample: - # image_util.resize_image: short side is self.resize_dim - image = image_util.resize_image(image, self.resize_dim) - image = np.array(image) - input = np.zeros( - (1, image.shape[0], image.shape[1], 3), dtype=np.float32) - input[0] = image.astype(np.float32) - input = image_util.oversample(input, self.crop_dims) - else: - image = image.resize(self.crop_dims, Image.ANTIALIAS) - input = np.zeros( - (1, self.crop_dims[0], self.crop_dims[1], 3), dtype=np.float32) - input[0] = np.array(image).astype(np.float32) - - data_in = [] - for img in input: - img = self.transformer.transformer(img).flatten() - data_in.append([img.tolist()]) - return data_in - - def forward(self, input_data): - in_arg = self.converter(input_data) - return self.network.forwardTest(in_arg) - - def forward(self, data, output_layer): - """ - input_data: py_paddle input data. - output_layer: specify the name of probability, namely the layer with - softmax activation. - return: the predicting probability of each label. - """ - input = self.converter(data) - self.network.forwardTest(input) - output = self.network.getLayerOutputs(output_layer) - # For oversampling, average predictions across crops. - # If not, the shape of output[name]: (1, class_number), - # the mean is also applicable. - return output[output_layer]['value'].mean(0) - - def predict(self, image=None, output_layer=None): - assert isinstance(image, basestring) - assert isinstance(output_layer, basestring) - data = self.get_data(image) - prob = self.forward(data, output_layer) - lab = np.argsort(-prob) - logging.info("Label of %s is: %d", image, lab[0]) - - -if __name__ == '__main__': - image_size = 32 - crop_size = 32 - multi_crop = True - config = "vgg_16_cifar.py" - output_layer = "__fc_layer_1__" - mean_path = "data/cifar-out/batches/batches.meta" - model_path = sys.argv[1] - image = sys.argv[2] - use_gpu = bool(int(sys.argv[3])) - - obj = ImageClassifier( - train_conf=config, - model_dir=model_path, - resize_dim=image_size, - crop_dim=crop_size, - mean_file=mean_path, - use_gpu=use_gpu, - oversample=multi_crop) - obj.predict(image, output_layer) diff --git a/demo/image_classification/preprocess.py b/demo/image_classification/preprocess.py deleted file mode 100755 index 2947ad239c36f9a02ed67ccf5906380cb70e37ce..0000000000000000000000000000000000000000 --- a/demo/image_classification/preprocess.py +++ /dev/null @@ -1,54 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.utils.preprocess_img import ImageClassificationDatasetCreater -from optparse import OptionParser - - -def option_parser(): - parser = OptionParser(usage="usage: python preprcoess.py "\ - "-i data_dir [options]") - parser.add_option( - "-i", - "--input", - action="store", - dest="input", - help="Input data directory.") - parser.add_option( - "-s", - "--size", - action="store", - dest="size", - help="Processed image size.") - parser.add_option( - "-c", - "--color", - action="store", - dest="color", - help="whether to use color images.") - return parser.parse_args() - - -if __name__ == '__main__': - options, args = option_parser() - data_dir = options.input - processed_image_size = int(options.size) - color = options.color == "1" - data_creator = ImageClassificationDatasetCreater( - data_dir, processed_image_size, color) - data_creator.train_list_name = "train.txt" - data_creator.test_list_name = "test.txt" - data_creator.num_per_batch = 1000 - data_creator.overwrite = True - data_creator.create_batches() diff --git a/demo/image_classification/preprocess.sh b/demo/image_classification/preprocess.sh deleted file mode 100755 index c7396c6393599ef3f2c55089eb05f2435b2b4b82..0000000000000000000000000000000000000000 --- a/demo/image_classification/preprocess.sh +++ /dev/null @@ -1,22 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -data_dir=./data/cifar-out - -python preprocess.py -i $data_dir -s 32 -c 1 - -echo "data/cifar-out/batches/train.txt" > train.list -echo "data/cifar-out/batches/test.txt" > test.list diff --git a/demo/image_classification/train.sh b/demo/image_classification/train.sh deleted file mode 100755 index e45bd47ad5925c6674d628a70a7ad7c4d5d5c173..0000000000000000000000000000000000000000 --- a/demo/image_classification/train.sh +++ /dev/null @@ -1,32 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -config=vgg_16_cifar.py -output=./cifar_vgg_model -log=train.log - -paddle train \ ---config=$config \ ---dot_period=10 \ ---log_period=100 \ ---test_all_data_in_one_period=1 \ ---use_gpu=1 \ ---trainer_count=1 \ ---num_passes=300 \ ---save_dir=$output \ -2>&1 | tee $log -paddle usage -l $log -e $? -n "image_classification_train" >/dev/null 2>&1 - -python -m paddle.utils.plotcurve -i $log > plot.png diff --git a/demo/image_classification/vgg_16_cifar.py b/demo/image_classification/vgg_16_cifar.py deleted file mode 100755 index 8ee4a64c15f885023a6e19812885b4f76bb12af9..0000000000000000000000000000000000000000 --- a/demo/image_classification/vgg_16_cifar.py +++ /dev/null @@ -1,58 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -is_predict = get_config_arg("is_predict", bool, False) - -####################Data Configuration ################## -if not is_predict: - data_dir = 'data/cifar-out/batches/' - meta_path = data_dir + 'batches.meta' - - args = { - 'meta': meta_path, - 'mean_img_size': 32, - 'img_size': 32, - 'num_classes': 10, - 'use_jpeg': 1, - 'color': "color" - } - - define_py_data_sources2( - train_list="train.list", - test_list="train.list", - module='image_provider', - obj='processData', - args=args) - -######################Algorithm Configuration ############# -settings( - batch_size=128, - learning_rate=0.1 / 128.0, - learning_method=MomentumOptimizer(0.9), - regularization=L2Regularization(0.0005 * 128)) - -#######################Network Configuration ############# -data_size = 3 * 32 * 32 -label_size = 10 -img = data_layer(name='image', size=data_size) -# small_vgg is predefined in trainer_config_helpers.networks -predict = small_vgg(input_image=img, num_channels=3, num_classes=label_size) - -if not is_predict: - lbl = data_layer(name="label", size=label_size) - outputs(classification_cost(input=predict, label=lbl)) -else: - outputs(predict) diff --git a/demo/introduction/.gitignore b/demo/introduction/.gitignore deleted file mode 100644 index c54f3f9480ce4ceefda98f77a812ec2d6cd4a5e3..0000000000000000000000000000000000000000 --- a/demo/introduction/.gitignore +++ /dev/null @@ -1,5 +0,0 @@ -dataprovider.pyc -empty.list -train.log -output -train.list diff --git a/demo/introduction/README.md b/demo/introduction/README.md deleted file mode 100644 index 0614a7afe645677ef0b65a17ea05f1dcfa45214f..0000000000000000000000000000000000000000 --- a/demo/introduction/README.md +++ /dev/null @@ -1,3 +0,0 @@ -This folder contains scripts used in PaddlePaddle introduction. -- use `bash train.sh` to train a simple linear regression model -- use `python evaluate_model.py` to read model parameters. You can see that `w` and `b` are very close to [2, 0.3]. diff --git a/demo/introduction/api_train_v2.py b/demo/introduction/api_train_v2.py deleted file mode 100644 index 1ba971b3688ce3dec078998df2c0b183a4e449f8..0000000000000000000000000000000000000000 --- a/demo/introduction/api_train_v2.py +++ /dev/null @@ -1,58 +0,0 @@ -import paddle.v2 as paddle -import paddle.v2.dataset.uci_housing as uci_housing - - -def main(): - # init - paddle.init(use_gpu=False, trainer_count=1) - - # network config - x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) - y_predict = paddle.layer.fc(input=x, - param_attr=paddle.attr.Param(name='w'), - size=1, - act=paddle.activation.Linear(), - bias_attr=paddle.attr.Param(name='b')) - y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) - cost = paddle.layer.mse_cost(input=y_predict, label=y) - - # create parameters - parameters = paddle.parameters.create(cost) - - # create optimizer - optimizer = paddle.optimizer.Momentum(momentum=0) - - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=optimizer) - - # event_handler to print training and testing info - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - print "Pass %d, Batch %d, Cost %f" % ( - event.pass_id, event.batch_id, event.cost) - - if isinstance(event, paddle.event.EndPass): - if (event.pass_id + 1) % 10 == 0: - result = trainer.test( - reader=paddle.batch( - uci_housing.test(), batch_size=2), - feeding={'x': 0, - 'y': 1}) - print "Test %d, %.2f" % (event.pass_id, result.cost) - - # training - trainer.train( - reader=paddle.batch( - paddle.reader.shuffle( - uci_housing.train(), buf_size=500), - batch_size=2), - feeding={'x': 0, - 'y': 1}, - event_handler=event_handler, - num_passes=30) - - -if __name__ == '__main__': - main() diff --git a/demo/introduction/dataprovider.py b/demo/introduction/dataprovider.py deleted file mode 100644 index 5b48aad0408800676ae7da16eba2dcbb2124f25f..0000000000000000000000000000000000000000 --- a/demo/introduction/dataprovider.py +++ /dev/null @@ -1,26 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * -import random - - -# define data types of input: 2 real numbers -@provider( - input_types={'x': dense_vector(1), - 'y': dense_vector(1)}, use_seq=False) -def process(settings, input_file): - for i in xrange(2000): - x = random.random() - yield {'x': [x], 'y': [2 * x + 0.3]} diff --git a/demo/introduction/evaluate_model.py b/demo/introduction/evaluate_model.py deleted file mode 100755 index eeda43c5c86f3e49f758bf55b16a68387e64238c..0000000000000000000000000000000000000000 --- a/demo/introduction/evaluate_model.py +++ /dev/null @@ -1,39 +0,0 @@ -#!/usr/bin/env python -# -*- coding: UTF-8 -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Print model parameters in last model - -Usage: - python evaluate_model.py -""" -import numpy as np -import os - - -def load(file_name): - with open(file_name, 'rb') as f: - f.read(16) # skip header for float type. - return np.fromfile(f, dtype=np.float32) - - -def main(): - print 'w=%.6f, b=%.6f from pass 29' % (load('output/pass-00029/w'), - load('output/pass-00029/b')) - - -if __name__ == '__main__': - main() diff --git a/demo/introduction/train.sh b/demo/introduction/train.sh deleted file mode 100755 index 2ce6446d7c943ffc9bea8da43d153539f6f9f15f..0000000000000000000000000000000000000000 --- a/demo/introduction/train.sh +++ /dev/null @@ -1,22 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -paddle train \ - --config=trainer_config.py \ - --save_dir=./output \ - --num_passes=30 \ - 2>&1 |tee 'train.log' -paddle usage -l "train.log" -e $? -n "introduction" >/dev/null 2>&1 diff --git a/demo/introduction/trainer_config.py b/demo/introduction/trainer_config.py deleted file mode 100644 index 651dfaa4b7b4873810a0b393655541a62d1a311b..0000000000000000000000000000000000000000 --- a/demo/introduction/trainer_config.py +++ /dev/null @@ -1,38 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -# 1. read data. Suppose you saved above python code as dataprovider.py -define_py_data_sources2( - train_list=['no_matter.txt'], - test_list=None, - module='dataprovider', - obj='process', - args={}) - -# 2. learning algorithm -settings(batch_size=12, learning_rate=1e-3, learning_method=MomentumOptimizer()) - -# 3. Network configuration -x = data_layer(name='x', size=1) -y = data_layer(name='y', size=1) -y_predict = fc_layer( - input=x, - param_attr=ParamAttr(name='w'), - size=1, - act=LinearActivation(), - bias_attr=ParamAttr(name='b')) -cost = mse_cost(input=y_predict, label=y) -outputs(cost) diff --git a/demo/mnist/api_train_v2.py b/demo/mnist/api_train_v2.py deleted file mode 100644 index 6b95a88042a13a280bcb80f753b3887fcef37296..0000000000000000000000000000000000000000 --- a/demo/mnist/api_train_v2.py +++ /dev/null @@ -1,137 +0,0 @@ -import paddle.v2 as paddle -import gzip - - -def softmax_regression(img): - predict = paddle.layer.fc(input=img, - size=10, - act=paddle.activation.Softmax()) - return predict - - -def multilayer_perceptron(img): - # The first fully-connected layer - hidden1 = paddle.layer.fc(input=img, size=128, act=paddle.activation.Relu()) - # The second fully-connected layer and the according activation function - hidden2 = paddle.layer.fc(input=hidden1, - size=64, - act=paddle.activation.Relu()) - # The thrid fully-connected layer, note that the hidden size should be 10, - # which is the number of unique digits - predict = paddle.layer.fc(input=hidden2, - size=10, - act=paddle.activation.Softmax()) - return predict - - -def convolutional_neural_network(img): - # first conv layer - conv_pool_1 = paddle.networks.simple_img_conv_pool( - input=img, - filter_size=5, - num_filters=20, - num_channel=1, - pool_size=2, - pool_stride=2, - act=paddle.activation.Tanh()) - # second conv layer - conv_pool_2 = paddle.networks.simple_img_conv_pool( - input=conv_pool_1, - filter_size=5, - num_filters=50, - num_channel=20, - pool_size=2, - pool_stride=2, - act=paddle.activation.Tanh()) - # The first fully-connected layer - fc1 = paddle.layer.fc(input=conv_pool_2, - size=128, - act=paddle.activation.Tanh()) - # The softmax layer, note that the hidden size should be 10, - # which is the number of unique digits - predict = paddle.layer.fc(input=fc1, - size=10, - act=paddle.activation.Softmax()) - return predict - - -def main(): - paddle.init(use_gpu=False, trainer_count=1) - - # define network topology - images = paddle.layer.data( - name='pixel', type=paddle.data_type.dense_vector(784)) - label = paddle.layer.data( - name='label', type=paddle.data_type.integer_value(10)) - - # Here we can build the prediction network in different ways. Please - # choose one by uncomment corresponding line. - predict = softmax_regression(images) - #predict = multilayer_perceptron(images) - #predict = convolutional_neural_network(images) - - cost = paddle.layer.classification_cost(input=predict, label=label) - - try: - with gzip.open('params.tar.gz', 'r') as f: - parameters = paddle.parameters.Parameters.from_tar(f) - except IOError: - parameters = paddle.parameters.create(cost) - - optimizer = paddle.optimizer.Momentum( - learning_rate=0.1 / 128.0, - momentum=0.9, - regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128)) - - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=optimizer) - - lists = [] - - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 1000 == 0: - print "Pass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics) - - with gzip.open('params.tar.gz', 'w') as f: - parameters.to_tar(f) - - elif isinstance(event, paddle.event.EndPass): - result = trainer.test(reader=paddle.batch( - paddle.dataset.mnist.test(), batch_size=128)) - print "Test with Pass %d, Cost %f, %s\n" % ( - event.pass_id, result.cost, result.metrics) - lists.append((event.pass_id, result.cost, - result.metrics['classification_error_evaluator'])) - - trainer.train( - reader=paddle.batch( - paddle.reader.shuffle( - paddle.dataset.mnist.train(), buf_size=8192), - batch_size=128), - event_handler=event_handler, - num_passes=100) - - # find the best pass - best = sorted(lists, key=lambda list: float(list[1]))[0] - print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1]) - print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100) - - test_creator = paddle.dataset.mnist.test() - test_data = [] - for item in test_creator(): - test_data.append((item[0], )) - if len(test_data) == 100: - break - - # output is a softmax layer. It returns probabilities. - # Shape should be (100, 10) - probs = paddle.infer( - output_layer=predict, parameters=parameters, input=test_data) - print probs.shape - - -if __name__ == '__main__': - main() diff --git a/demo/recommendation/.gitignore b/demo/recommendation/.gitignore deleted file mode 100644 index fd27ef62a87cae51f2392c0eba50a44490d029af..0000000000000000000000000000000000000000 --- a/demo/recommendation/.gitignore +++ /dev/null @@ -1,10 +0,0 @@ -log.txt -data/meta.bin -data/ml-1m -data/ratings.dat.train -data/ratings.dat.test -data/train.list -data/test.list -dataprovider_copy_1.py -*.pyc -output diff --git a/demo/recommendation/api_train_v2.py b/demo/recommendation/api_train_v2.py deleted file mode 100644 index f6a061799e3ac50236a68beedaf700dd6c698a05..0000000000000000000000000000000000000000 --- a/demo/recommendation/api_train_v2.py +++ /dev/null @@ -1,125 +0,0 @@ -import paddle.v2 as paddle -import cPickle -import copy - - -def main(): - paddle.init(use_gpu=False) - movie_title_dict = paddle.dataset.movielens.get_movie_title_dict() - uid = paddle.layer.data( - name='user_id', - type=paddle.data_type.integer_value( - paddle.dataset.movielens.max_user_id() + 1)) - usr_emb = paddle.layer.embedding(input=uid, size=32) - - usr_gender_id = paddle.layer.data( - name='gender_id', type=paddle.data_type.integer_value(2)) - usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16) - - usr_age_id = paddle.layer.data( - name='age_id', - type=paddle.data_type.integer_value( - len(paddle.dataset.movielens.age_table))) - usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16) - - usr_job_id = paddle.layer.data( - name='job_id', - type=paddle.data_type.integer_value(paddle.dataset.movielens.max_job_id( - ) + 1)) - - usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16) - - usr_combined_features = paddle.layer.fc( - input=[usr_emb, usr_gender_emb, usr_age_emb, usr_job_emb], - size=200, - act=paddle.activation.Tanh()) - - mov_id = paddle.layer.data( - name='movie_id', - type=paddle.data_type.integer_value( - paddle.dataset.movielens.max_movie_id() + 1)) - mov_emb = paddle.layer.embedding(input=mov_id, size=32) - - mov_categories = paddle.layer.data( - name='category_id', - type=paddle.data_type.sparse_binary_vector( - len(paddle.dataset.movielens.movie_categories()))) - - mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32) - - mov_title_id = paddle.layer.data( - name='movie_title', - type=paddle.data_type.integer_value_sequence(len(movie_title_dict))) - mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32) - mov_title_conv = paddle.networks.sequence_conv_pool( - input=mov_title_emb, hidden_size=32, context_len=3) - - mov_combined_features = paddle.layer.fc( - input=[mov_emb, mov_categories_hidden, mov_title_conv], - size=200, - act=paddle.activation.Tanh()) - - inference = paddle.layer.cos_sim( - a=usr_combined_features, b=mov_combined_features, size=1, scale=5) - cost = paddle.layer.mse_cost( - input=inference, - label=paddle.layer.data( - name='score', type=paddle.data_type.dense_vector(1))) - - parameters = paddle.parameters.create(cost) - - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=paddle.optimizer.Adam( - learning_rate=1e-4)) - feeding = { - 'user_id': 0, - 'gender_id': 1, - 'age_id': 2, - 'job_id': 3, - 'movie_id': 4, - 'category_id': 5, - 'movie_title': 6, - 'score': 7 - } - - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - print "Pass %d Batch %d Cost %.2f" % ( - event.pass_id, event.batch_id, event.cost) - - trainer.train( - reader=paddle.batch( - paddle.reader.shuffle( - paddle.dataset.movielens.train(), buf_size=8192), - batch_size=256), - event_handler=event_handler, - feeding=feeding, - num_passes=1) - - user_id = 234 - movie_id = 345 - - user = paddle.dataset.movielens.user_info()[user_id] - movie = paddle.dataset.movielens.movie_info()[movie_id] - - feature = user.value() + movie.value() - - def reader(): - yield feature - - infer_dict = copy.copy(feeding) - del infer_dict['score'] - - prediction = paddle.infer( - output=inference, - parameters=parameters, - reader=paddle.batch( - reader, batch_size=32), - feeding=infer_dict) - print(prediction + 5) / 2 - - -if __name__ == '__main__': - main() diff --git a/demo/recommendation/common_utils.py b/demo/recommendation/common_utils.py deleted file mode 100755 index c20c65286621d701ad58409b539bbe9c813d453a..0000000000000000000000000000000000000000 --- a/demo/recommendation/common_utils.py +++ /dev/null @@ -1,30 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from paddle.trainer.PyDataProvider2 import * - - -def meta_to_header(meta, name): - metas = meta[name]['__meta__']['raw_meta'] - for each_meta in metas: - slot_name = each_meta.get('name', '%s_id' % name) - if each_meta['type'] == 'id': - yield slot_name, integer_value(each_meta['max']) - elif each_meta['type'] == 'embedding': - is_seq = each_meta['seq'] == 'sequence' - yield slot_name, integer_value( - len(each_meta['dict']), - seq_type=SequenceType.SEQUENCE - if is_seq else SequenceType.NO_SEQUENCE) - elif each_meta['type'] == 'one_hot_dense': - yield slot_name, dense_vector(len(each_meta['dict'])) diff --git a/demo/recommendation/data/config.json b/demo/recommendation/data/config.json deleted file mode 100644 index f26e74ce47bb7843a571e6033f051c046b31f054..