Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
b084dfab
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b084dfab
编写于
9月 12, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into parallel_bcast
上级
5ce1a960
08cfe27c
变更
17
显示空白变更内容
内联
并排
Showing
17 changed file
with
497 addition
and
338 deletion
+497
-338
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+108
-117
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+1
-1
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
+0
-28
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+43
-12
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+3
-0
paddle/fluid/operators/distributed/CMakeLists.txt
paddle/fluid/operators/distributed/CMakeLists.txt
+1
-0
paddle/fluid/operators/distributed/grpc_client.cc
paddle/fluid/operators/distributed/grpc_client.cc
+69
-73
paddle/fluid/operators/distributed/grpc_client.h
paddle/fluid/operators/distributed/grpc_client.h
+57
-53
paddle/fluid/operators/distributed/request_handler.h
paddle/fluid/operators/distributed/request_handler.h
+65
-10
paddle/fluid/operators/distributed/rpc_client.h
paddle/fluid/operators/distributed/rpc_client.h
+32
-31
paddle/fluid/operators/distributed/varhandle_test.cc
paddle/fluid/operators/distributed/varhandle_test.cc
+55
-0
paddle/fluid/operators/prefetch_op.cc
paddle/fluid/operators/prefetch_op.cc
+6
-2
paddle/fluid/operators/recv_op.cc
paddle/fluid/operators/recv_op.cc
+5
-2
paddle/fluid/operators/send_op.cc
paddle/fluid/operators/send_op.cc
+6
-4
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+3
-2
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+7
-0
python/paddle/fluid/transpiler/inference_transpiler.py
python/paddle/fluid/transpiler/inference_transpiler.py
+36
-3
未找到文件。
benchmark/fluid/models/resnet.py
浏览文件 @
b084dfab
...
@@ -20,6 +20,7 @@ import functools
...
@@ -20,6 +20,7 @@ import functools
import
numpy
as
np
import
numpy
as
np
import
time
import
time
import
os
import
os
import
math
import
cProfile
,
pstats
,
StringIO
import
cProfile
,
pstats
,
StringIO
...
@@ -27,128 +28,120 @@ import paddle
...
@@ -27,128 +28,120 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.profiler
as
profiler
# from recordio_converter import imagenet_train, imagenet_test
from
imagenet_reader
import
train
,
val
from
imagenet_reader
import
train
,
val
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
ResNet
():
def
__init__
(
self
,
layers
=
50
,
is_train
=
True
):
self
.
params
=
train_parameters
self
.
layers
=
layers
self
.
is_train
=
is_train
def
net
(
self
,
input
,
class_dim
=
1000
):
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
def
conv_bn_layer
(
input
,
def
conv_bn_layer
(
self
,
ch_out
,
input
,
num_filters
,
filter_size
,
filter_size
,
stride
,
stride
=
1
,
padding
,
groups
=
1
,
act
=
'relu'
,
act
=
None
):
is_train
=
True
):
conv
=
fluid
.
layers
.
conv2d
(
conv1
=
fluid
.
layers
.
conv2d
(
input
=
input
,
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
stride
=
stride
,
padding
=
padding
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
act
=
None
,
bias_attr
=
False
)
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv1
,
act
=
act
,
is_test
=
not
is_train
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
is_test
=
not
self
.
is_train
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
):
def
shortcut
(
input
,
ch_out
,
stride
,
is_train
=
True
):
ch_in
=
input
.
shape
[
1
]
ch_in
=
input
.
shape
[
1
]
# if args.data_format == 'NCHW' else input.shape[-1]
if
ch_in
!=
ch_out
or
stride
!=
1
:
if
ch_in
!=
ch_out
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
)
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
None
,
is_train
=
is_train
)
else
:
else
:
return
input
return
input
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
def
basicblock
(
input
,
ch_out
,
stride
,
is_train
=
True
):
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
)
short
=
shortcut
(
input
,
ch_out
,
stride
,
is_train
=
is_train
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
,
is_train
=
is_train
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
,
3
,
1
,
1
,
act
=
None
,
is_train
=
is_train
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
bottleneck
(
input
,
ch_out
,
stride
,
is_train
=
True
):
short
=
shortcut
(
input
,
ch_out
*
4
,
stride