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/config.json +++ /dev/null @@ -1,16 +0,0 @@ -{ - "user": { - "file": { - "name": "users.dat", - "delimiter": "::" - }, - "fields": ["id", "gender", "age", "occupation"] - }, - "movie": { - "file": { - "name": "movies.dat", - "delimiter": "::" - }, - "fields": ["id", "title", "genres"] - } -} diff --git a/demo/recommendation/data/config_generator.py b/demo/recommendation/data/config_generator.py deleted file mode 100644 index 4ca496a252dffc62ed62bb8f2a5ee1661a940580..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/config_generator.py +++ /dev/null @@ -1,127 +0,0 @@ -#!/bin/env python2 -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -config_generator.py - -Usage: - ./config_generator.py [--output_format=] - ./config_generator.py -h | --help - -Options: - -h --help Show this screen. - --output_format= Output Config format(json or yaml) [default: json]. -""" - -import json -import docopt -import copy - -DEFAULT_FILE = {"type": "split", "delimiter": ","} - -DEFAULT_FIELD = { - "id": { - "type": "id" - }, - "gender": { - "name": "gender", - "type": "embedding", - "dict": { - "type": "char_based" - } - }, - "age": { - "name": "age", - "type": "embedding", - "dict": { - "type": "whole_content", - "sort": True - } - }, - "occupation": { - "name": "occupation", - "type": "embedding", - "dict": { - "type": "whole_content", - "sort": "true" - } - }, - "title": { - "regex": { - "pattern": r"^(.*)\((\d+)\)$", - "group_id": 1, - "strip": True - }, - "name": "title", - "type": { - "name": "embedding", - "seq_type": "sequence", - }, - "dict": { - "type": "char_based" - } - }, - "genres": { - "type": "one_hot_dense", - "dict": { - "type": "split", - "delimiter": "|" - }, - "name": "genres" - } -} - - -def merge_dict(master_dict, slave_dict): - return dict(((k, master_dict.get(k) or slave_dict.get(k)) - for k in set(slave_dict) | set(master_dict))) - - -def main(filename, fmt): - with open(filename, 'r') as f: - conf = json.load(f) - obj = dict() - for k in conf: - val = conf[k] - file_dict = val['file'] - file_dict = merge_dict(file_dict, DEFAULT_FILE) - - fields = [] - for pos, field_key in enumerate(val['fields']): - assert isinstance(field_key, basestring) - field = copy.deepcopy(DEFAULT_FIELD[field_key]) - field['pos'] = pos - fields.append(field) - obj[k] = {"file": file_dict, "fields": fields} - meta = {"meta": obj} - # print meta - if fmt == 'json': - - def formatter(x): - import json - return json.dumps(x, indent=2) - elif fmt == 'yaml': - - def formatter(x): - import yaml - return yaml.safe_dump(x, default_flow_style=False) - else: - raise NotImplementedError("Dump format %s is not implemented" % fmt) - - print formatter(meta) - - -if __name__ == '__main__': - args = docopt.docopt(__doc__, version="0.1.0") - main(args[""], args["--output_format"]) diff --git a/demo/recommendation/data/meta_config.json b/demo/recommendation/data/meta_config.json deleted file mode 100644 index cc6a046e271dd0faaa47eeb5a5bef6d3604113fe..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/meta_config.json +++ /dev/null @@ -1,81 +0,0 @@ -{ - "meta": { - "movie": { - "fields": [ - { - "type": "id", - "pos": 0 - }, - { - "regex": { - "pattern": "^(.*)\\((\\d+)\\)$", - "group_id": 1, - "strip": true - }, - "type": { - "seq_type": "sequence", - "name": "embedding" - }, - "dict": { - "type": "char_based" - }, - "name": "title", - "pos": 1 - }, - { - "type": "one_hot_dense", - "dict": { - "delimiter": "|", - "type": "split" - }, - "name": "genres", - "pos": 2 - } - ], - "file": { - "delimiter": "::", - "type": "split", - "name": "movies.dat" - } - }, - "user": { - "fields": [ - { - "type": "id", - "pos": 0 - }, - { - "type": "embedding", - "dict": { - "type": "char_based" - }, - "name": "gender", - "pos": 1 - }, - { - "type": "embedding", - "dict": { - "sort": true, - "type": "whole_content" - }, - "name": "age", - "pos": 2 - }, - { - "type": "embedding", - "dict": { - "sort": "true", - "type": "whole_content" - }, - "name": "occupation", - "pos": 3 - } - ], - "file": { - "delimiter": "::", - "type": "split", - "name": "users.dat" - } - } - } -} diff --git a/demo/recommendation/data/meta_generator.py b/demo/recommendation/data/meta_generator.py deleted file mode 100644 index 38e4679d266c331a751114cd13f0e3453016cf26..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/meta_generator.py +++ /dev/null @@ -1,430 +0,0 @@ -#!/bin/env python2 -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Preprocess Movielens dataset, to get movie/user object. - -Usage: - ./preprocess.py [--config=] - ./preprocess.py -h | --help - -Options: - -h --help Show this screen. - --version Show version. - --config= Get MetaData config file [default: config.json]. -""" -import docopt -import os -import sys -import re -import collections - -try: - import cPickle as pickle -except ImportError: - import pickle - - -class UniqueIDGenerator(object): - def __init__(self): - self.pool = collections.defaultdict(self.__next_id__) - self.next_id = 0 - - def __next_id__(self): - tmp = self.next_id - self.next_id += 1 - return tmp - - def __call__(self, k): - return self.pool[k] - - def to_list(self): - ret_val = [None] * len(self.pool) - for k in self.pool.keys(): - ret_val[self.pool[k]] = k - return ret_val - - -class SortedIDGenerator(object): - def __init__(self): - self.__key_set__ = set() - self.dict = None - - def scan(self, key): - self.__key_set__.add(key) - - def finish_scan(self, compare=None, key=None, reverse=False): - self.__key_set__ = sorted( - list(self.__key_set__), cmp=compare, key=key, reverse=reverse) - self.dict = dict() - for idx, each_key in enumerate(self.__key_set__): - self.dict[each_key] = idx - - def __call__(self, key): - return self.dict[key] - - def to_list(self): - return self.__key_set__ - - -class SplitFileReader(object): - def __init__(self, work_dir, config): - assert isinstance(config, dict) - self.filename = config['name'] - self.delimiter = config.get('delimiter', ',') - self.work_dir = work_dir - - def read(self): - with open(os.path.join(self.work_dir, self.filename), 'r') as f: - for line in f: - line = line.strip() - if isinstance(self.delimiter, unicode): - self.delimiter = str(self.delimiter) - yield line.split(self.delimiter) - - @staticmethod - def create(work_dir, config): - assert isinstance(config, dict) - if config['type'] == 'split': - return SplitFileReader(work_dir, config) - - -class IFileReader(object): - READERS = [SplitFileReader] - - def read(self): - raise NotImplementedError() - - @staticmethod - def create(work_dir, config): - for reader_cls in IFileReader.READERS: - val = reader_cls.create(work_dir, config) - if val is not None: - return val - - -class IDFieldParser(object): - TYPE = 'id' - - def __init__(self, config): - self.__max_id__ = -sys.maxint - 1 - self.__min_id__ = sys.maxint - self.__id_count__ = 0 - - def scan(self, line): - idx = int(line) - self.__max_id__ = max(self.__max_id__, idx) - self.__min_id__ = min(self.__min_id__, idx) - self.__id_count__ += 1 - - def parse(self, line): - return int(line) - - def meta_field(self): - return { - "is_key": True, - 'max': self.__max_id__, - 'min': self.__min_id__, - 'count': self.__id_count__, - 'type': 'id' - } - - -class SplitEmbeddingDict(object): - def __init__(self, delimiter): - self.__id__ = UniqueIDGenerator() - self.delimiter = delimiter - - def scan(self, multi): - for val in multi.split(self.delimiter): - self.__id__(val) - - def parse(self, multi): - return map(self.__id__, multi.split(self.delimiter)) - - def meta_field(self): - return self.__id__.to_list() - - -class EmbeddingFieldParser(object): - TYPE = 'embedding' - - NO_SEQUENCE = "no_sequence" - SEQUENCE = "sequence" - - class CharBasedEmbeddingDict(object): - def __init__(self, is_seq=True): - self.__id__ = UniqueIDGenerator() - self.is_seq = is_seq - - def scan(self, s): - for ch in s: - self.__id__(ch) - - def parse(self, s): - return map(self.__id__, s) if self.is_seq else self.__id__(s[0]) - - def meta_field(self): - return self.__id__.to_list() - - class WholeContentDict(object): - def __init__(self, need_sort=True): - assert need_sort - self.__id__ = SortedIDGenerator() - self.__has_finished__ = False - - def scan(self, txt): - self.__id__.scan(txt) - - def meta_field(self): - if not self.__has_finished__: - self.__id__.finish_scan() - self.__has_finished__ = True - return self.__id__.to_list() - - def parse(self, txt): - return self.__id__(txt) - - def __init__(self, config): - try: - self.seq_type = config['type']['seq_type'] - except TypeError: - self.seq_type = EmbeddingFieldParser.NO_SEQUENCE - - if config['dict']['type'] == 'char_based': - self.dict = EmbeddingFieldParser.CharBasedEmbeddingDict( - self.seq_type == EmbeddingFieldParser.SEQUENCE) - elif config['dict']['type'] == 'split': - self.dict = SplitEmbeddingDict(config['dict'].get('delimiter', ',')) - elif config['dict']['type'] == 'whole_content': - self.dict = EmbeddingFieldParser.WholeContentDict(config['dict'][ - 'sort']) - else: - print config - assert False - - self.name = config['name'] - - def scan(self, s): - self.dict.scan(s) - - def meta_field(self): - return { - 'name': self.name, - 'dict': self.dict.meta_field(), - 'type': 'embedding', - 'seq': self.seq_type - } - - def parse(self, s): - return self.dict.parse(s) - - -class OneHotDenseFieldParser(object): - TYPE = 'one_hot_dense' - - def __init__(self, config): - if config['dict']['type'] == 'split': - self.dict = SplitEmbeddingDict(config['dict']['delimiter']) - self.name = config['name'] - - def scan(self, s): - self.dict.scan(s) - - def meta_field(self): - # print self.dict.meta_field() - return { - 'dict': self.dict.meta_field(), - 'name': self.name, - 'type': 'one_hot_dense' - } - - def parse(self, s): - ids = self.dict.parse(s) - retv = [0.0] * len(self.dict.meta_field()) - for idx in ids: - retv[idx] = 1.0 - # print retv - return retv - - -class FieldParserFactory(object): - PARSERS = [IDFieldParser, EmbeddingFieldParser, OneHotDenseFieldParser] - - @staticmethod - def create(config): - if isinstance(config['type'], basestring): - config_type = config['type'] - elif isinstance(config['type'], dict): - config_type = config['type']['name'] - - assert config_type is not None - - for each_parser_cls in FieldParserFactory.PARSERS: - if config_type == each_parser_cls.TYPE: - return each_parser_cls(config) - print config - - -class CompositeFieldParser(object): - def __init__(self, parser, extractor): - self.extractor = extractor - self.parser = parser - - def scan(self, *args, **kwargs): - self.parser.scan(self.extractor.extract(*args, **kwargs)) - - def parse(self, *args, **kwargs): - return self.parser.parse(self.extractor.extract(*args, **kwargs)) - - def meta_field(self): - return self.parser.meta_field() - - -class PositionContentExtractor(object): - def __init__(self, pos): - self.pos = pos - - def extract(self, line): - assert isinstance(line, list) - return line[self.pos] - - -class RegexPositionContentExtractor(PositionContentExtractor): - def __init__(self, pos, pattern, group_id, strip=True): - PositionContentExtractor.__init__(self, pos) - pattern = pattern.strip() - self.pattern = re.compile(pattern) - self.group_id = group_id - self.strip = strip - - def extract(self, line): - line = PositionContentExtractor.extract(self, line) - match = self.pattern.match(line) - # print line, self.pattern.pattern, match - assert match is not None - txt = match.group(self.group_id) - if self.strip: - txt.strip() - return txt - - -class ContentExtractorFactory(object): - def extract(self, line): - pass - - @staticmethod - def create(config): - if 'pos' in config: - if 'regex' not in config: - return PositionContentExtractor(config['pos']) - else: - extra_args = config['regex'] - return RegexPositionContentExtractor( - pos=config['pos'], **extra_args) - - -class MetaFile(object): - def __init__(self, work_dir): - self.work_dir = work_dir - self.obj = dict() - - def parse(self, config): - config = config['meta'] - - ret_obj = dict() - for key in config.keys(): - val = config[key] - assert 'file' in val - reader = IFileReader.create(self.work_dir, val['file']) - assert reader is not None - assert 'fields' in val and isinstance(val['fields'], list) - fields_config = val['fields'] - field_parsers = map(MetaFile.__field_config_mapper__, fields_config) - - for each_parser in field_parsers: - assert each_parser is not None - - for each_block in reader.read(): - for each_parser in field_parsers: - each_parser.scan(each_block) - - metas = map(lambda x: x.meta_field(), field_parsers) - # print metas - key_index = filter( - lambda x: x is not None, - map(lambda (idx, meta): idx if 'is_key' in meta and meta['is_key'] else None, - enumerate(metas)))[0] - - key_map = [] - for i in range(min(key_index, len(metas))): - key_map.append(i) - for i in range(key_index + 1, len(metas)): - key_map.append(i) - - obj = {'__meta__': {'raw_meta': metas, 'feature_map': key_map}} - - for each_block in reader.read(): - idx = field_parsers[key_index].parse(each_block) - val = [] - for i, each_parser in enumerate(field_parsers): - if i != key_index: - val.append(each_parser.parse(each_block)) - obj[idx] = val - ret_obj[key] = obj - self.obj = ret_obj - return ret_obj - - @staticmethod - def __field_config_mapper__(conf): - assert isinstance(conf, dict) - extrator = ContentExtractorFactory.create(conf) - field_parser = FieldParserFactory.create(conf) - assert extrator is not None - assert field_parser is not None - return CompositeFieldParser(field_parser, extrator) - - def dump(self, fp): - pickle.dump(self.obj, fp, pickle.HIGHEST_PROTOCOL) - - -def preprocess(binary_filename, dataset_dir, config, **kwargs): - assert isinstance(config, str) - with open(config, 'r') as config_file: - file_loader = None - if config.lower().endswith('.yaml'): - import yaml - file_loader = yaml - elif config.lower().endswith('.json'): - import json - file_loader = json - config = file_loader.load(config_file) - meta = MetaFile(dataset_dir) - meta.parse(config) - with open(binary_filename, 'wb') as outf: - meta.dump(outf) - - -if __name__ == '__main__': - args = docopt.docopt(__doc__, version='0.1.0') - kwargs = dict() - for key in args.keys(): - if key != '--help': - param_name = key - assert isinstance(param_name, str) - param_name = param_name.replace('<', '') - param_name = param_name.replace('>', '') - param_name = param_name.replace('--', '') - kwargs[param_name] = args[key] - preprocess(**kwargs) diff --git a/demo/recommendation/data/ml_data.sh b/demo/recommendation/data/ml_data.sh deleted file mode 100755 index 2268d876389e0bdf5ead405e74d278d276626f82..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/ml_data.sh +++ /dev/null @@ -1,23 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -set -ex -cd "$(dirname "$0")" -# download the dataset -wget http://files.grouplens.org/datasets/movielens/ml-1m.zip -# unzip the dataset -unzip ml-1m.zip -# remove the unused zip file -rm ml-1m.zip diff --git a/demo/recommendation/data/split.py b/demo/recommendation/data/split.py deleted file mode 100644 index be6869c22f04be1db0f8e9c35c73c851e4c490b0..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/split.py +++ /dev/null @@ -1,66 +0,0 @@ -#!/bin/env python2 -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Separate movielens 1m dataset to train/test file. - -Usage: - ./separate.py [--test_ratio=] [--delimiter=] - ./separate.py -h | --help - -Options: - -h --help Show this screen. - --version Show version. - --test_ratio= Test ratio for separate [default: 0.1]. - --delimiter= File delimiter [default: ,]. -""" -import docopt -import collections -import random - - -def process(test_ratio, input_file, delimiter, **kwargs): - test_ratio = float(test_ratio) - rating_dict = collections.defaultdict(list) - with open(input_file, 'r') as f: - for line in f: - user_id = int(line.split(delimiter)[0]) - rating_dict[user_id].append(line.strip()) - - with open(input_file + ".train", 'w') as train_file: - with open(input_file + ".test", 'w') as test_file: - for k in rating_dict.keys(): - lines = rating_dict[k] - assert isinstance(lines, list) - random.shuffle(lines) - test_len = int(len(lines) * test_ratio) - for line in lines[:test_len]: - print >> test_file, line - - for line in lines[test_len:]: - print >> train_file, line - - -if __name__ == '__main__': - args = docopt.docopt(__doc__, version='0.1.0') - kwargs = dict() - for key in args.keys(): - if key != '--help': - param_name = key - assert isinstance(param_name, str) - param_name = param_name.replace('<', '') - param_name = param_name.replace('>', '') - param_name = param_name.replace('--', '') - kwargs[param_name] = args[key] - process(**kwargs) diff --git a/demo/recommendation/dataprovider.py b/demo/recommendation/dataprovider.py deleted file mode 100755 index c4ff96d80e81926049c9a71d6d9d991c0b568c25..0000000000000000000000000000000000000000 --- a/demo/recommendation/dataprovider.py +++ /dev/null @@ -1,88 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * -import common_utils # parse - - -def __list_to_map__(lst): - ret_val = dict() - for each in lst: - k, v = each - ret_val[k] = v - return ret_val - - -def hook(settings, meta, **kwargs): - """ - Init hook is invoked before process data. It will set obj.slots and store - data meta. - - :param obj: global object. It will passed to process routine. - :type obj: object - :param meta: the meta file object, which passed from trainer_config. Meta - file record movie/user features. - :param kwargs: unused other arguments. - """ - del kwargs # unused kwargs - - # Header define slots that used for paddle. - # first part is movie features. - # second part is user features. - # final part is rating score. - # header is a list of [USE_SEQ_OR_NOT?, SlotType] - movie_headers = list(common_utils.meta_to_header(meta, 'movie')) - settings.movie_names = [h[0] for h in movie_headers] - headers = movie_headers - user_headers = list(common_utils.meta_to_header(meta, 'user')) - settings.user_names = [h[0] for h in user_headers] - headers.extend(user_headers) - headers.append(("rating", dense_vector(1))) # Score - - # slot types. - settings.input_types = __list_to_map__(headers) - settings.meta = meta - - -@provider(init_hook=hook, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, filename): - with open(filename, 'r') as f: - for line in f: - # Get a rating from file. - user_id, movie_id, score = map(int, line.split('::')[:-1]) - - # Scale score to [-5, +5] - score = float(score) * 2 - 5.0 - - # Get movie/user features by movie_id, user_id - movie_meta = settings.meta['movie'][movie_id] - user_meta = settings.meta['user'][user_id] - - outputs = [('movie_id', movie_id - 1)] - - # Then add movie features - for i, each_meta in enumerate(movie_meta): - outputs.append((settings.movie_names[i + 1], each_meta)) - - # Then add user id. - outputs.append(('user_id', user_id - 1)) - - # Then add user features. - for i, each_meta in enumerate(user_meta): - outputs.append((settings.user_names[i + 1], each_meta)) - - # Finally, add score - outputs.append(('rating', [score])) - # Return data to paddle - yield __list_to_map__(outputs) diff --git a/demo/recommendation/evaluate.py b/demo/recommendation/evaluate.py deleted file mode 100755 index 3afa7a1e9db5fefb1bbf5aaa174b8168afae4058..0000000000000000000000000000000000000000 --- a/demo/recommendation/evaluate.py +++ /dev/null @@ -1,37 +0,0 @@ -#!/usr/bin/python -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import sys -import re -import math - - -def get_best_pass(log_filename): - with open(log_filename, 'r') as f: - text = f.read() - pattern = re.compile('Test.*? cost=([0-9]+\.[0-9]+).*?pass-([0-9]+)', - re.S) - results = re.findall(pattern, text) - sorted_results = sorted(results, key=lambda result: float(result[0])) - return sorted_results[0] - - -log_filename = sys.argv[1] -log = get_best_pass(log_filename) -predict_error = math.sqrt(float(log[0])) / 2 -print 'Best pass is %s, error is %s, which means predict get error as %f' % ( - log[1], log[0], predict_error) - -evaluate_pass = "output/pass-%s" % log[1] -print "evaluating from pass %s" % evaluate_pass diff --git a/demo/recommendation/evaluate.sh b/demo/recommendation/evaluate.sh deleted file mode 100755 index 02b2857de028bc9c05d7ddd67012043b671b2764..0000000000000000000000000000000000000000 --- a/demo/recommendation/evaluate.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | sed -r 'N;s/Test.* cost=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' | sort | head -n 1 -} - -LOG=`get_best_pass log.txt` -LOG=(${LOG}) -echo 'Best pass is '${LOG[1]}, ' error is '${LOG[0]}, 'which means predict get error as '`echo ${LOG[0]} | python -c 'import math; print math.sqrt(float(raw_input()))/2'` - -evaluate_pass="output/pass-${LOG[1]}" - -echo 'evaluating from pass '$evaluate_pass diff --git a/demo/recommendation/prediction.py b/demo/recommendation/prediction.py deleted file mode 100755 index 8ad993eab3a9f637cfff752bfedbbc62eaf3c8d5..0000000000000000000000000000000000000000 --- a/demo/recommendation/prediction.py +++ /dev/null @@ -1,51 +0,0 @@ -#!/bin/env python2 -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from py_paddle import swig_paddle, DataProviderConverter - -from common_utils import * -from paddle.trainer.config_parser import parse_config - -try: - import cPickle as pickle -except ImportError: - import pickle -import sys - -if __name__ == '__main__': - model_path = sys.argv[1] - swig_paddle.initPaddle('--use_gpu=0') - conf = parse_config("trainer_config.py", "is_predict=1") - network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - assert isinstance(network, swig_paddle.GradientMachine) - network.loadParameters(model_path) - with open('./data/meta.bin', 'rb') as f: - meta = pickle.load(f) - headers = [h[1] for h in meta_to_header(meta, 'movie')] - headers.extend([h[1] for h in meta_to_header(meta, 'user')]) - cvt = DataProviderConverter(headers) - while True: - movie_id = int(raw_input("Input movie_id: ")) - user_id = int(raw_input("Input user_id: ")) - movie_meta = meta['movie'][movie_id] # Query Data From Meta. - user_meta = meta['user'][user_id] - data = [movie_id - 1] - data.extend(movie_meta) - data.append(user_id - 1) - data.extend(user_meta) - print "Prediction Score is %.2f" % ( - (network.forwardTest(cvt.convert([data]))[0]['value'][0][0] + 5) - / 2) diff --git a/demo/recommendation/preprocess.sh b/demo/recommendation/preprocess.sh deleted file mode 100755 index eeb81ce3cb47e65c0aeb303e7571024ba82dad65..0000000000000000000000000000000000000000 --- a/demo/recommendation/preprocess.sh +++ /dev/null @@ -1,40 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -UNAME_STR=`uname` - -if [[ ${UNAME_STR} == 'Linux' ]]; then - SHUF_PROG='shuf' -else - SHUF_PROG='gshuf' -fi - - -cd "$(dirname "$0")" -delimiter='::' -dir=ml-1m -cd data -echo 'generate meta config file' -python config_generator.py config.json > meta_config.json -echo 'generate meta file' -python meta_generator.py $dir meta.bin --config=meta_config.json -echo 'split train/test file' -python split.py $dir/ratings.dat --delimiter=${delimiter} --test_ratio=0.1 -echo 'shuffle train file' -${SHUF_PROG} $dir/ratings.dat.train > ratings.dat.train -cp $dir/ratings.dat.test . -echo "./data/ratings.dat.train" > train.list -echo "./data/ratings.dat.test" > test.list diff --git a/demo/recommendation/requirements.txt b/demo/recommendation/requirements.txt deleted file mode 100644 index 1ea154584a428b6a389309f1f8def502e0aadfce..0000000000000000000000000000000000000000 --- a/demo/recommendation/requirements.txt +++ /dev/null @@ -1,2 +0,0 @@ -PyYAML -docopt diff --git a/demo/recommendation/run.sh b/demo/recommendation/run.sh deleted file mode 100755 index 22aef556082ba429e9ca7c6dd3ec72699b9dbcf4..0000000000000000000000000000000000000000 --- a/demo/recommendation/run.sh +++ /dev/null @@ -1,25 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -paddle train \ - --config=trainer_config.py \ - --save_dir=./output \ - --use_gpu=false \ - --trainer_count=4\ - --test_all_data_in_one_period=true \ - --log_period=100 \ - --dot_period=1 \ - --num_passes=50 2>&1 | tee 'log.txt' -paddle usage -l log.txt -e $? -n "recommendation" >/dev/null 2>&1 diff --git a/demo/recommendation/trainer_config.py b/demo/recommendation/trainer_config.py deleted file mode 100755 index 25f529d7d7c430f179107fb189ade34760ab309d..0000000000000000000000000000000000000000 --- a/demo/recommendation/trainer_config.py +++ /dev/null @@ -1,98 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -try: - import cPickle as pickle -except ImportError: - import pickle - -is_predict = get_config_arg('is_predict', bool, False) - -META_FILE = 'data/meta.bin' - -with open(META_FILE, 'rb') as f: - # load meta file - meta = pickle.load(f) - -settings( - batch_size=1600, learning_rate=1e-3, learning_method=RMSPropOptimizer()) - - -def construct_feature(name): - """ - Construct movie/user features. - - This method read from meta data. Then convert feature to neural network due - to feature type. The map relation as follow. - - * id: embedding => fc - * embedding: - is_sequence: embedding => context_projection => fc => pool - not sequence: embedding => fc - * one_hot_dense: fc => fc - - Then gather all features vector, and use a fc layer to combined them as - return. - - :param name: 'movie' or 'user' - :type name: basestring - :return: combined feature output - :rtype: LayerOutput - """ - __meta__ = meta[name]['__meta__']['raw_meta'] - fusion = [] - for each_meta in __meta__: - type_name = each_meta['type'] - slot_name = each_meta.get('name', '%s_id' % name) - if type_name == 'id': - slot_dim = each_meta['max'] - embedding = embedding_layer( - input=data_layer( - slot_name, size=slot_dim), size=256) - fusion.append(fc_layer(input=embedding, size=256)) - elif type_name == 'embedding': - is_seq = each_meta['seq'] == 'sequence' - slot_dim = len(each_meta['dict']) - din = data_layer(slot_name, slot_dim) - embedding = embedding_layer(input=din, size=256) - if is_seq: - fusion.append( - text_conv_pool( - input=embedding, context_len=5, hidden_size=256)) - else: - fusion.append(fc_layer(input=embedding, size=256)) - elif type_name == 'one_hot_dense': - slot_dim = len(each_meta['dict']) - hidden = fc_layer(input=data_layer(slot_name, slot_dim), size=256) - fusion.append(fc_layer(input=hidden, size=256)) - - return fc_layer(name="%s_fusion" % name, input=fusion, size=256) - - -movie_feature = construct_feature("movie") -user_feature = construct_feature("user") -similarity = cos_sim(a=movie_feature, b=user_feature) -if not is_predict: - outputs(mse_cost(input=similarity, label=data_layer('rating', size=1))) - - define_py_data_sources2( - 'data/train.list', - 'data/test.list', - module='dataprovider', - obj='process', - args={'meta': meta}) -else: - outputs(similarity) diff --git a/demo/semantic_role_labeling/.gitignore b/demo/semantic_role_labeling/.gitignore deleted file mode 100644 index 65c9b674c7d1dad53b7d1c6ee1dcbdb72553888d..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/.gitignore +++ /dev/null @@ -1,14 +0,0 @@ -*.pyc -train.log -data/feature -data/conll05st-release/ -data/src.dict -data/test.wsj.props -data/test.wsj.seq_pair -data/test.wsj.words -data/tgt.dict -output -data/emb -data/targetDict.txt -data/verbDict.txt -data/wordDict.txt diff --git a/demo/semantic_role_labeling/api_train_v2.py b/demo/semantic_role_labeling/api_train_v2.py deleted file mode 100644 index 3af636aef5879b43641d55bd7c9b0b8a1242ff8b..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/api_train_v2.py +++ /dev/null @@ -1,277 +0,0 @@ -import math -import numpy as np -import gzip -import logging -import paddle.v2.dataset.conll05 as conll05 -import paddle.v2.evaluator as evaluator -import paddle.v2 as paddle - -logger = logging.getLogger('paddle') - -word_dict, verb_dict, label_dict = conll05.get_dict() -word_dict_len = len(word_dict) -label_dict_len = len(label_dict) -pred_len = len(verb_dict) - -mark_dict_len = 2 -word_dim = 32 -mark_dim = 5 -hidden_dim = 512 -depth = 8 -default_std = 1 / math.sqrt(hidden_dim) / 3.0 -mix_hidden_lr = 1e-3 - - -def d_type(size): - return paddle.data_type.integer_value_sequence(size) - - -def db_lstm(): - #8 features - word = paddle.layer.data(name='word_data', type=d_type(word_dict_len)) - predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len)) - - ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len)) - ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len)) - ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len)) - ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len)) - ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len)) - mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len)) - - emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True) - std_0 = paddle.attr.Param(initial_std=0.) - std_default = paddle.attr.Param(initial_std=default_std) - - predicate_embedding = paddle.layer.embedding( - size=word_dim, - input=predicate, - param_attr=paddle.attr.Param( - name='vemb', initial_std=default_std)) - mark_embedding = paddle.layer.embedding( - size=mark_dim, input=mark, param_attr=std_0) - - word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] - emb_layers = [ - paddle.layer.embedding( - size=word_dim, input=x, param_attr=emb_para) for x in word_input - ] - emb_layers.append(predicate_embedding) - emb_layers.append(mark_embedding) - - hidden_0 = paddle.layer.mixed( - size=hidden_dim, - bias_attr=std_default, - input=[ - paddle.layer.full_matrix_projection( - input=emb, param_attr=std_default) for emb in emb_layers - ]) - - lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0) - hidden_para_attr = paddle.attr.Param( - initial_std=default_std, learning_rate=mix_hidden_lr) - - lstm_0 = paddle.layer.lstmemory( - input=hidden_0, - act=paddle.activation.Relu(), - gate_act=paddle.activation.Sigmoid(), - state_act=paddle.activation.Sigmoid(), - bias_attr=std_0, - param_attr=lstm_para_attr) - - #stack L-LSTM and R-LSTM with direct edges - input_tmp = [hidden_0, lstm_0] - - for i in range(1, depth): - mix_hidden = paddle.layer.mixed( - size=hidden_dim, - bias_attr=std_default, - input=[ - paddle.layer.full_matrix_projection( - input=input_tmp[0], param_attr=hidden_para_attr), - paddle.layer.full_matrix_projection( - input=input_tmp[1], param_attr=lstm_para_attr) - ]) - - lstm = paddle.layer.lstmemory( - input=mix_hidden, - act=paddle.activation.Relu(), - gate_act=paddle.activation.Sigmoid(), - state_act=paddle.activation.Sigmoid(), - reverse=((i % 2) == 1), - bias_attr=std_0, - param_attr=lstm_para_attr) - - input_tmp = [mix_hidden, lstm] - - feature_out = paddle.layer.mixed( - size=label_dict_len, - bias_attr=std_default, - input=[ - paddle.layer.full_matrix_projection( - input=input_tmp[0], param_attr=hidden_para_attr), - paddle.layer.full_matrix_projection( - input=input_tmp[1], param_attr=lstm_para_attr) - ], ) - - return feature_out - - -def load_parameter(file_name, h, w): - with open(file_name, 'rb') as f: - f.read(16) # skip header. - return np.fromfile(f, dtype=np.float32).reshape(h, w) - - -def train(): - paddle.init(use_gpu=False, trainer_count=1) - - # define network topology - feature_out = db_lstm() - target = paddle.layer.data(name='target', type=d_type(label_dict_len)) - crf_cost = paddle.layer.crf(size=label_dict_len, - input=feature_out, - label=target, - param_attr=paddle.attr.Param( - name='crfw', - initial_std=default_std, - learning_rate=mix_hidden_lr)) - - crf_dec = paddle.layer.crf_decoding( - size=label_dict_len, - input=feature_out, - label=target, - param_attr=paddle.attr.Param(name='crfw')) - evaluator.sum(input=crf_dec) - - # create parameters - parameters = paddle.parameters.create(crf_cost) - parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32)) - - # create optimizer - optimizer = paddle.optimizer.Momentum( - momentum=0, - learning_rate=2e-2, - regularization=paddle.optimizer.L2Regularization(rate=8e-4), - model_average=paddle.optimizer.ModelAverage( - average_window=0.5, max_average_window=10000), ) - - trainer = paddle.trainer.SGD(cost=crf_cost, - parameters=parameters, - update_equation=optimizer, - extra_layers=crf_dec) - - reader = paddle.batch( - paddle.reader.shuffle( - conll05.test(), buf_size=8192), batch_size=10) - - feeding = { - 'word_data': 0, - 'ctx_n2_data': 1, - 'ctx_n1_data': 2, - 'ctx_0_data': 3, - 'ctx_p1_data': 4, - 'ctx_p2_data': 5, - 'verb_data': 6, - 'mark_data': 7, - 'target': 8 - } - - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - logger.info("Pass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics)) - if event.batch_id and event.batch_id % 1000 == 0: - result = trainer.test(reader=reader, feeding=feeding) - logger.info("\nTest with Pass %d, Batch %d, %s" % - (event.pass_id, event.batch_id, result.metrics)) - - if isinstance(event, paddle.event.EndPass): - # save parameters - with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f: - parameters.to_tar(f) - - result = trainer.test(reader=reader, feeding=feeding) - logger.info("\nTest with Pass %d, %s" % - (event.pass_id, result.metrics)) - - trainer.train( - reader=reader, - event_handler=event_handler, - num_passes=10, - feeding=feeding) - - -def infer_a_batch(inferer, test_data, word_dict, pred_dict, label_dict): - probs = inferer.infer(input=test_data, field='id') - assert len(probs) == sum(len(x[0]) for x in test_data) - - for idx, test_sample in enumerate(test_data): - start_id = 0 - pred_str = "%s\t" % (pred_dict[test_sample[6][0]]) - - for w, tag in zip(test_sample[0], - probs[start_id:start_id + len(test_sample[0])]): - pred_str += "%s[%s] " % (word_dict[w], label_dict[tag]) - print(pred_str.strip()) - start_id += len(test_sample[0]) - - -def infer(): - label_dict_reverse = dict((value, key) - for key, value in label_dict.iteritems()) - word_dict_reverse = dict((value, key) - for key, value in word_dict.iteritems()) - pred_dict_reverse = dict((value, key) - for key, value in verb_dict.iteritems()) - - test_creator = paddle.dataset.conll05.test() - - paddle.init(use_gpu=False, trainer_count=1) - - # define network topology - feature_out = db_lstm() - predict = paddle.layer.crf_decoding( - size=label_dict_len, - input=feature_out, - param_attr=paddle.attr.Param(name='crfw')) - - test_pass = 0 - with gzip.open('params_pass_%d.tar.gz' % (test_pass)) as f: - parameters = paddle.parameters.Parameters.from_tar(f) - inferer = paddle.inference.Inference( - output_layer=predict, parameters=parameters) - - # prepare test data - test_data = [] - test_batch_size = 50 - - for idx, item in enumerate(test_creator()): - test_data.append(item[0:8]) - - if idx and (not idx % test_batch_size): - infer_a_batch( - inferer, - test_data, - word_dict_reverse, - pred_dict_reverse, - label_dict_reverse, ) - test_data = [] - infer_a_batch( - inferer, - test_data, - word_dict_reverse, - pred_dict_reverse, - label_dict_reverse, ) - test_data = [] - - -def main(is_inferring=False): - if is_inferring: - infer() - else: - train() - - -if __name__ == '__main__': - main(is_inferring=False) diff --git a/demo/semantic_role_labeling/data/extract_dict_feature.py b/demo/semantic_role_labeling/data/extract_dict_feature.py deleted file mode 100644 index da44111976a0dec68345fc139d0aa459ca9211c2..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/extract_dict_feature.py +++ /dev/null @@ -1,81 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import os -from optparse import OptionParser - - -def extract_dict_features(pair_file, feature_file): - - with open(pair_file) as fin, open(feature_file, 'w') as feature_out: - for line in fin: - sentence, predicate, labels = line.strip().split('\t') - sentence_list = sentence.split() - labels_list = labels.split() - - verb_index = labels_list.index('B-V') - - mark = [0] * len(labels_list) - if verb_index > 0: - mark[verb_index - 1] = 1 - ctx_n1 = sentence_list[verb_index - 1] - else: - ctx_n1 = 'bos' - - if verb_index > 1: - mark[verb_index - 2] = 1 - ctx_n2 = sentence_list[verb_index - 2] - else: - ctx_n2 = 'bos' - - mark[verb_index] = 1 - ctx_0 = sentence_list[verb_index] - - if verb_index < len(labels_list) - 1: - mark[verb_index + 1] = 1 - ctx_p1 = sentence_list[verb_index + 1] - else: - ctx_p1 = 'eos' - - if verb_index < len(labels_list) - 2: - mark[verb_index + 2] = 1 - ctx_p2 = sentence_list[verb_index + 2] - else: - ctx_p2 = 'eos' - - - feature_str = sentence + '\t' \ - + predicate + '\t' \ - + ctx_n2 + '\t' \ - + ctx_n1 + '\t' \ - + ctx_0 + '\t' \ - + ctx_p1 + '\t' \ - + ctx_p2 + '\t' \ - + ' '.join([str(i) for i in mark]) + '\t' \ - + labels - - feature_out.write(feature_str + '\n') - - -if __name__ == '__main__': - - usage = '-p pair_file -f feature_file' - parser = OptionParser(usage) - parser.add_option('-p', dest='pair_file', help='the pair file') - parser.add_option('-f', dest='feature_file', help='the feature file') - - (options, args) = parser.parse_args() - - extract_dict_features(options.pair_file, options.feature_file) diff --git a/demo/semantic_role_labeling/data/extract_pairs.py b/demo/semantic_role_labeling/data/extract_pairs.py deleted file mode 100644 index 94a8488c16734eb1882d54f7ec36f4b9308c09d4..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/extract_pairs.py +++ /dev/null @@ -1,122 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import os -from optparse import OptionParser - - -def read_labels(props_file): - ''' - a sentence maybe has more than one verb, each verb has its label sequence - label[], is a 3-dimension list. - the first dim is to store all sentence's label seqs, len is the sentence number - the second dim is to store all label sequences for one sentences - the third dim is to store each label for one word - ''' - labels = [] - with open(props_file) as fin: - label_seqs_for_one_sentences = [] - one_seg_in_file = [] - for line in fin: - line = line.strip() - if line == '': - for i in xrange(len(one_seg_in_file[0])): - a_kind_lable = [x[i] for x in one_seg_in_file] - label_seqs_for_one_sentences.append(a_kind_lable) - labels.append(label_seqs_for_one_sentences) - one_seg_in_file = [] - label_seqs_for_one_sentences = [] - else: - part = line.split() - one_seg_in_file.append(part) - return labels - - -def read_sentences(words_file): - sentences = [] - with open(words_file) as fin: - s = '' - for line in fin: - line = line.strip() - if line == '': - sentences.append(s) - s = '' - else: - s += line + ' ' - return sentences - - -def transform_labels(sentences, labels): - sen_lab_pair = [] - for i in xrange(len(sentences)): - if len(labels[i]) == 1: - continue - else: - verb_list = [] - for x in labels[i][0]: - if x != '-': - verb_list.append(x) - - for j in xrange(1, len(labels[i])): - label_list = labels[i][j] - current_tag = 'O' - is_in_bracket = False - label_seq = [] - verb_word = '' - for ll in label_list: - if ll == '*' and is_in_bracket == False: - label_seq.append('O') - elif ll == '*' and is_in_bracket == True: - label_seq.append('I-' + current_tag) - elif ll == '*)': - label_seq.append('I-' + current_tag) - is_in_bracket = False - elif ll.find('(') != -1 and ll.find(')') != -1: - current_tag = ll[1:ll.find('*')] - label_seq.append('B-' + current_tag) - is_in_bracket = False - elif ll.find('(') != -1 and ll.find(')') == -1: - current_tag = ll[1:ll.find('*')] - label_seq.append('B-' + current_tag) - is_in_bracket = True - else: - print 'error:', ll - sen_lab_pair.append((sentences[i], verb_list[j - 1], label_seq)) - return sen_lab_pair - - -def write_file(sen_lab_pair, output_file): - with open(output_file, 'w') as fout: - for x in sen_lab_pair: - sentence = x[0] - label_seq = ' '.join(x[2]) - assert len(sentence.split()) == len(x[2]) - fout.write(sentence + '\t' + x[1] + '\t' + label_seq + '\n') - - -if __name__ == '__main__': - - usage = '-w words_file -p props_file -o output_file' - parser = OptionParser(usage) - parser.add_option('-w', dest='words_file', help='the words file') - parser.add_option('-p', dest='props_file', help='the props file') - parser.add_option('-o', dest='output_file', help='the output_file') - (options, args) = parser.parse_args() - - sentences = read_sentences(options.words_file) - labels = read_labels(options.props_file) - sen_lab_pair = transform_labels(sentences, labels) - - write_file(sen_lab_pair, options.output_file) diff --git a/demo/semantic_role_labeling/data/get_data.sh b/demo/semantic_role_labeling/data/get_data.sh deleted file mode 100755 index a0ef26a13b9a03392cb8b6207d6d21b7761e38e8..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/get_data.sh +++ /dev/null @@ -1,29 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -wget http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz -wget http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/verbDict.txt -wget http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/targetDict.txt -wget http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/wordDict.txt -wget http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/emb -tar -xzvf conll05st-tests.tar.gz -rm conll05st-tests.tar.gz -cp ./conll05st-release/test.wsj/words/test.wsj.words.gz . -cp ./conll05st-release/test.wsj/props/test.wsj.props.gz . -gunzip test.wsj.words.gz -gunzip test.wsj.props.gz - -python extract_pairs.py -w test.wsj.words -p test.wsj.props -o test.wsj.seq_pair -python extract_dict_feature.py -p test.wsj.seq_pair -f feature diff --git a/demo/semantic_role_labeling/data/test.list b/demo/semantic_role_labeling/data/test.list deleted file mode 100644 index ec370e897a7811b572613150ccb6f665c3adb974..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/test.list +++ /dev/null @@ -1 +0,0 @@ -./data/feature diff --git a/demo/semantic_role_labeling/data/train.list b/demo/semantic_role_labeling/data/train.list deleted file mode 100644 index ec370e897a7811b572613150ccb6f665c3adb974..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/train.list +++ /dev/null @@ -1 +0,0 @@ -./data/feature diff --git a/demo/semantic_role_labeling/dataprovider.py b/demo/semantic_role_labeling/dataprovider.py deleted file mode 100644 index 360c57ea6283ca43986610abf1831742bfc0c3ef..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/dataprovider.py +++ /dev/null @@ -1,71 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * - -UNK_IDX = 0 - - -def hook(settings, word_dict, label_dict, predicate_dict, **kwargs): - settings.word_dict = word_dict - settings.label_dict = label_dict - settings.predicate_dict = predicate_dict - - #all inputs are integral and sequential type - settings.slots = [ - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(predicate_dict)), integer_value_sequence(2), - integer_value_sequence(len(label_dict)) - ] - - -def get_batch_size(yeild_data): - return len(yeild_data[0]) - - -@provider( - init_hook=hook, - should_shuffle=True, - calc_batch_size=get_batch_size, - can_over_batch_size=True, - cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, file_name): - with open(file_name, 'r') as fdata: - for line in fdata: - sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \ - line.strip().split('\t') - - words = sentence.split() - sen_len = len(words) - word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words] - - predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len - ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len - ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len - ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len - ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len - ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len - - marks = mark.split() - mark_slot = [int(w) for w in marks] - - label_list = label.split() - label_slot = [settings.label_dict.get(w) for w in label_list] - yield word_slot, ctx_n2_slot, ctx_n1_slot, \ - ctx_0_slot, ctx_p1_slot, ctx_p2_slot, predicate_slot, mark_slot, label_slot diff --git a/demo/semantic_role_labeling/db_lstm.py b/demo/semantic_role_labeling/db_lstm.py deleted file mode 100644 index 04e2a559b19bd4b9aec0242eb43edf6ab1e7624e..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/db_lstm.py +++ /dev/null @@ -1,218 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import math -import os -import sys -from paddle.trainer_config_helpers import * - -#file paths -word_dict_file = './data/wordDict.txt' -label_dict_file = './data/targetDict.txt' -predicate_file = './data/verbDict.txt' -train_list_file = './data/train.list' -test_list_file = './data/test.list' - -is_test = get_config_arg('is_test', bool, False) -is_predict = get_config_arg('is_predict', bool, False) - -if not is_predict: - #load dictionaries - word_dict = dict() - label_dict = dict() - predicate_dict = dict() - with open(word_dict_file, 'r') as f_word, \ - open(label_dict_file, 'r') as f_label, \ - open(predicate_file, 'r') as f_pre: - for i, line in enumerate(f_word): - w = line.strip() - word_dict[w] = i - - for i, line in enumerate(f_label): - w = line.strip() - label_dict[w] = i - - for i, line in enumerate(f_pre): - w = line.strip() - predicate_dict[w] = i - - if is_test: - train_list_file = None - - #define data provider - define_py_data_sources2( - train_list=train_list_file, - test_list=test_list_file, - module='dataprovider', - obj='process', - args={ - 'word_dict': word_dict, - 'label_dict': label_dict, - 'predicate_dict': predicate_dict - }) - - word_dict_len = len(word_dict) - label_dict_len = len(label_dict) - pred_len = len(predicate_dict) - -else: - word_dict_len = get_config_arg('dict_len', int) - label_dict_len = get_config_arg('label_len', int) - pred_len = get_config_arg('pred_len', int) - -############################## Hyper-parameters ################################## -mark_dict_len = 2 -word_dim = 32 -mark_dim = 5 -hidden_dim = 512 -depth = 8 - -########################### Optimizer ####################################### - -settings( - batch_size=150, - learning_method=MomentumOptimizer(momentum=0), - learning_rate=2e-2, - regularization=L2Regularization(8e-4), - is_async=False, - model_average=ModelAverage( - average_window=0.5, max_average_window=10000), ) - -####################################### network ############################## -#8 features and 1 target -word = data_layer(name='word_data', size=word_dict_len) -predicate = data_layer(name='verb_data', size=pred_len) - -ctx_n2 = data_layer(name='ctx_n2_data', size=word_dict_len) -ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len) -ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len) -ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len) -ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len) -mark = data_layer(name='mark_data', size=mark_dict_len) - -if not is_predict: - target = data_layer(name='target', size=label_dict_len) - -default_std = 1 / math.sqrt(hidden_dim) / 3.0 - -emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.) -std_0 = ParameterAttribute(initial_std=0.) -std_default = ParameterAttribute(initial_std=default_std) - -predicate_embedding = embedding_layer( - size=word_dim, - input=predicate, - param_attr=ParameterAttribute( - name='vemb', initial_std=default_std)) -mark_embedding = embedding_layer( - name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0) - -word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] -emb_layers = [ - embedding_layer( - size=word_dim, input=x, param_attr=emb_para) for x in word_input -] -emb_layers.append(predicate_embedding) -emb_layers.append(mark_embedding) - -hidden_0 = mixed_layer( - name='hidden0', - size=hidden_dim, - bias_attr=std_default, - input=[ - full_matrix_projection( - input=emb, param_attr=std_default) for emb in emb_layers - ]) - -mix_hidden_lr = 1e-3 -lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0) -hidden_para_attr = ParameterAttribute( - initial_std=default_std, learning_rate=mix_hidden_lr) - -lstm_0 = lstmemory( - name='lstm0', - input=hidden_0, - act=ReluActivation(), - gate_act=SigmoidActivation(), - state_act=SigmoidActivation(), - bias_attr=std_0, - param_attr=lstm_para_attr) - -#stack L-LSTM and R-LSTM with direct edges -input_tmp = [hidden_0, lstm_0] - -for i in range(1, depth): - - mix_hidden = mixed_layer( - name='hidden' + str(i), - size=hidden_dim, - bias_attr=std_default, - input=[ - full_matrix_projection( - input=input_tmp[0], param_attr=hidden_para_attr), - full_matrix_projection( - input=input_tmp[1], param_attr=lstm_para_attr) - ]) - - lstm = lstmemory( - name='lstm' + str(i), - input=mix_hidden, - act=ReluActivation(), - gate_act=SigmoidActivation(), - state_act=SigmoidActivation(), - reverse=((i % 2) == 1), - bias_attr=std_0, - param_attr=lstm_para_attr) - - input_tmp = [mix_hidden, lstm] - -feature_out = mixed_layer( - name='output', - size=label_dict_len, - bias_attr=std_default, - input=[ - full_matrix_projection( - input=input_tmp[0], param_attr=hidden_para_attr), - full_matrix_projection( - input=input_tmp[1], param_attr=lstm_para_attr) - ], ) - -if not is_predict: - crf_l = crf_layer( - name='crf', - size=label_dict_len, - input=feature_out, - label=target, - param_attr=ParameterAttribute( - name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr)) - - crf_dec_l = crf_decoding_layer( - name='crf_dec_l', - size=label_dict_len, - input=feature_out, - label=target, - param_attr=ParameterAttribute(name='crfw')) - - eval = sum_evaluator(input=crf_dec_l) - - outputs(crf_l) - -else: - crf_dec_l = crf_decoding_layer( - name='crf_dec_l', - size=label_dict_len, - input=feature_out, - param_attr=ParameterAttribute(name='crfw')) - - outputs(crf_dec_l) diff --git a/demo/semantic_role_labeling/predict.py b/demo/semantic_role_labeling/predict.py deleted file mode 100644 index 372fd090b6e8f08f5bb34697772c2e4976810595..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/predict.py +++ /dev/null @@ -1,193 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import numpy as np -from optparse import OptionParser -from py_paddle import swig_paddle, DataProviderConverter -from paddle.trainer.PyDataProvider2 import integer_value_sequence -from paddle.trainer.config_parser import parse_config -""" -Usage: run following command to show help message. - python predict.py -h -""" -UNK_IDX = 0 - - -class Prediction(): - def __init__(self, train_conf, dict_file, model_dir, label_file, - predicate_dict_file): - """ - train_conf: trainer configure. - dict_file: word dictionary file name. - model_dir: directory of model. - """ - - self.dict = {} - self.labels = {} - self.predicate_dict = {} - self.labels_reverse = {} - self.load_dict_label(dict_file, label_file, predicate_dict_file) - - len_dict = len(self.dict) - len_label = len(self.labels) - len_pred = len(self.predicate_dict) - - conf = parse_config( - train_conf, 'dict_len=' + str(len_dict) + ',label_len=' + - str(len_label) + ',pred_len=' + str(len_pred) + ',is_predict=True') - self.network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - self.network.loadParameters(model_dir) - - slots = [ - integer_value_sequence(len_dict), integer_value_sequence(len_dict), - integer_value_sequence(len_dict), integer_value_sequence(len_dict), - integer_value_sequence(len_dict), integer_value_sequence(len_dict), - integer_value_sequence(len_pred), integer_value_sequence(2) - ] - self.converter = DataProviderConverter(slots) - - def load_dict_label(self, dict_file, label_file, predicate_dict_file): - """ - Load dictionary from self.dict_file. - """ - for line_count, line in enumerate(open(dict_file, 'r')): - self.dict[line.strip()] = line_count - - for line_count, line in enumerate(open(label_file, 'r')): - self.labels[line.strip()] = line_count - self.labels_reverse[line_count] = line.strip() - - for line_count, line in enumerate(open(predicate_dict_file, 'r')): - self.predicate_dict[line.strip()] = line_count - - def get_data(self, data_file): - """ - Get input data of paddle format. - """ - with open(data_file, 'r') as fdata: - for line in fdata: - sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = line.strip( - ).split('\t') - words = sentence.split() - sen_len = len(words) - - word_slot = [self.dict.get(w, UNK_IDX) for w in words] - predicate_slot = [self.predicate_dict.get(predicate, UNK_IDX) - ] * sen_len - ctx_n2_slot = [self.dict.get(ctx_n2, UNK_IDX)] * sen_len - ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len - ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len - ctx_p1_slot = [self.dict.get(ctx_p1, UNK_IDX)] * sen_len - ctx_p2_slot = [self.dict.get(ctx_p2, UNK_IDX)] * sen_len - - marks = mark.split() - mark_slot = [int(w) for w in marks] - - yield word_slot, ctx_n2_slot, ctx_n1_slot, \ - ctx_0_slot, ctx_p1_slot, ctx_p2_slot, predicate_slot, mark_slot - - def predict(self, data_file, output_file): - """ - data_file: file name of input data. - """ - input = self.converter(self.get_data(data_file)) - output = self.network.forwardTest(input) - lab = output[0]["id"].tolist() - - with open(data_file, 'r') as fin, open(output_file, 'w') as fout: - index = 0 - for line in fin: - sen = line.split('\t')[0] - len_sen = len(sen.split()) - line_labels = lab[index:index + len_sen] - index += len_sen - fout.write(sen + '\t' + ' '.join( - [self.labels_reverse[i] for i in line_labels]) + '\n') - - -def option_parser(): - usage = ( - "python predict.py -c config -w model_dir " - "-d word dictionary -l label_file -i input_file -p pred_dict_file") - parser = OptionParser(usage="usage: %s [options]" % usage) - parser.add_option( - "-c", - "--tconf", - action="store", - dest="train_conf", - help="network config") - parser.add_option( - "-d", - "--dict", - action="store", - dest="dict_file", - help="dictionary file") - parser.add_option( - "-l", - "--label", - action="store", - dest="label_file", - default=None, - help="label file") - parser.add_option( - "-p", - "--predict_dict_file", - action="store", - dest="predict_dict_file", - default=None, - help="predict_dict_file") - parser.add_option( - "-i", - "--data", - action="store", - dest="data_file", - help="data file to predict") - parser.add_option( - "-w", - "--model", - action="store", - dest="model_path", - default=None, - help="model path") - - parser.add_option( - "-o", - "--output_file", - action="store", - dest="output_file", - default=None, - help="output file") - return parser.parse_args() - - -def main(): - options, args = option_parser() - train_conf = options.train_conf - data_file = options.data_file - dict_file = options.dict_file - model_path = options.model_path - label_file = options.label_file - predict_dict_file = options.predict_dict_file - output_file = options.output_file - - swig_paddle.initPaddle("--use_gpu=0") - predict = Prediction(train_conf, dict_file, model_path, label_file, - predict_dict_file) - predict.predict(data_file, output_file) - - -if __name__ == '__main__': - main() diff --git a/demo/semantic_role_labeling/predict.sh b/demo/semantic_role_labeling/predict.sh deleted file mode 100755 index 873aad670d16803ce321ab60baabe9fe29ea64bf..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/predict.sh +++ /dev/null @@ -1,43 +0,0 @@ -#!/bin/bash - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ - sed -r 'N;s/Test.* cost=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' | \ - sort -n | head -n 1 -} - -log=train.log -LOG=`get_best_pass $log` -LOG=(${LOG}) -best_model_path="output/pass-${LOG[1]}" - -config_file=db_lstm.py -dict_file=./data/wordDict.txt -label_file=./data/targetDict.txt -predicate_dict_file=./data/verbDict.txt -input_file=./data/feature -output_file=predict.res - -python predict.py \ - -c $config_file \ - -w $best_model_path \ - -l $label_file \ - -p $predicate_dict_file \ - -d $dict_file \ - -i $input_file \ - -o $output_file diff --git a/demo/semantic_role_labeling/test.sh b/demo/semantic_role_labeling/test.sh deleted file mode 100755 index 095bbff2ea42627a13d8ebab436f5a05abc09743..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/test.sh +++ /dev/null @@ -1,41 +0,0 @@ -#!/bin/bash - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ - sed -r 'N;s/Test.* cost=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' |\ - sort -n | head -n 1 -} - -log=train.log -LOG=`get_best_pass $log` -LOG=(${LOG}) -evaluate_pass="output/pass-${LOG[1]}" - -echo 'evaluating from pass '$evaluate_pass -model_list=./model.list -touch $model_list | echo $evaluate_pass > $model_list - -paddle train \ - --config=./db_lstm.py \ - --model_list=$model_list \ - --job=test \ - --use_gpu=false \ - --config_args=is_test=1 \ - --test_all_data_in_one_period=1 \ -2>&1 | tee 'test.log' -paddle usage -l test.log -e $? -n "semantic_role_labeling_test" >/dev/null 2>&1 diff --git a/demo/semantic_role_labeling/train.sh b/demo/semantic_role_labeling/train.sh deleted file mode 100755 index eee14010d7b04a1b824f39090fa82fc532085e0d..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/train.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -paddle train \ - --config=./db_lstm.py \ - --use_gpu=0 \ - --log_period=5000 \ - --trainer_count=1 \ - --show_parameter_stats_period=5000 \ - --save_dir=./output \ - --num_passes=10000 \ - --average_test_period=10000000 \ - --init_model_path=./data \ - --load_missing_parameter_strategy=rand \ - --test_all_data_in_one_period=1 \ - 2>&1 | tee 'train.log' -paddle usage -l train.log -e $? -n "semantic_role_labeling_train" >/dev/null 2>&1 diff --git a/demo/sentiment/.gitignore b/demo/sentiment/.gitignore deleted file mode 100644 index bf2a9ab1ce3c937bf06179074cd952dc53591dfd..0000000000000000000000000000000000000000 --- a/demo/sentiment/.gitignore +++ /dev/null @@ -1,11 +0,0 @@ -data/aclImdb -data/imdb -data/pre-imdb -data/mosesdecoder-master -logs/ -model_output -dataprovider_copy_1.py -model.list -test.log -train.log -*.pyc diff --git a/demo/sentiment/data/get_imdb.sh b/demo/sentiment/data/get_imdb.sh deleted file mode 100755 index 7600af6fbb900ee845702f1297779c1f0ed9bf84..0000000000000000000000000000000000000000 --- a/demo/sentiment/data/get_imdb.sh +++ /dev/null @@ -1,51 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -set -e -set -x - -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR - -#download the dataset -echo "Downloading aclImdb..." -#http://ai.stanford.edu/%7Eamaas/data/sentiment/ -wget http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz - -echo "Downloading mosesdecoder..." -#https://github.com/moses-smt/mosesdecoder -wget https://github.com/moses-smt/mosesdecoder/archive/master.zip - -#extract package -echo "Unzipping..." -tar -zxvf aclImdb_v1.tar.gz -unzip master.zip - -#move train and test set to imdb_data directory -#in order to process when traing -mkdir -p imdb/train -mkdir -p imdb/test - -cp -r aclImdb/train/pos/ imdb/train/pos -cp -r aclImdb/train/neg/ imdb/train/neg - -cp -r aclImdb/test/pos/ imdb/test/pos -cp -r aclImdb/test/neg/ imdb/test/neg - -#remove compressed package -rm aclImdb_v1.tar.gz -rm master.zip - -echo "Done." diff --git a/demo/sentiment/dataprovider.py b/demo/sentiment/dataprovider.py deleted file mode 100755 index 4b7f5d0e504aef3884a04cbed8c16503a4079772..0000000000000000000000000000000000000000 --- a/demo/sentiment/dataprovider.py +++ /dev/null @@ -1,37 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from paddle.trainer.PyDataProvider2 import * - - -def hook(settings, dictionary, **kwargs): - settings.word_dict = dictionary - settings.input_types = [ - integer_value_sequence(len(settings.word_dict)), integer_value(2) - ] - settings.logger.info('dict len : %d' % (len(settings.word_dict))) - - -@provider(init_hook=hook) -def process(settings, file_name): - with open(file_name, 'r') as fdata: - for line_count, line in enumerate(fdata): - label, comment = line.strip().split('\t\t') - label = int(label) - words = comment.split() - word_slot = [ - settings.word_dict[w] for w in words if w in settings.word_dict - ] - if not word_slot: - continue - yield word_slot, label diff --git a/demo/sentiment/predict.py b/demo/sentiment/predict.py deleted file mode 100755 index 64c78e0d6b9297e7a321a4f070517593b0bfe332..0000000000000000000000000000000000000000 --- a/demo/sentiment/predict.py +++ /dev/null @@ -1,154 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os, sys -import numpy as np -from optparse import OptionParser -from py_paddle import swig_paddle, DataProviderConverter -from paddle.trainer.PyDataProvider2 import integer_value_sequence -from paddle.trainer.config_parser import parse_config -""" -Usage: run following command to show help message. - python predict.py -h -""" - - -class SentimentPrediction(): - def __init__(self, train_conf, dict_file, model_dir=None, label_file=None): - """ - train_conf: trainer configure. - dict_file: word dictionary file name. - model_dir: directory of model. - """ - self.train_conf = train_conf - self.dict_file = dict_file - self.word_dict = {} - self.dict_dim = self.load_dict() - self.model_dir = model_dir - if model_dir is None: - self.model_dir = os.path.dirname(train_conf) - - self.label = None - if label_file is not None: - self.load_label(label_file) - - conf = parse_config(train_conf, "is_predict=1") - self.network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - self.network.loadParameters(self.model_dir) - input_types = [integer_value_sequence(self.dict_dim)] - self.converter = DataProviderConverter(input_types) - - def load_dict(self): - """ - Load dictionary from self.dict_file. - """ - for line_count, line in enumerate(open(self.dict_file, 'r')): - self.word_dict[line.strip().split('\t')[0]] = line_count - return len(self.word_dict) - - def load_label(self, label_file): - """ - Load label. - """ - self.label = {} - for v in open(label_file, 'r'): - self.label[int(v.split('\t')[1])] = v.split('\t')[0] - - def get_index(self, data): - """ - transform word into integer index according to the dictionary. - """ - words = data.strip().split() - word_slot = [self.word_dict[w] for w in words if w in self.word_dict] - return word_slot - - def batch_predict(self, data_batch): - input = self.converter(data_batch) - output = self.network.forwardTest(input) - prob = output[0]["value"] - labs = np.argsort(-prob) - for idx, lab in enumerate(labs): - if self.label is None: - print("predicting label is %d" % (lab[0])) - else: - print("predicting label is %s" % (self.label[lab[0]])) - - -def option_parser(): - usage = "python predict.py -n config -w model_dir -d dictionary -i input_file " - parser = OptionParser(usage="usage: %s [options]" % usage) - parser.add_option( - "-n", - "--tconf", - action="store", - dest="train_conf", - help="network config") - parser.add_option( - "-d", - "--dict", - action="store", - dest="dict_file", - help="dictionary file") - parser.add_option( - "-b", - "--label", - action="store", - dest="label", - default=None, - help="dictionary file") - parser.add_option( - "-c", - "--batch_size", - type="int", - action="store", - dest="batch_size", - default=1, - help="the batch size for prediction") - parser.add_option( - "-w", - "--model", - action="store", - dest="model_path", - default=None, - help="model path") - return parser.parse_args() - - -def main(): - options, args = option_parser() - train_conf = options.train_conf - batch_size = options.batch_size - dict_file = options.dict_file - model_path = options.model_path - label = options.label - swig_paddle.initPaddle("--use_gpu=0") - predict = SentimentPrediction(train_conf, dict_file, model_path, label) - - batch = [] - for line in sys.stdin: - words = predict.get_index(line) - if words: - batch.append([words]) - else: - print('All the words in [%s] are not in the dictionary.' % line) - if len(batch) == batch_size: - predict.batch_predict(batch) - batch = [] - if len(batch) > 0: - predict.batch_predict(batch) - - -if __name__ == '__main__': - main() diff --git a/demo/sentiment/predict.sh b/demo/sentiment/predict.sh deleted file mode 100755 index c72a8e8641516543ef267fcb4b448630246d1e8d..0000000000000000000000000000000000000000 --- a/demo/sentiment/predict.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -#Note the default model is pass-00002, you shold make sure the model path -#exists or change the mode path. -model=model_output/pass-00002/ -config=trainer_config.py -label=data/pre-imdb/labels.list -cat ./data/aclImdb/test/pos/10007_10.txt | python predict.py \ - --tconf=$config\ - --model=$model \ - --label=$label \ - --dict=./data/pre-imdb/dict.txt \ - --batch_size=1 diff --git a/demo/sentiment/preprocess.py b/demo/sentiment/preprocess.py deleted file mode 100755 index 29b3682b747c66574590de5ea70574981cc536bb..0000000000000000000000000000000000000000 --- a/demo/sentiment/preprocess.py +++ /dev/null @@ -1,359 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import sys -import random -import operator -import numpy as np -from subprocess import Popen, PIPE -from os.path import join as join_path -from optparse import OptionParser - -from paddle.utils.preprocess_util import * -""" -Usage: run following command to show help message. - python preprocess.py -h -""" - - -def save_dict(dict, filename, is_reverse=True): - """ - Save dictionary into file. - dict: input dictionary. - filename: output file name, string. - is_reverse: True, descending order by value. - False, ascending order by value. - """ - f = open(filename, 'w') - for k, v in sorted(dict.items(), key=operator.itemgetter(1),\ - reverse=is_reverse): - f.write('%s\t%s\n' % (k, v)) - f.close() - - -def tokenize(sentences): - """ - Use tokenizer.perl to tokenize input sentences. - tokenizer.perl is tool of Moses. - sentences : a list of input sentences. - return: a list of processed text. - """ - dir = './data/mosesdecoder-master/scripts/tokenizer/tokenizer.perl' - tokenizer_cmd = [dir, '-l', 'en', '-q', '-'] - assert isinstance(sentences, list) - text = "\n".join(sentences) - tokenizer = Popen(tokenizer_cmd, stdin=PIPE, stdout=PIPE) - tok_text, _ = tokenizer.communicate(text) - toks = tok_text.split('\n')[:-1] - return toks - - -def read_lines(path): - """ - path: String, file path. - return a list of sequence. - """ - seqs = [] - with open(path, 'r') as f: - for line in f.readlines(): - line = line.strip() - if len(line): - seqs.append(line) - return seqs - - -class SentimentDataSetCreate(): - """ - A class to process data for sentiment analysis task. - """ - - def __init__(self, - data_path, - output_path, - use_okenizer=True, - multi_lines=False): - """ - data_path: string, traing and testing dataset path - output_path: string, output path, store processed dataset - multi_lines: whether a file has multi lines. - In order to shuffle fully, it needs to read all files into - memory, then shuffle them if one file has multi lines. - """ - self.output_path = output_path - self.data_path = data_path - - self.train_dir = 'train' - self.test_dir = 'test' - - self.train_list = "train.list" - self.test_list = "test.list" - - self.label_list = "labels.list" - self.classes_num = 0 - - self.batch_size = 50000 - self.batch_dir = 'batches' - - self.dict_file = "dict.txt" - self.dict_with_test = False - self.dict_size = 0 - self.word_count = {} - - self.tokenizer = use_okenizer - self.overwrite = False - - self.multi_lines = multi_lines - - self.train_dir = join_path(data_path, self.train_dir) - self.test_dir = join_path(data_path, self.test_dir) - self.train_list = join_path(output_path, self.train_list) - self.test_list = join_path(output_path, self.test_list) - self.label_list = join_path(output_path, self.label_list) - self.dict_file = join_path(output_path, self.dict_file) - - def data_list(self, path): - """ - create dataset from path - path: data path - return: data list - """ - label_set = get_label_set_from_dir(path) - data = [] - for lab_name in label_set.keys(): - file_paths = list_files(join_path(path, lab_name)) - for p in file_paths: - data.append({"label" : label_set[lab_name],\ - "seq_path": p}) - return data, label_set - - def create_dict(self, data): - """ - create dict for input data. - data: list, [sequence, sequnce, ...] - """ - for seq in data: - for w in seq.strip().lower().split(): - if w not in self.word_count: - self.word_count[w] = 1 - else: - self.word_count[w] += 1 - - def create_dataset(self): - """ - create file batches and dictionary of train data set. - If the self.overwrite is false and train.list already exists in - self.output_path, this function will not create and save file - batches from the data set path. - return: dictionary size, class number. - """ - out_path = self.output_path - if out_path and not os.path.exists(out_path): - os.makedirs(out_path) - - # If self.overwrite is false or self.train_list has existed, - # it will not process dataset. - if not (self.overwrite or not os.path.exists(self.train_list)): - print "%s already exists." % self.train_list - return - - # Preprocess train data. - train_data, train_lab_set = self.data_list(self.train_dir) - print "processing train set..." - file_lists = self.save_data(train_data, "train", self.batch_size, True, - True) - save_list(file_lists, self.train_list) - - # If have test data path, preprocess test data. - if os.path.exists(self.test_dir): - test_data, test_lab_set = self.data_list(self.test_dir) - assert (train_lab_set == test_lab_set) - print "processing test set..." - file_lists = self.save_data(test_data, "test", self.batch_size, - False, self.dict_with_test) - save_list(file_lists, self.test_list) - - # save labels set. - save_dict(train_lab_set, self.label_list, False) - self.classes_num = len(train_lab_set.keys()) - - # save dictionary. - save_dict(self.word_count, self.dict_file, True) - self.dict_size = len(self.word_count) - - def save_data(self, - data, - prefix="", - batch_size=50000, - is_shuffle=False, - build_dict=False): - """ - Create batches for a Dataset object. - data: the Dataset object to process. - prefix: the prefix of each batch. - batch_size: number of data in each batch. - build_dict: whether to build dictionary for data - - return: list of batch names - """ - if is_shuffle and self.multi_lines: - return self.save_data_multi_lines(data, prefix, batch_size, - build_dict) - - if is_shuffle: - random.shuffle(data) - num_batches = int(math.ceil(len(data) / float(batch_size))) - batch_names = [] - for i in range(num_batches): - batch_name = join_path(self.output_path, - "%s_part_%03d" % (prefix, i)) - begin = i * batch_size - end = min((i + 1) * batch_size, len(data)) - # read a batch of data - label_list, data_list = self.get_data_list(begin, end, data) - if build_dict: - self.create_dict(data_list) - self.save_file(label_list, data_list, batch_name) - batch_names.append(batch_name) - - return batch_names - - def get_data_list(self, begin, end, data): - """ - begin: int, begining index of data. - end: int, ending index of data. - data: a list of {"seq_path": seqquence path, "label": label index} - - return a list of label and a list of sequence. - """ - label_list = [] - data_list = [] - for j in range(begin, end): - seqs = read_lines(data[j]["seq_path"]) - lab = int(data[j]["label"]) - #File may have multiple lines. - for seq in seqs: - data_list.append(seq) - label_list.append(lab) - if self.tokenizer: - data_list = tokenize(data_list) - return label_list, data_list - - def save_data_multi_lines(self, - data, - prefix="", - batch_size=50000, - build_dict=False): - """ - In order to shuffle fully, there is no need to load all data if - each file only contains one sample, it only needs to shuffle list - of file name. But one file contains multi lines, each line is one - sample. It needs to read all data into memory to shuffle fully. - This interface is mainly for data containning multi lines in each - file, which consumes more memory if there is a great mount of data. - - data: the Dataset object to process. - prefix: the prefix of each batch. - batch_size: number of data in each batch. - build_dict: whether to build dictionary for data - - return: list of batch names - """ - assert self.multi_lines - label_list = [] - data_list = [] - - # read all data - label_list, data_list = self.get_data_list(0, len(data), data) - if build_dict: - self.create_dict(data_list) - - length = len(label_list) - perm_list = np.array([i for i in xrange(length)]) - random.shuffle(perm_list) - - num_batches = int(math.ceil(length / float(batch_size))) - batch_names = [] - for i in range(num_batches): - batch_name = join_path(self.output_path, - "%s_part_%03d" % (prefix, i)) - begin = i * batch_size - end = min((i + 1) * batch_size, length) - sub_label = [label_list[perm_list[i]] for i in range(begin, end)] - sub_data = [data_list[perm_list[i]] for i in range(begin, end)] - self.save_file(sub_label, sub_data, batch_name) - batch_names.append(batch_name) - - return batch_names - - def save_file(self, label_list, data_list, filename): - """ - Save data into file. - label_list: a list of int value. - data_list: a list of sequnece. - filename: output file name. - """ - f = open(filename, 'w') - print "saving file: %s" % filename - for lab, seq in zip(label_list, data_list): - f.write('%s\t\t%s\n' % (lab, seq)) - f.close() - - -def option_parser(): - parser = OptionParser(usage="usage: python preprcoess.py "\ - "-i data_dir [options]") - parser.add_option( - "-i", - "--data", - action="store", - dest="input", - help="Input data directory.") - parser.add_option( - "-o", - "--output", - action="store", - dest="output", - default=None, - help="Output directory.") - parser.add_option( - "-t", - "--tokenizer", - action="store", - dest="use_tokenizer", - default=True, - help="Whether to use tokenizer.") - parser.add_option("-m", "--multi_lines", action="store", - dest="multi_lines", default=False, - help="If input text files have multi lines and they "\ - "need to be shuffled, you should set -m True,") - return parser.parse_args() - - -def main(): - options, args = option_parser() - data_dir = options.input - output_dir = options.output - use_tokenizer = options.use_tokenizer - multi_lines = options.multi_lines - if output_dir is None: - outname = os.path.basename(options.input) - output_dir = join_path(os.path.dirname(data_dir), 'pre-' + outname) - data_creator = SentimentDataSetCreate(data_dir, output_dir, use_tokenizer, - multi_lines) - data_creator.create_dataset() - - -if __name__ == '__main__': - main() diff --git a/demo/sentiment/preprocess.sh b/demo/sentiment/preprocess.sh deleted file mode 100755 index 19ec34d4f016365d18db01ddec559d26202b19c6..0000000000000000000000000000000000000000 --- a/demo/sentiment/preprocess.sh +++ /dev/null @@ -1,22 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -echo "Start to preprcess..." - -data_dir="./data/imdb" -python preprocess.py -i $data_dir - -echo "Done." diff --git a/demo/sentiment/sentiment_net.py b/demo/sentiment/sentiment_net.py deleted file mode 100644 index a01577ca5ae025b7bec67c6d54c7dbd931dbee74..0000000000000000000000000000000000000000 --- a/demo/sentiment/sentiment_net.py +++ /dev/null @@ -1,145 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from os.path import join as join_path - -from paddle.trainer_config_helpers import * - - -def sentiment_data(data_dir=None, - is_test=False, - is_predict=False, - train_list="train.list", - test_list="test.list", - dict_file="dict.txt"): - """ - Predefined data provider for sentiment analysis. - is_test: whether this config is used for test. - is_predict: whether this config is used for prediction. - train_list: text file name, containing a list of training set. - test_list: text file name, containing a list of testing set. - dict_file: text file name, containing dictionary. - """ - dict_dim = len(open(join_path(data_dir, "dict.txt")).readlines()) - class_dim = len(open(join_path(data_dir, 'labels.list')).readlines()) - if is_predict: - return dict_dim, class_dim - - if data_dir is not None: - train_list = join_path(data_dir, train_list) - test_list = join_path(data_dir, test_list) - dict_file = join_path(data_dir, dict_file) - - train_list = train_list if not is_test else None - word_dict = dict() - with open(dict_file, 'r') as f: - for i, line in enumerate(open(dict_file, 'r')): - word_dict[line.split('\t')[0]] = i - - define_py_data_sources2( - train_list, - test_list, - module="dataprovider", - obj="process", - args={'dictionary': word_dict}) - - return dict_dim, class_dim - - -def bidirectional_lstm_net(input_dim, - class_dim=2, - emb_dim=128, - lstm_dim=128, - is_predict=False): - data = data_layer("word", input_dim) - emb = embedding_layer(input=data, size=emb_dim) - bi_lstm = bidirectional_lstm(input=emb, size=lstm_dim) - dropout = dropout_layer(input=bi_lstm, dropout_rate=0.5) - output = fc_layer(input=dropout, size=class_dim, act=SoftmaxActivation()) - - if not is_predict: - lbl = data_layer("label", 1) - outputs(classification_cost(input=output, label=lbl)) - else: - outputs(output) - - -def stacked_lstm_net(input_dim, - class_dim=2, - emb_dim=128, - hid_dim=512, - stacked_num=3, - is_predict=False): - """ - A Wrapper for sentiment classification task. - This network uses bi-directional recurrent network, - consisting three LSTM layers. This configure is referred to - the paper as following url, but use fewer layrs. - http://www.aclweb.org/anthology/P15-1109 - - input_dim: here is word dictionary dimension. - class_dim: number of categories. - emb_dim: dimension of word embedding. - hid_dim: dimension of hidden layer. - stacked_num: number of stacked lstm-hidden layer. - is_predict: is predicting or not. - Some layers is not needed in network when predicting. - """ - hid_lr = 1e-3 - assert stacked_num % 2 == 1 - - layer_attr = ExtraLayerAttribute(drop_rate=0.5) - fc_para_attr = ParameterAttribute(learning_rate=hid_lr) - lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=1.) - para_attr = [fc_para_attr, lstm_para_attr] - bias_attr = ParameterAttribute(initial_std=0., l2_rate=0.) - relu = ReluActivation() - linear = LinearActivation() - - data = data_layer("word", input_dim) - emb = embedding_layer(input=data, size=emb_dim) - - fc1 = fc_layer(input=emb, size=hid_dim, act=linear, bias_attr=bias_attr) - lstm1 = lstmemory( - input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr) - - inputs = [fc1, lstm1] - for i in range(2, stacked_num + 1): - fc = fc_layer( - input=inputs, - size=hid_dim, - act=linear, - param_attr=para_attr, - bias_attr=bias_attr) - lstm = lstmemory( - input=fc, - reverse=(i % 2) == 0, - act=relu, - bias_attr=bias_attr, - layer_attr=layer_attr) - inputs = [fc, lstm] - - fc_last = pooling_layer(input=inputs[0], pooling_type=MaxPooling()) - lstm_last = pooling_layer(input=inputs[1], pooling_type=MaxPooling()) - output = fc_layer( - input=[fc_last, lstm_last], - size=class_dim, - act=SoftmaxActivation(), - bias_attr=bias_attr, - param_attr=para_attr) - - if is_predict: - outputs(output) - else: - outputs(classification_cost(input=output, label=data_layer('label', 1))) diff --git a/demo/sentiment/test.sh b/demo/sentiment/test.sh deleted file mode 100755 index 85c4f3ccfc3ede23fcf701769b9701ecbf57c789..0000000000000000000000000000000000000000 --- a/demo/sentiment/test.sh +++ /dev/null @@ -1,40 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ - sed -r 'N;s/Test.* classification_error_evaluator=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' |\ - sort -n | head -n 1 -} - -log=train.log -LOG=`get_best_pass $log` -LOG=(${LOG}) -evaluate_pass="model_output/pass-${LOG[1]}" - -echo 'evaluating from pass '$evaluate_pass - -model_list=./model.list -touch $model_list | echo $evaluate_pass > $model_list -net_conf=trainer_config.py -paddle train --config=$net_conf \ - --model_list=$model_list \ - --job=test \ - --use_gpu=false \ - --trainer_count=4 \ - --config_args=is_test=1 \ - 2>&1 | tee 'test.log' -paddle usage -l test.log -e $? -n "sentiment_test" >/dev/null 2>&1 diff --git a/demo/sentiment/train.sh b/demo/sentiment/train.sh deleted file mode 100755 index 14620f733bf03444e5ba3b3b792dfbed6146ecde..0000000000000000000000000000000000000000 --- a/demo/sentiment/train.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -config=trainer_config.py -output=./model_output -paddle train --config=$config \ - --save_dir=$output \ - --job=train \ - --use_gpu=false \ - --trainer_count=4 \ - --num_passes=10 \ - --log_period=10 \ - --dot_period=20 \ - --show_parameter_stats_period=100 \ - --test_all_data_in_one_period=1 \ - 2>&1 | tee 'train.log' -paddle usage -l train.log -e $? -n "sentiment_train" >/dev/null 2>&1 diff --git a/demo/sentiment/train_v2.py b/demo/sentiment/train_v2.py deleted file mode 100644 index 1c856556bd0cb32f60eba322469b3621c37e1349..0000000000000000000000000000000000000000 --- a/demo/sentiment/train_v2.py +++ /dev/null @@ -1,159 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import paddle.v2 as paddle - - -def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128): - data = paddle.layer.data("word", - paddle.data_type.integer_value_sequence(input_dim)) - emb = paddle.layer.embedding(input=data, size=emb_dim) - conv_3 = paddle.networks.sequence_conv_pool( - input=emb, context_len=3, hidden_size=hid_dim) - conv_4 = paddle.networks.sequence_conv_pool( - input=emb, context_len=4, hidden_size=hid_dim) - output = paddle.layer.fc(input=[conv_3, conv_4], - size=class_dim, - act=paddle.activation.Softmax()) - lbl = paddle.layer.data("label", paddle.data_type.integer_value(2)) - cost = paddle.layer.classification_cost(input=output, label=lbl) - return cost - - -def stacked_lstm_net(input_dim, - class_dim=2, - emb_dim=128, - hid_dim=512, - stacked_num=3): - """ - A Wrapper for sentiment classification task. - This network uses bi-directional recurrent network, - consisting three LSTM layers. This configure is referred to - the paper as following url, but use fewer layrs. - http://www.aclweb.org/anthology/P15-1109 - - input_dim: here is word dictionary dimension. - class_dim: number of categories. - emb_dim: dimension of word embedding. - hid_dim: dimension of hidden layer. - stacked_num: number of stacked lstm-hidden layer. - """ - assert stacked_num % 2 == 1 - - layer_attr = paddle.attr.Extra(drop_rate=0.5) - fc_para_attr = paddle.attr.Param(learning_rate=1e-3) - lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.) - para_attr = [fc_para_attr, lstm_para_attr] - bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.) - relu = paddle.activation.Relu() - linear = paddle.activation.Linear() - - data = paddle.layer.data("word", - paddle.data_type.integer_value_sequence(input_dim)) - emb = paddle.layer.embedding(input=data, size=emb_dim) - - fc1 = paddle.layer.fc(input=emb, - size=hid_dim, - act=linear, - bias_attr=bias_attr) - lstm1 = paddle.layer.lstmemory( - input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr) - - inputs = [fc1, lstm1] - for i in range(2, stacked_num + 1): - fc = paddle.layer.fc(input=inputs, - size=hid_dim, - act=linear, - param_attr=para_attr, - bias_attr=bias_attr) - lstm = paddle.layer.lstmemory( - input=fc, - reverse=(i % 2) == 0, - act=relu, - bias_attr=bias_attr, - layer_attr=layer_attr) - inputs = [fc, lstm] - - fc_last = paddle.layer.pooling( - input=inputs[0], pooling_type=paddle.pooling.Max()) - lstm_last = paddle.layer.pooling( - input=inputs[1], pooling_type=paddle.pooling.Max()) - output = paddle.layer.fc(input=[fc_last, lstm_last], - size=class_dim, - act=paddle.activation.Softmax(), - bias_attr=bias_attr, - param_attr=para_attr) - - lbl = paddle.layer.data("label", paddle.data_type.integer_value(2)) - cost = paddle.layer.classification_cost(input=output, label=lbl) - return cost - - -if __name__ == '__main__': - # init - paddle.init(use_gpu=False) - - #data - print 'load dictionary...' - word_dict = paddle.dataset.imdb.word_dict() - dict_dim = len(word_dict) - class_dim = 2 - train_reader = paddle.batch( - paddle.reader.shuffle( - lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000), - batch_size=100) - test_reader = paddle.batch( - lambda: paddle.dataset.imdb.test(word_dict), batch_size=100) - - feeding = {'word': 0, 'label': 1} - - # network config - # Please choose the way to build the network - # by uncommenting the corresponding line. - cost = convolution_net(dict_dim, class_dim=class_dim) - # cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3) - - # create parameters - parameters = paddle.parameters.create(cost) - - # create optimizer - adam_optimizer = paddle.optimizer.Adam( - learning_rate=2e-3, - regularization=paddle.optimizer.L2Regularization(rate=8e-4), - model_average=paddle.optimizer.ModelAverage(average_window=0.5)) - - # End batch and end pass event handler - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - print "\nPass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics) - else: - sys.stdout.write('.') - sys.stdout.flush() - if isinstance(event, paddle.event.EndPass): - result = trainer.test(reader=test_reader, feeding=feeding) - print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) - - # create trainer - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=adam_optimizer) - - trainer.train( - reader=train_reader, - event_handler=event_handler, - feeding=feeding, - num_passes=2) diff --git a/demo/sentiment/trainer_config.py b/demo/sentiment/trainer_config.py deleted file mode 100644 index f1cadaa728ac58107e15f77b5994d31da088caf7..0000000000000000000000000000000000000000 --- a/demo/sentiment/trainer_config.py +++ /dev/null @@ -1,39 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from sentiment_net import * -from paddle.trainer_config_helpers import * - -# whether this config is used for test -is_test = get_config_arg('is_test', bool, False) -# whether this config is used for prediction -is_predict = get_config_arg('is_predict', bool, False) - -data_dir = "./data/pre-imdb" -dict_dim, class_dim = sentiment_data(data_dir, is_test, is_predict) - -################## Algorithm Config ##################### - -settings( - batch_size=128, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - model_average=ModelAverage(0.5), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -#################### Network Config ###################### -stacked_lstm_net( - dict_dim, class_dim=class_dim, stacked_num=3, is_predict=is_predict) -# bidirectional_lstm_net(dict_dim, class_dim=class_dim, is_predict=is_predict) diff --git a/demo/seqToseq/.gitignore b/demo/seqToseq/.gitignore deleted file mode 100644 index 21cec2c2c1f3422cbb0ad133281dc1ecdd076a96..0000000000000000000000000000000000000000 --- a/demo/seqToseq/.gitignore +++ /dev/null @@ -1,17 +0,0 @@ -data/wmt14 -data/pre-wmt14 -data/wmt14_model -data/paraphrase -data/pre-paraphrase -data/paraphrase_model -translation/gen.log -translation/gen_result -translation/train.log -paraphrase/train.log -dataprovider_copy_1.py -translation/thirdparty.tgz -translation/thirdparty/train.conf -translation/thirdparty/dataprovider.py -translation/thirdparty/seqToseq_net.py -translation/thirdparty/*.dict -*.pyc diff --git a/demo/seqToseq/api_train_v2.py b/demo/seqToseq/api_train_v2.py deleted file mode 100644 index bb535f09260613098681db212ffc91631acf67e2..0000000000000000000000000000000000000000 --- a/demo/seqToseq/api_train_v2.py +++ /dev/null @@ -1,236 +0,0 @@ -import sys - -import paddle.v2 as paddle - - -def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False): - ### Network Architecture - word_vector_dim = 512 # dimension of word vector - decoder_size = 512 # dimension of hidden unit in GRU Decoder network - encoder_size = 512 # dimension of hidden unit in GRU Encoder network - - beam_size = 3 - max_length = 250 - - #### Encoder - src_word_id = paddle.layer.data( - name='source_language_word', - type=paddle.data_type.integer_value_sequence(source_dict_dim)) - src_embedding = paddle.layer.embedding( - input=src_word_id, - size=word_vector_dim, - param_attr=paddle.attr.ParamAttr(name='_source_language_embedding')) - src_forward = paddle.networks.simple_gru( - name='src_forward_gru', input=src_embedding, size=encoder_size) - src_backward = paddle.networks.simple_gru( - name='src_backward_gru', - input=src_embedding, - size=encoder_size, - reverse=True) - encoded_vector = paddle.layer.concat(input=[src_forward, src_backward]) - - #### Decoder - with paddle.layer.mixed(size=decoder_size) as encoded_proj: - encoded_proj += paddle.layer.full_matrix_projection( - input=encoded_vector) - - backward_first = paddle.layer.first_seq(input=src_backward) - - with paddle.layer.mixed( - name="decoder_boot_mixed", - size=decoder_size, - act=paddle.activation.Tanh()) as decoder_boot: - decoder_boot += paddle.layer.full_matrix_projection( - input=backward_first) - - def gru_decoder_with_attention(enc_vec, enc_proj, current_word): - - decoder_mem = paddle.layer.memory( - name='gru_decoder', size=decoder_size, boot_layer=decoder_boot) - - context = paddle.networks.simple_attention( - name="simple_attention", - encoded_sequence=enc_vec, - encoded_proj=enc_proj, - decoder_state=decoder_mem) - - with paddle.layer.mixed( - name="input_recurrent", - size=decoder_size * 3, - # enable error clipping - layer_attr=paddle.attr.ExtraAttr( - error_clipping_threshold=100.0)) as decoder_inputs: - decoder_inputs += paddle.layer.full_matrix_projection(input=context) - decoder_inputs += paddle.layer.full_matrix_projection( - input=current_word) - - gru_step = paddle.layer.gru_step( - name='gru_decoder', - input=decoder_inputs, - output_mem=decoder_mem, - # uncomment to enable local threshold for gradient clipping - # param_attr=paddle.attr.ParamAttr(gradient_clipping_threshold=9.9), - size=decoder_size) - - with paddle.layer.mixed( - name="gru_step_output", - size=target_dict_dim, - bias_attr=True, - act=paddle.activation.Softmax()) as out: - out += paddle.layer.full_matrix_projection(input=gru_step) - return out - - decoder_group_name = "decoder_group" - group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True) - group_input2 = paddle.layer.StaticInputV2(input=encoded_proj, is_seq=True) - group_inputs = [group_input1, group_input2] - - if not is_generating: - trg_embedding = paddle.layer.embedding( - input=paddle.layer.data( - name='target_language_word', - type=paddle.data_type.integer_value_sequence(target_dict_dim)), - size=word_vector_dim, - param_attr=paddle.attr.ParamAttr(name='_target_language_embedding')) - group_inputs.append(trg_embedding) - - # For decoder equipped with attention mechanism, in training, - # target embeding (the groudtruth) is the data input, - # while encoded source sequence is accessed to as an unbounded memory. - # Here, the StaticInput defines a read-only memory - # for the recurrent_group. - decoder = paddle.layer.recurrent_group( - name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs) - - lbl = paddle.layer.data( - name='target_language_next_word', - type=paddle.data_type.integer_value_sequence(target_dict_dim)) - cost = paddle.layer.classification_cost(input=decoder, label=lbl) - - return cost - else: - # In generation, the decoder predicts a next target word based on - # the encoded source sequence and the last generated target word. - - # The encoded source sequence (encoder's output) must be specified by - # StaticInput, which is a read-only memory. - # Embedding of the last generated word is automatically gotten by - # GeneratedInputs, which is initialized by a start mark, such as , - # and must be included in generation. - - trg_embedding = paddle.layer.GeneratedInputV2( - size=target_dict_dim, - embedding_name='_target_language_embedding', - embedding_size=word_vector_dim) - group_inputs.append(trg_embedding) - - beam_gen = paddle.layer.beam_search( - name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs, - bos_id=0, - eos_id=1, - beam_size=beam_size, - max_length=max_length) - - return beam_gen - - -def main(): - paddle.init( - use_gpu=False, - trainer_count=1, - # log gradient clipping info - log_clipping=True, - # log error clipping info - log_error_clipping=True) - is_generating = False - - # source and target dict dim. - dict_size = 30000 - source_dict_dim = target_dict_dim = dict_size - - # train the network - if not is_generating: - cost = seqToseq_net(source_dict_dim, target_dict_dim) - parameters = paddle.parameters.create(cost) - - # define optimize method and trainer - optimizer = paddle.optimizer.Adam( - learning_rate=5e-5, - # uncomment to enable global threshold for gradient clipping - # gradient_clipping_threshold=10.0, - regularization=paddle.optimizer.L2Regularization(rate=8e-4)) - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=optimizer) - # define data reader - wmt14_reader = paddle.batch( - paddle.reader.shuffle( - paddle.dataset.wmt14.train(dict_size), buf_size=8192), - batch_size=5) - - # define event_handler callback - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 10 == 0: - print "\nPass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, - event.metrics) - else: - sys.stdout.write('.') - sys.stdout.flush() - - # start to train - trainer.train( - reader=wmt14_reader, event_handler=event_handler, num_passes=2) - - # generate a english sequence to french - else: - # use the first 3 samples for generation - gen_creator = paddle.dataset.wmt14.gen(dict_size) - gen_data = [] - gen_num = 3 - for item in gen_creator(): - gen_data.append((item[0], )) - if len(gen_data) == gen_num: - break - - beam_gen = seqToseq_net(source_dict_dim, target_dict_dim, is_generating) - # get the pretrained model, whose bleu = 26.92 - parameters = paddle.dataset.wmt14.model() - # prob is the prediction probabilities, and id is the prediction word. - beam_result = paddle.infer( - output_layer=beam_gen, - parameters=parameters, - input=gen_data, - field=['prob', 'id']) - - # get the dictionary - src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size) - - # the delimited element of generated sequences is -1, - # the first element of each generated sequence is the sequence length - seq_list = [] - seq = [] - for w in beam_result[1]: - if w != -1: - seq.append(w) - else: - seq_list.append(' '.join([trg_dict.get(w) for w in seq[1:]])) - seq = [] - - prob = beam_result[0] - beam_size = 3 - for i in xrange(gen_num): - print "\n*******************************************************\n" - print "src:", ' '.join( - [src_dict.get(w) for w in gen_data[i][0]]), "\n" - for j in xrange(beam_size): - print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j] - - -if __name__ == '__main__': - main() diff --git a/demo/seqToseq/data/paraphrase_data.sh b/demo/seqToseq/data/paraphrase_data.sh deleted file mode 100755 index e6497c91286d44b5ef3b66c5f824e36a09728720..0000000000000000000000000000000000000000 --- a/demo/seqToseq/data/paraphrase_data.sh +++ /dev/null @@ -1,23 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x - -# download the in-house paraphrase dataset -wget http://paddlepaddle.bj.bcebos.com/model_zoo/embedding/paraphrase.tar.gz - -# untar the dataset -tar -zxvf paraphrase.tar.gz -rm paraphrase.tar.gz diff --git a/demo/seqToseq/data/paraphrase_model.sh b/demo/seqToseq/data/paraphrase_model.sh deleted file mode 100755 index d0e7f214a38c4dad0fdf7c10ba3b76eb0ab40f06..0000000000000000000000000000000000000000 --- a/demo/seqToseq/data/paraphrase_model.sh +++ /dev/null @@ -1,37 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x - -dim=32 -pretrained_dir='../../model_zoo/embedding/' -preModel=$pretrained_dir'model_'$dim'.emb' -preDict=$pretrained_dir'baidu.dict' - -usrDict_dir='pre-paraphrase/' -srcDict=$usrDict_dir'src.dict' -trgDict=$usrDict_dir'trg.dict' - -usrModel_dir='paraphrase_model/' -mkdir $usrModel_dir -srcModel=$usrModel_dir'_source_language_embedding' -trgModel=$usrModel_dir'_target_language_embedding' - -echo 'extract desired parameters based on user dictionary' -script=$pretrained_dir'extract_para.py' -python $script --preModel $preModel --preDict $preDict \ - --usrModel $srcModel --usrDict $srcDict -d $dim -python $script --preModel $preModel --preDict $preDict \ - --usrModel $trgModel --usrDict $trgDict -d $dim diff --git a/demo/seqToseq/data/wmt14_data.sh b/demo/seqToseq/data/wmt14_data.sh deleted file mode 100755 index 43f67168d2a876ba5401e0f8490a88adac9c5551..0000000000000000000000000000000000000000 --- a/demo/seqToseq/data/wmt14_data.sh +++ /dev/null @@ -1,53 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x -mkdir wmt14 -cd wmt14 - -# download the dataset -wget http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/bitexts.tgz -wget http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz - -# untar the dataset -tar -zxvf bitexts.tgz -tar -zxvf dev+test.tgz -gunzip bitexts.selected/* -mv bitexts.selected train -rm bitexts.tgz -rm dev+test.tgz - -# separate the dev and test dataset -mkdir test gen -mv dev/ntst1213.* test -mv dev/ntst14.* gen -rm -rf dev - -set +x -# rename the suffix, .fr->.src, .en->.trg -for dir in train test gen -do - filelist=`ls $dir` - cd $dir - for file in $filelist - do - if [ ${file##*.} = "fr" ]; then - mv $file ${file/%fr/src} - elif [ ${file##*.} = 'en' ]; then - mv $file ${file/%en/trg} - fi - done - cd .. -done diff --git a/demo/seqToseq/data/wmt14_model.sh b/demo/seqToseq/data/wmt14_model.sh deleted file mode 100755 index c4b55b90a3eb98f94e0eb3be028c6de1ef57326b..0000000000000000000000000000000000000000 --- a/demo/seqToseq/data/wmt14_model.sh +++ /dev/null @@ -1,23 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x - -# download the pretrained model -wget http://paddlepaddle.bj.bcebos.com/model_zoo/wmt14_model.tar.gz - -# untar the model -tar -zxvf wmt14_model.tar.gz -rm wmt14_model.tar.gz diff --git a/demo/seqToseq/dataprovider.py b/demo/seqToseq/dataprovider.py deleted file mode 100755 index c2b49804be582d7d0bc3ef6332741be03936eb24..0000000000000000000000000000000000000000 --- a/demo/seqToseq/dataprovider.py +++ /dev/null @@ -1,94 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * - -UNK_IDX = 2 -START = "" -END = "" - - -def hook(settings, src_dict_path, trg_dict_path, is_generating, file_list, - **kwargs): - # job_mode = 1: training mode - # job_mode = 0: generating mode - settings.job_mode = not is_generating - - def fun(dict_path): - out_dict = dict() - with open(dict_path, "r") as fin: - out_dict = { - line.strip(): line_count - for line_count, line in enumerate(fin) - } - return out_dict - - settings.src_dict = fun(src_dict_path) - settings.trg_dict = fun(trg_dict_path) - - settings.logger.info("src dict len : %d" % (len(settings.src_dict))) - - if settings.job_mode: - settings.slots = { - 'source_language_word': - integer_value_sequence(len(settings.src_dict)), - 'target_language_word': - integer_value_sequence(len(settings.trg_dict)), - 'target_language_next_word': - integer_value_sequence(len(settings.trg_dict)) - } - settings.logger.info("trg dict len : %d" % (len(settings.trg_dict))) - else: - settings.slots = { - 'source_language_word': - integer_value_sequence(len(settings.src_dict)), - 'sent_id': - integer_value_sequence(len(open(file_list[0], "r").readlines())) - } - - -def _get_ids(s, dictionary): - words = s.strip().split() - return [dictionary[START]] + \ - [dictionary.get(w, UNK_IDX) for w in words] + \ - [dictionary[END]] - - -@provider(init_hook=hook, pool_size=50000) -def process(settings, file_name): - with open(file_name, 'r') as f: - for line_count, line in enumerate(f): - line_split = line.strip().split('\t') - if settings.job_mode and len(line_split) != 2: - continue - src_seq = line_split[0] # one source sequence - src_ids = _get_ids(src_seq, settings.src_dict) - - if settings.job_mode: - trg_seq = line_split[1] # one target sequence - trg_words = trg_seq.split() - trg_ids = [settings.trg_dict.get(w, UNK_IDX) for w in trg_words] - - # remove sequence whose length > 80 in training mode - if len(src_ids) > 80 or len(trg_ids) > 80: - continue - trg_ids_next = trg_ids + [settings.trg_dict[END]] - trg_ids = [settings.trg_dict[START]] + trg_ids - yield { - 'source_language_word': src_ids, - 'target_language_word': trg_ids, - 'target_language_next_word': trg_ids_next - } - else: - yield {'source_language_word': src_ids, 'sent_id': [line_count]} diff --git a/demo/seqToseq/paraphrase/train.conf b/demo/seqToseq/paraphrase/train.conf deleted file mode 100644 index be79c5e771c0e864fd1776cedb3ef37c997b6df6..0000000000000000000000000000000000000000 --- a/demo/seqToseq/paraphrase/train.conf +++ /dev/null @@ -1,33 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -sys.path.append("..") - -from seqToseq_net import * - -is_generating = False -### Data Definiation -train_conf = seq_to_seq_data(data_dir = "./data/pre-paraphrase", - is_generating = is_generating) - -### Algorithm Configuration -settings( - learning_method = AdamOptimizer(), - batch_size = 50, - learning_rate = 5e-4) - -### Network Architecture -gru_encoder_decoder(train_conf, is_generating, word_vector_dim = 32) diff --git a/demo/seqToseq/paraphrase/train.sh b/demo/seqToseq/paraphrase/train.sh deleted file mode 100755 index 9bb6dbdb1d4c5e35bfb31855e0331f0250a69a20..0000000000000000000000000000000000000000 --- a/demo/seqToseq/paraphrase/train.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -cd .. - -paddle train \ - --config='paraphrase/train.conf' \ - --save_dir='paraphrase/model' \ - --init_model_path='data/paraphrase_model' \ - --load_missing_parameter_strategy=rand \ - --use_gpu=false \ - --num_passes=16 \ - --show_parameter_stats_period=100 \ - --trainer_count=4 \ - --log_period=10 \ - --dot_period=5 \ - 2>&1 | tee 'paraphrase/train.log' -paddle usage -l 'paraphrase/train.log' -e $? -n "seqToseq_paraphrase_train" >/dev/null 2>&1 diff --git a/demo/seqToseq/preprocess.py b/demo/seqToseq/preprocess.py deleted file mode 100755 index 03f371331a0755e5939e457f4bdfb1770b8dad88..0000000000000000000000000000000000000000 --- a/demo/seqToseq/preprocess.py +++ /dev/null @@ -1,219 +0,0 @@ -#!/bin/env python -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Example: - python preprocess.py -i INPUT [-d DICTSIZE] [-m] - -Options: - -h, --help show this help message and exit - -i INPUT input original dataset path - -d DICTSIZE specified word count of dictionary - -m --mergeDict merge source and target dictionary -""" -import os -import sys - -import string -from optparse import OptionParser -from paddle.utils.preprocess_util import save_list, DatasetCreater - - -class SeqToSeqDatasetCreater(DatasetCreater): - """ - A class to process data for sequence to sequence application. - """ - - def __init__(self, data_path, output_path): - """ - data_path: the path to store the train data, test data and gen data - output_path: the path to store the processed dataset - """ - DatasetCreater.__init__(self, data_path) - self.gen_dir_name = 'gen' - self.gen_list_name = 'gen.list' - self.output_path = output_path - - def concat_file(self, file_path, file1, file2, output_path, output): - """ - Concat file1 and file2 to be one output file - The i-th line of output = i-th line of file1 + '\t' + i-th line of file2 - file_path: the path to store file1 and file2 - output_path: the path to store output file - """ - file1 = os.path.join(file_path, file1) - file2 = os.path.join(file_path, file2) - output = os.path.join(output_path, output) - if not os.path.exists(output): - os.system('paste ' + file1 + ' ' + file2 + ' > ' + output) - - def cat_file(self, dir_path, suffix, output_path, output): - """ - Cat all the files in dir_path with suffix to be one output file - dir_path: the base directory to store input file - suffix: suffix of file name - output_path: the path to store output file - """ - cmd = 'cat ' - file_list = os.listdir(dir_path) - file_list.sort() - for file in file_list: - if file.endswith(suffix): - cmd += os.path.join(dir_path, file) + ' ' - output = os.path.join(output_path, output) - if not os.path.exists(output): - os.system(cmd + '> ' + output) - - def build_dict(self, file_path, dict_path, dict_size=-1): - """ - Create the dictionary for the file, Note that - 1. Valid characters include all printable characters - 2. There is distinction between uppercase and lowercase letters - 3. There is 3 special token: - : the start of a sequence - : the end of a sequence - : a word not included in dictionary - file_path: the path to store file - dict_path: the path to store dictionary - dict_size: word count of dictionary - if is -1, dictionary will contains all the words in file - """ - if not os.path.exists(dict_path): - dictory = dict() - with open(file_path, "r") as fdata: - for line in fdata: - line = line.split('\t') - for line_split in line: - words = line_split.strip().split() - for word in words: - if word not in dictory: - dictory[word] = 1 - else: - dictory[word] += 1 - output = open(dict_path, "w+") - output.write('\n\n\n') - count = 3 - for key, value in sorted( - dictory.items(), key=lambda d: d[1], reverse=True): - output.write(key + "\n") - count += 1 - if count == dict_size: - break - self.dict_size = count - - def create_dataset(self, - dict_size=-1, - mergeDict=False, - suffixes=['.src', '.trg']): - """ - Create seqToseq dataset - """ - # dataset_list and dir_list has one-to-one relationship - train_dataset = os.path.join(self.data_path, self.train_dir_name) - test_dataset = os.path.join(self.data_path, self.test_dir_name) - gen_dataset = os.path.join(self.data_path, self.gen_dir_name) - dataset_list = [train_dataset, test_dataset, gen_dataset] - - train_dir = os.path.join(self.output_path, self.train_dir_name) - test_dir = os.path.join(self.output_path, self.test_dir_name) - gen_dir = os.path.join(self.output_path, self.gen_dir_name) - dir_list = [train_dir, test_dir, gen_dir] - - # create directory - for dir in dir_list: - if not os.path.exists(dir): - os.mkdir(dir) - - # checkout dataset should be parallel corpora - suffix_len = len(suffixes[0]) - for dataset in dataset_list: - file_list = os.listdir(dataset) - if len(file_list) % 2 == 1: - raise RuntimeError("dataset should be parallel corpora") - file_list.sort() - for i in range(0, len(file_list), 2): - if file_list[i][:-suffix_len] != file_list[i + 1][:-suffix_len]: - raise RuntimeError( - "source and target file name should be equal") - - # cat all the files with the same suffix in dataset - for suffix in suffixes: - for dataset in dataset_list: - outname = os.path.basename(dataset) + suffix - self.cat_file(dataset, suffix, dataset, outname) - - # concat parallel corpora and create file.list - print 'concat parallel corpora for dataset' - id = 0 - list = ['train.list', 'test.list', 'gen.list'] - for dataset in dataset_list: - outname = os.path.basename(dataset) - self.concat_file(dataset, outname + suffixes[0], - outname + suffixes[1], dir_list[id], outname) - save_list([os.path.join(dir_list[id], outname)], - os.path.join(self.output_path, list[id])) - id += 1 - - # build dictionary for train data - dict = ['src.dict', 'trg.dict'] - dict_path = [ - os.path.join(self.output_path, dict[0]), - os.path.join(self.output_path, dict[1]) - ] - if mergeDict: - outname = os.path.join(train_dir, train_dataset.split('/')[-1]) - print 'build src dictionary for train data' - self.build_dict(outname, dict_path[0], dict_size) - print 'build trg dictionary for train data' - os.system('cp ' + dict_path[0] + ' ' + dict_path[1]) - else: - outname = os.path.join(train_dataset, self.train_dir_name) - for id in range(0, 2): - suffix = suffixes[id] - print 'build ' + suffix[1:] + ' dictionary for train data' - self.build_dict(outname + suffix, dict_path[id], dict_size) - print 'dictionary size is', self.dict_size - - -def main(): - usage = "usage: \n" \ - "python %prog -i INPUT [-d DICTSIZE] [-m]" - parser = OptionParser(usage) - parser.add_option( - "-i", action="store", dest="input", help="input original dataset path") - parser.add_option( - "-d", - action="store", - dest="dictsize", - help="specified word count of dictionary") - parser.add_option( - "-m", - "--mergeDict", - action="store_true", - dest="mergeDict", - help="merge source and target dictionary") - (options, args) = parser.parse_args() - if options.input[-1] == os.path.sep: - options.input = options.input[:-1] - outname = os.path.basename(options.input) - output_path = os.path.join(os.path.dirname(options.input), 'pre-' + outname) - dictsize = int(options.dictsize) if options.dictsize else -1 - if not os.path.exists(output_path): - os.mkdir(output_path) - data_creator = SeqToSeqDatasetCreater(options.input, output_path) - data_creator.create_dataset(dictsize, options.mergeDict) - - -if __name__ == "__main__": - main() diff --git a/demo/seqToseq/seqToseq_net.py b/demo/seqToseq/seqToseq_net.py deleted file mode 100644 index 3d1f86ec3b7eda4fceaf3a1e406e3d0a1a4a2f60..0000000000000000000000000000000000000000 --- a/demo/seqToseq/seqToseq_net.py +++ /dev/null @@ -1,204 +0,0 @@ -# edit-mode: -*- python -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import os -from paddle.trainer_config_helpers import * - - -def seq_to_seq_data(data_dir, - is_generating, - dict_size=30000, - train_list='train.list', - test_list='test.list', - gen_list='gen.list', - gen_result='gen_result'): - """ - Predefined seqToseq train data provider for application - is_generating: whether this config is used for generating - dict_size: word count of dictionary - train_list: a text file containing a list of training data - test_list: a text file containing a list of testing data - gen_list: a text file containing a list of generating data - gen_result: a text file containing generating result - """ - src_lang_dict = os.path.join(data_dir, 'src.dict') - trg_lang_dict = os.path.join(data_dir, 'trg.dict') - - if is_generating: - train_list = None - test_list = os.path.join(data_dir, gen_list) - else: - train_list = os.path.join(data_dir, train_list) - test_list = os.path.join(data_dir, test_list) - - define_py_data_sources2( - train_list, - test_list, - module="dataprovider", - obj="process", - args={ - "src_dict_path": src_lang_dict, - "trg_dict_path": trg_lang_dict, - "is_generating": is_generating - }) - - return { - "src_dict_path": src_lang_dict, - "trg_dict_path": trg_lang_dict, - "gen_result": gen_result - } - - -def gru_encoder_decoder(data_conf, - is_generating, - word_vector_dim=512, - encoder_size=512, - decoder_size=512, - beam_size=3, - max_length=250, - error_clipping=50): - """ - A wrapper for an attention version of GRU Encoder-Decoder network - is_generating: whether this config is used for generating - encoder_size: dimension of hidden unit in GRU Encoder network - decoder_size: dimension of hidden unit in GRU Decoder network - word_vector_dim: dimension of word vector - beam_size: expand width in beam search - max_length: a stop condition of sequence generation - """ - for k, v in data_conf.iteritems(): - globals()[k] = v - source_dict_dim = len(open(src_dict_path, "r").readlines()) - target_dict_dim = len(open(trg_dict_path, "r").readlines()) - gen_trans_file = gen_result - - src_word_id = data_layer(name='source_language_word', size=source_dict_dim) - src_embedding = embedding_layer( - input=src_word_id, - size=word_vector_dim, - param_attr=ParamAttr(name='_source_language_embedding')) - src_forward = simple_gru( - input=src_embedding, - size=encoder_size, - naive=True, - gru_layer_attr=ExtraLayerAttribute( - error_clipping_threshold=error_clipping)) - src_backward = simple_gru( - input=src_embedding, - size=encoder_size, - reverse=True, - naive=True, - gru_layer_attr=ExtraLayerAttribute( - error_clipping_threshold=error_clipping)) - encoded_vector = concat_layer(input=[src_forward, src_backward]) - - with mixed_layer(size=decoder_size) as encoded_proj: - encoded_proj += full_matrix_projection(input=encoded_vector) - - backward_first = first_seq(input=src_backward) - with mixed_layer( - size=decoder_size, - act=TanhActivation(), ) as decoder_boot: - decoder_boot += full_matrix_projection(input=backward_first) - - def gru_decoder_with_attention(enc_vec, enc_proj, current_word): - decoder_mem = memory( - name='gru_decoder', size=decoder_size, boot_layer=decoder_boot) - - context = simple_attention( - encoded_sequence=enc_vec, - encoded_proj=enc_proj, - decoder_state=decoder_mem, ) - - with mixed_layer(size=decoder_size * 3) as decoder_inputs: - decoder_inputs += full_matrix_projection(input=context) - decoder_inputs += full_matrix_projection(input=current_word) - - gru_step = gru_step_naive_layer( - name='gru_decoder', - input=decoder_inputs, - output_mem=decoder_mem, - size=decoder_size, - layer_attr=ExtraLayerAttribute( - error_clipping_threshold=error_clipping)) - - with mixed_layer( - size=target_dict_dim, bias_attr=True, - act=SoftmaxActivation()) as out: - out += full_matrix_projection(input=gru_step) - return out - - decoder_group_name = "decoder_group" - group_inputs = [ - StaticInput( - input=encoded_vector, is_seq=True), StaticInput( - input=encoded_proj, is_seq=True) - ] - - if not is_generating: - trg_embedding = embedding_layer( - input=data_layer( - name='target_language_word', size=target_dict_dim), - size=word_vector_dim, - param_attr=ParamAttr(name='_target_language_embedding')) - group_inputs.append(trg_embedding) - - # For decoder equipped with attention mechanism, in training, - # target embeding (the groudtruth) is the data input, - # while encoded source sequence is accessed to as an unbounded memory. - # Here, the StaticInput defines a read-only memory - # for the recurrent_group. - decoder = recurrent_group( - name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs) - - lbl = data_layer(name='target_language_next_word', size=target_dict_dim) - cost = classification_cost(input=decoder, label=lbl) - outputs(cost) - else: - # In generation, the decoder predicts a next target word based on - # the encoded source sequence and the last generated target word. - - # The encoded source sequence (encoder's output) must be specified by - # StaticInput, which is a read-only memory. - # Embedding of the last generated word is automatically gotten by - # GeneratedInputs, which is initialized by a start mark, such as , - # and must be included in generation. - - trg_embedding = GeneratedInput( - size=target_dict_dim, - embedding_name='_target_language_embedding', - embedding_size=word_vector_dim) - group_inputs.append(trg_embedding) - - beam_gen = beam_search( - name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs, - bos_id=0, - eos_id=1, - beam_size=beam_size, - max_length=max_length) - - seqtext_printer_evaluator( - input=beam_gen, - id_input=data_layer( - name="sent_id", size=1), - dict_file=trg_dict_path, - result_file=gen_trans_file) - outputs(beam_gen) diff --git a/demo/seqToseq/translation/eval_bleu.sh b/demo/seqToseq/translation/eval_bleu.sh deleted file mode 100755 index 54c2ed237e93adb3456dbe62f75626d36c2d90bc..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/eval_bleu.sh +++ /dev/null @@ -1,42 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -gen_file=$1 -beam_size=$2 - -# find top1 generating result -top1=$(printf '%s_top1.txt' `basename $gen_file .txt`) -if [ $beam_size -eq 1 ]; then - awk -F "\t" '{sub(" ","",$2);sub(" ","",$2);print $2}' $gen_file >$top1 -else - awk 'BEGIN{ - FS="\t"; - OFS="\t"; - read_pos = 2} { - if (NR == read_pos){ - sub(" ","",$3); - sub(" ","",$3); - print $3; - read_pos += (2 + res_num); - }}' res_num=$beam_size $gen_file >$top1 -fi - -# evalute bleu value -bleu_script=multi-bleu.perl -standard_res=../data/wmt14/gen/ntst14.trg -bleu_res=`perl $bleu_script $standard_res <$top1` - -echo $bleu_res -rm $top1 diff --git a/demo/seqToseq/translation/gen.conf b/demo/seqToseq/translation/gen.conf deleted file mode 100644 index e9bea4e4559ff31ad83c4474e91de7e7acc77e9f..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/gen.conf +++ /dev/null @@ -1,36 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -sys.path.append("..") - -from seqToseq_net import * - -# whether this config is used for generating -is_generating = True - -### Data Definiation -gen_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14", - is_generating = is_generating, - gen_result = "./translation/gen_result") - -### Algorithm Configuration -settings( - learning_method = AdamOptimizer(), - batch_size = 1, - learning_rate = 0) - -### Network Architecture -gru_encoder_decoder(gen_conf, is_generating) diff --git a/demo/seqToseq/translation/gen.sh b/demo/seqToseq/translation/gen.sh deleted file mode 100755 index 64b78f5e9654e7b206740f92e224e0164108c9f1..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/gen.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -cd .. - -paddle train \ - --job=test \ - --config='translation/gen.conf' \ - --save_dir='data/wmt14_model' \ - --use_gpu=false \ - --num_passes=13 \ - --test_pass=12 \ - --trainer_count=1 \ - 2>&1 | tee 'translation/gen.log' -paddle usage -l 'translation/gen.log' -e $? -n "seqToseq_translation_gen" >/dev/null 2>&1 diff --git a/demo/seqToseq/translation/moses_bleu.sh b/demo/seqToseq/translation/moses_bleu.sh deleted file mode 100755 index 2f230d7f4c736da003966fbdb277f6b8b1ec952c..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/moses_bleu.sh +++ /dev/null @@ -1,18 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x -echo "Downloading multi-bleu.perl" -wget https://raw.githubusercontent.com/moses-smt/mosesdecoder/master/scripts/generic/multi-bleu.perl --no-check-certificate diff --git a/demo/seqToseq/translation/train.conf b/demo/seqToseq/translation/train.conf deleted file mode 100644 index 72b7ccdbb95dbda8f06674079db9a3257bb31622..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/train.conf +++ /dev/null @@ -1,36 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -sys.path.append("..") - -from seqToseq_net import * - -# whether this config is used for generating -is_generating = False - -### Data Definiation -data_dir = "./data/pre-wmt14" -train_conf = seq_to_seq_data(data_dir = data_dir, - is_generating = is_generating) - -### Algorithm Configuration -settings( - learning_method = AdamOptimizer(), - batch_size = 50, - learning_rate = 5e-4) - -### Network Architecture -gru_encoder_decoder(train_conf, is_generating) diff --git a/demo/seqToseq/translation/train.sh b/demo/seqToseq/translation/train.sh deleted file mode 100755 index b0ec9854b118cbb9ed39d6bed0cdd845403926a4..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/train.sh +++ /dev/null @@ -1,28 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -cd .. - -paddle train \ ---config='translation/train.conf' \ ---save_dir='translation/model' \ ---use_gpu=false \ ---num_passes=16 \ ---show_parameter_stats_period=100 \ ---trainer_count=4 \ ---log_period=10 \ ---dot_period=5 \ -2>&1 | tee 'translation/train.log' -paddle usage -l 'translation/train.log' -e $? -n "seqToseq_translation_train" >/dev/null 2>&1 diff --git a/demo/vae/dataloader.pyc b/demo/vae/dataloader.pyc deleted file mode 100644 index 1be8890dafd76e6cb2028bcbfdf2022c18a229ae..0000000000000000000000000000000000000000 Binary files a/demo/vae/dataloader.pyc and /dev/null differ diff --git a/demo/word2vec/api_train_v2.py b/demo/word2vec/api_train_v2.py deleted file mode 100644 index c0940f0e56eafa22f8aeb7052c0ddc79d8862917..0000000000000000000000000000000000000000 --- a/demo/word2vec/api_train_v2.py +++ /dev/null @@ -1,100 +0,0 @@ -import gzip -import math - -import paddle.v2 as paddle - -embsize = 32 -hiddensize = 256 -N = 5 - - -def wordemb(inlayer): - wordemb = paddle.layer.embedding( - input=inlayer, - size=embsize, - param_attr=paddle.attr.Param( - name="_proj", - initial_std=0.001, - learning_rate=1, - l2_rate=0, - sparse_update=True)) - return wordemb - - -def main(): - # for local training - cluster_train = False - - if not cluster_train: - paddle.init(use_gpu=False, trainer_count=1) - else: - paddle.init( - use_gpu=False, - trainer_count=2, - port=7164, - ports_num=1, - ports_num_for_sparse=1, - num_gradient_servers=1) - word_dict = paddle.dataset.imikolov.build_dict() - dict_size = len(word_dict) - firstword = paddle.layer.data( - name="firstw", type=paddle.data_type.integer_value(dict_size)) - secondword = paddle.layer.data( - name="secondw", type=paddle.data_type.integer_value(dict_size)) - thirdword = paddle.layer.data( - name="thirdw", type=paddle.data_type.integer_value(dict_size)) - fourthword = paddle.layer.data( - name="fourthw", type=paddle.data_type.integer_value(dict_size)) - nextword = paddle.layer.data( - name="fifthw", type=paddle.data_type.integer_value(dict_size)) - - Efirst = wordemb(firstword) - Esecond = wordemb(secondword) - Ethird = wordemb(thirdword) - Efourth = wordemb(fourthword) - - contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth]) - hidden1 = paddle.layer.fc(input=contextemb, - size=hiddensize, - act=paddle.activation.Sigmoid(), - layer_attr=paddle.attr.Extra(drop_rate=0.5), - bias_attr=paddle.attr.Param(learning_rate=2), - param_attr=paddle.attr.Param( - initial_std=1. / math.sqrt(embsize * 8), - learning_rate=1)) - predictword = paddle.layer.fc(input=hidden1, - size=dict_size, - bias_attr=paddle.attr.Param(learning_rate=2), - act=paddle.activation.Softmax()) - - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - with gzip.open("batch-" + str(event.batch_id) + ".tar.gz", - 'w') as f: - trainer.save_parameter_to_tar(f) - result = trainer.test( - paddle.batch( - paddle.dataset.imikolov.test(word_dict, N), 32)) - print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics, - result.metrics) - - cost = paddle.layer.classification_cost(input=predictword, label=nextword) - - parameters = paddle.parameters.create(cost) - adagrad = paddle.optimizer.AdaGrad( - learning_rate=3e-3, - regularization=paddle.optimizer.L2Regularization(8e-4)) - trainer = paddle.trainer.SGD(cost, - parameters, - adagrad, - is_local=not cluster_train) - trainer.train( - paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32), - num_passes=30, - event_handler=event_handler) - - -if __name__ == '__main__': - main() diff --git a/v1_api_demo/README.md b/v1_api_demo/README.md new file mode 100644 index 0000000000000000000000000000000000000000..9442f76941287a710220f07cf7dbb29ebcadabdc --- /dev/null +++ b/v1_api_demo/README.md @@ -0,0 +1,5 @@ +The examples in v1_api_demo are using v1_api now, and will be upgraded into v2_api later. +Thus, v1_api_demo is a temporary directory. We decide not to maintain it and will delete it in future. + +Please go to [PaddlePaddle/book](https://github.com/PaddlePaddle/book) and +[PaddlePaddle/models](https://github.com/PaddlePaddle/models) to learn PaddlePaddle. diff --git a/demo/gan/.gitignore b/v1_api_demo/gan/.gitignore similarity index 100% rename from demo/gan/.gitignore rename to v1_api_demo/gan/.gitignore diff --git a/demo/gan/README.md b/v1_api_demo/gan/README.md similarity index 100% rename from demo/gan/README.md rename to v1_api_demo/gan/README.md diff --git a/demo/gan/data/download_cifar.sh b/v1_api_demo/gan/data/download_cifar.sh similarity index 100% rename from demo/gan/data/download_cifar.sh rename to v1_api_demo/gan/data/download_cifar.sh diff --git a/demo/gan/data/get_mnist_data.sh b/v1_api_demo/gan/data/get_mnist_data.sh similarity index 100% rename from demo/gan/data/get_mnist_data.sh rename to v1_api_demo/gan/data/get_mnist_data.sh diff --git a/demo/gan/gan_conf.py b/v1_api_demo/gan/gan_conf.py similarity index 100% rename from demo/gan/gan_conf.py rename to v1_api_demo/gan/gan_conf.py diff --git a/demo/gan/gan_conf_image.py b/v1_api_demo/gan/gan_conf_image.py similarity index 100% rename from demo/gan/gan_conf_image.py rename to v1_api_demo/gan/gan_conf_image.py diff --git a/demo/gan/gan_trainer.py b/v1_api_demo/gan/gan_trainer.py similarity index 100% rename from demo/gan/gan_trainer.py rename to v1_api_demo/gan/gan_trainer.py diff --git a/demo/mnist/.gitignore b/v1_api_demo/mnist/.gitignore similarity index 100% rename from demo/mnist/.gitignore rename to v1_api_demo/mnist/.gitignore diff --git a/demo/mnist/api_train.py b/v1_api_demo/mnist/api_train.py similarity index 100% rename from demo/mnist/api_train.py rename to v1_api_demo/mnist/api_train.py diff --git a/demo/mnist/data/generate_list.py b/v1_api_demo/mnist/data/generate_list.py similarity index 100% rename from demo/mnist/data/generate_list.py rename to v1_api_demo/mnist/data/generate_list.py diff --git a/demo/mnist/data/get_mnist_data.sh b/v1_api_demo/mnist/data/get_mnist_data.sh similarity index 100% rename from demo/mnist/data/get_mnist_data.sh rename to v1_api_demo/mnist/data/get_mnist_data.sh diff --git a/demo/mnist/light_mnist.py b/v1_api_demo/mnist/light_mnist.py similarity index 100% rename from demo/mnist/light_mnist.py rename to v1_api_demo/mnist/light_mnist.py diff --git a/demo/mnist/mnist_provider.py b/v1_api_demo/mnist/mnist_provider.py similarity index 100% rename from demo/mnist/mnist_provider.py rename to v1_api_demo/mnist/mnist_provider.py diff --git a/demo/mnist/mnist_util.py b/v1_api_demo/mnist/mnist_util.py similarity index 100% rename from demo/mnist/mnist_util.py rename to v1_api_demo/mnist/mnist_util.py diff --git a/demo/mnist/train.sh b/v1_api_demo/mnist/train.sh similarity index 100% rename from demo/mnist/train.sh rename to v1_api_demo/mnist/train.sh diff --git a/demo/mnist/vgg_16_mnist.py b/v1_api_demo/mnist/vgg_16_mnist.py similarity index 100% rename from demo/mnist/vgg_16_mnist.py rename to v1_api_demo/mnist/vgg_16_mnist.py diff --git a/demo/model_zoo/embedding/.gitignore b/v1_api_demo/model_zoo/embedding/.gitignore similarity index 100% rename from demo/model_zoo/embedding/.gitignore rename to v1_api_demo/model_zoo/embedding/.gitignore diff --git a/demo/model_zoo/embedding/extract_para.py b/v1_api_demo/model_zoo/embedding/extract_para.py similarity index 100% rename from demo/model_zoo/embedding/extract_para.py rename to v1_api_demo/model_zoo/embedding/extract_para.py diff --git a/demo/model_zoo/embedding/paraconvert.py b/v1_api_demo/model_zoo/embedding/paraconvert.py similarity index 100% rename from demo/model_zoo/embedding/paraconvert.py rename to v1_api_demo/model_zoo/embedding/paraconvert.py diff --git a/demo/model_zoo/embedding/pre_DictAndModel.sh b/v1_api_demo/model_zoo/embedding/pre_DictAndModel.sh similarity index 100% rename from demo/model_zoo/embedding/pre_DictAndModel.sh rename to v1_api_demo/model_zoo/embedding/pre_DictAndModel.sh diff --git a/demo/model_zoo/resnet/.gitignore b/v1_api_demo/model_zoo/resnet/.gitignore similarity index 100% rename from demo/model_zoo/resnet/.gitignore rename to v1_api_demo/model_zoo/resnet/.gitignore diff --git a/demo/model_zoo/resnet/classify.py b/v1_api_demo/model_zoo/resnet/classify.py similarity index 100% rename from demo/model_zoo/resnet/classify.py rename to v1_api_demo/model_zoo/resnet/classify.py diff --git a/demo/model_zoo/resnet/example/.gitignore b/v1_api_demo/model_zoo/resnet/example/.gitignore similarity index 100% rename from demo/model_zoo/resnet/example/.gitignore rename to v1_api_demo/model_zoo/resnet/example/.gitignore diff --git a/demo/model_zoo/resnet/example/__init__.py b/v1_api_demo/model_zoo/resnet/example/__init__.py similarity index 100% rename from demo/model_zoo/resnet/example/__init__.py rename to v1_api_demo/model_zoo/resnet/example/__init__.py diff --git a/demo/model_zoo/resnet/example/cat.jpg b/v1_api_demo/model_zoo/resnet/example/cat.jpg similarity index 100% rename from demo/model_zoo/resnet/example/cat.jpg rename to v1_api_demo/model_zoo/resnet/example/cat.jpg diff --git a/demo/model_zoo/resnet/example/dog.jpg b/v1_api_demo/model_zoo/resnet/example/dog.jpg similarity index 100% rename from demo/model_zoo/resnet/example/dog.jpg rename to v1_api_demo/model_zoo/resnet/example/dog.jpg diff --git a/demo/model_zoo/resnet/example/image_list_provider.py b/v1_api_demo/model_zoo/resnet/example/image_list_provider.py similarity index 100% rename from demo/model_zoo/resnet/example/image_list_provider.py rename to v1_api_demo/model_zoo/resnet/example/image_list_provider.py diff --git a/demo/model_zoo/resnet/example/test.list b/v1_api_demo/model_zoo/resnet/example/test.list similarity index 100% rename from demo/model_zoo/resnet/example/test.list rename to v1_api_demo/model_zoo/resnet/example/test.list diff --git a/demo/model_zoo/resnet/extract_fea_c++.sh b/v1_api_demo/model_zoo/resnet/extract_fea_c++.sh similarity index 100% rename from demo/model_zoo/resnet/extract_fea_c++.sh rename to v1_api_demo/model_zoo/resnet/extract_fea_c++.sh diff --git a/demo/model_zoo/resnet/extract_fea_py.sh b/v1_api_demo/model_zoo/resnet/extract_fea_py.sh similarity index 100% rename from demo/model_zoo/resnet/extract_fea_py.sh rename to v1_api_demo/model_zoo/resnet/extract_fea_py.sh diff --git a/demo/model_zoo/resnet/get_model.sh b/v1_api_demo/model_zoo/resnet/get_model.sh similarity index 100% rename from demo/model_zoo/resnet/get_model.sh rename to v1_api_demo/model_zoo/resnet/get_model.sh diff --git a/demo/model_zoo/resnet/load_feature.py b/v1_api_demo/model_zoo/resnet/load_feature.py similarity index 100% rename from demo/model_zoo/resnet/load_feature.py rename to v1_api_demo/model_zoo/resnet/load_feature.py diff --git a/demo/model_zoo/resnet/net_diagram.sh b/v1_api_demo/model_zoo/resnet/net_diagram.sh similarity index 100% rename from demo/model_zoo/resnet/net_diagram.sh rename to v1_api_demo/model_zoo/resnet/net_diagram.sh diff --git a/demo/model_zoo/resnet/predict.sh b/v1_api_demo/model_zoo/resnet/predict.sh similarity index 100% rename from demo/model_zoo/resnet/predict.sh rename to v1_api_demo/model_zoo/resnet/predict.sh diff --git a/demo/model_zoo/resnet/resnet.py b/v1_api_demo/model_zoo/resnet/resnet.py similarity index 100% rename from demo/model_zoo/resnet/resnet.py rename to v1_api_demo/model_zoo/resnet/resnet.py diff --git a/demo/quick_start/.gitignore b/v1_api_demo/quick_start/.gitignore similarity index 100% rename from demo/quick_start/.gitignore rename to v1_api_demo/quick_start/.gitignore diff --git a/demo/quick_start/api_predict.py b/v1_api_demo/quick_start/api_predict.py similarity index 100% rename from demo/quick_start/api_predict.py rename to v1_api_demo/quick_start/api_predict.py diff --git a/demo/quick_start/api_predict.sh b/v1_api_demo/quick_start/api_predict.sh similarity index 100% rename from demo/quick_start/api_predict.sh rename to v1_api_demo/quick_start/api_predict.sh diff --git a/demo/quick_start/api_train.py b/v1_api_demo/quick_start/api_train.py similarity index 100% rename from demo/quick_start/api_train.py rename to v1_api_demo/quick_start/api_train.py diff --git a/demo/quick_start/api_train.sh b/v1_api_demo/quick_start/api_train.sh similarity index 100% rename from demo/quick_start/api_train.sh rename to v1_api_demo/quick_start/api_train.sh diff --git a/demo/quick_start/cluster/cluster_train.sh b/v1_api_demo/quick_start/cluster/cluster_train.sh similarity index 100% rename from demo/quick_start/cluster/cluster_train.sh rename to v1_api_demo/quick_start/cluster/cluster_train.sh diff --git a/demo/quick_start/cluster/env.sh b/v1_api_demo/quick_start/cluster/env.sh similarity index 100% rename from demo/quick_start/cluster/env.sh rename to v1_api_demo/quick_start/cluster/env.sh diff --git a/demo/quick_start/cluster/pserver.sh b/v1_api_demo/quick_start/cluster/pserver.sh similarity index 100% rename from demo/quick_start/cluster/pserver.sh rename to v1_api_demo/quick_start/cluster/pserver.sh diff --git a/demo/quick_start/data/README.md b/v1_api_demo/quick_start/data/README.md similarity index 100% rename from demo/quick_start/data/README.md rename to v1_api_demo/quick_start/data/README.md diff --git a/demo/quick_start/data/get_data.sh b/v1_api_demo/quick_start/data/get_data.sh similarity index 100% rename from demo/quick_start/data/get_data.sh rename to v1_api_demo/quick_start/data/get_data.sh diff --git a/demo/quick_start/data/proc_from_raw_data/get_data.sh b/v1_api_demo/quick_start/data/proc_from_raw_data/get_data.sh similarity index 100% rename from demo/quick_start/data/proc_from_raw_data/get_data.sh rename to v1_api_demo/quick_start/data/proc_from_raw_data/get_data.sh diff --git a/demo/quick_start/data/proc_from_raw_data/preprocess.py b/v1_api_demo/quick_start/data/proc_from_raw_data/preprocess.py similarity index 100% rename from demo/quick_start/data/proc_from_raw_data/preprocess.py rename to v1_api_demo/quick_start/data/proc_from_raw_data/preprocess.py diff --git a/demo/quick_start/dataprovider_bow.py b/v1_api_demo/quick_start/dataprovider_bow.py similarity index 100% rename from demo/quick_start/dataprovider_bow.py rename to v1_api_demo/quick_start/dataprovider_bow.py diff --git a/demo/quick_start/dataprovider_emb.py b/v1_api_demo/quick_start/dataprovider_emb.py similarity index 100% rename from demo/quick_start/dataprovider_emb.py rename to v1_api_demo/quick_start/dataprovider_emb.py diff --git a/demo/quick_start/predict.sh b/v1_api_demo/quick_start/predict.sh similarity index 100% rename from demo/quick_start/predict.sh rename to v1_api_demo/quick_start/predict.sh diff --git a/demo/quick_start/train.sh b/v1_api_demo/quick_start/train.sh similarity index 100% rename from demo/quick_start/train.sh rename to v1_api_demo/quick_start/train.sh diff --git a/demo/quick_start/trainer_config.bidi-lstm.py b/v1_api_demo/quick_start/trainer_config.bidi-lstm.py similarity index 100% rename from demo/quick_start/trainer_config.bidi-lstm.py rename to v1_api_demo/quick_start/trainer_config.bidi-lstm.py diff --git a/demo/quick_start/trainer_config.cnn.py b/v1_api_demo/quick_start/trainer_config.cnn.py similarity index 100% rename from demo/quick_start/trainer_config.cnn.py rename to v1_api_demo/quick_start/trainer_config.cnn.py diff --git a/demo/quick_start/trainer_config.db-lstm.py b/v1_api_demo/quick_start/trainer_config.db-lstm.py similarity index 100% rename from demo/quick_start/trainer_config.db-lstm.py rename to v1_api_demo/quick_start/trainer_config.db-lstm.py diff --git a/demo/quick_start/trainer_config.emb.py b/v1_api_demo/quick_start/trainer_config.emb.py similarity index 100% rename from demo/quick_start/trainer_config.emb.py rename to v1_api_demo/quick_start/trainer_config.emb.py diff --git a/demo/quick_start/trainer_config.lr.py b/v1_api_demo/quick_start/trainer_config.lr.py similarity index 100% rename from demo/quick_start/trainer_config.lr.py rename to v1_api_demo/quick_start/trainer_config.lr.py diff --git a/demo/quick_start/trainer_config.lstm.py b/v1_api_demo/quick_start/trainer_config.lstm.py similarity index 100% rename from demo/quick_start/trainer_config.lstm.py rename to v1_api_demo/quick_start/trainer_config.lstm.py diff --git a/demo/quick_start/trainer_config.resnet-lstm.py b/v1_api_demo/quick_start/trainer_config.resnet-lstm.py similarity index 100% rename from demo/quick_start/trainer_config.resnet-lstm.py rename to v1_api_demo/quick_start/trainer_config.resnet-lstm.py diff --git a/demo/sequence_tagging/data/get_data.sh b/v1_api_demo/sequence_tagging/data/get_data.sh similarity index 100% rename from demo/sequence_tagging/data/get_data.sh rename to v1_api_demo/sequence_tagging/data/get_data.sh diff --git a/demo/sequence_tagging/data/test.list b/v1_api_demo/sequence_tagging/data/test.list similarity index 100% rename from demo/sequence_tagging/data/test.list rename to v1_api_demo/sequence_tagging/data/test.list diff --git a/demo/sequence_tagging/data/train.list b/v1_api_demo/sequence_tagging/data/train.list similarity index 100% rename from demo/sequence_tagging/data/train.list rename to v1_api_demo/sequence_tagging/data/train.list diff --git a/demo/sequence_tagging/dataprovider.py b/v1_api_demo/sequence_tagging/dataprovider.py similarity index 100% rename from demo/sequence_tagging/dataprovider.py rename to v1_api_demo/sequence_tagging/dataprovider.py diff --git a/demo/sequence_tagging/linear_crf.py b/v1_api_demo/sequence_tagging/linear_crf.py similarity index 100% rename from demo/sequence_tagging/linear_crf.py rename to v1_api_demo/sequence_tagging/linear_crf.py diff --git a/demo/sequence_tagging/readme.md b/v1_api_demo/sequence_tagging/readme.md similarity index 100% rename from demo/sequence_tagging/readme.md rename to v1_api_demo/sequence_tagging/readme.md diff --git a/demo/sequence_tagging/rnn_crf.py b/v1_api_demo/sequence_tagging/rnn_crf.py similarity index 100% rename from demo/sequence_tagging/rnn_crf.py rename to v1_api_demo/sequence_tagging/rnn_crf.py diff --git a/demo/sequence_tagging/train.sh b/v1_api_demo/sequence_tagging/train.sh similarity index 100% rename from demo/sequence_tagging/train.sh rename to v1_api_demo/sequence_tagging/train.sh diff --git a/demo/sequence_tagging/train_linear.sh b/v1_api_demo/sequence_tagging/train_linear.sh similarity index 100% rename from demo/sequence_tagging/train_linear.sh rename to v1_api_demo/sequence_tagging/train_linear.sh diff --git a/demo/traffic_prediction/README b/v1_api_demo/traffic_prediction/README similarity index 100% rename from demo/traffic_prediction/README rename to v1_api_demo/traffic_prediction/README diff --git a/demo/traffic_prediction/data/get_data.sh b/v1_api_demo/traffic_prediction/data/get_data.sh similarity index 100% rename from demo/traffic_prediction/data/get_data.sh rename to v1_api_demo/traffic_prediction/data/get_data.sh diff --git a/demo/traffic_prediction/dataprovider.py b/v1_api_demo/traffic_prediction/dataprovider.py similarity index 100% rename from demo/traffic_prediction/dataprovider.py rename to v1_api_demo/traffic_prediction/dataprovider.py diff --git a/demo/traffic_prediction/gen_result.py b/v1_api_demo/traffic_prediction/gen_result.py similarity index 100% rename from demo/traffic_prediction/gen_result.py rename to v1_api_demo/traffic_prediction/gen_result.py diff --git a/demo/traffic_prediction/predict.sh b/v1_api_demo/traffic_prediction/predict.sh similarity index 100% rename from demo/traffic_prediction/predict.sh rename to v1_api_demo/traffic_prediction/predict.sh diff --git a/demo/traffic_prediction/train.sh b/v1_api_demo/traffic_prediction/train.sh similarity index 100% rename from demo/traffic_prediction/train.sh rename to v1_api_demo/traffic_prediction/train.sh diff --git a/demo/traffic_prediction/trainer_config.py b/v1_api_demo/traffic_prediction/trainer_config.py similarity index 100% rename from demo/traffic_prediction/trainer_config.py rename to v1_api_demo/traffic_prediction/trainer_config.py diff --git a/demo/vae/README.md b/v1_api_demo/vae/README.md similarity index 100% rename from demo/vae/README.md rename to v1_api_demo/vae/README.md diff --git a/demo/vae/data/get_mnist_data.sh b/v1_api_demo/vae/data/get_mnist_data.sh similarity index 100% rename from demo/vae/data/get_mnist_data.sh rename to v1_api_demo/vae/data/get_mnist_data.sh diff --git a/demo/vae/dataloader.py b/v1_api_demo/vae/dataloader.py similarity index 100% rename from demo/vae/dataloader.py rename to v1_api_demo/vae/dataloader.py diff --git a/demo/vae/vae_conf.py b/v1_api_demo/vae/vae_conf.py similarity index 100% rename from demo/vae/vae_conf.py rename to v1_api_demo/vae/vae_conf.py diff --git a/demo/vae/vae_train.py b/v1_api_demo/vae/vae_train.py similarity index 100% rename from demo/vae/vae_train.py rename to v1_api_demo/vae/vae_train.py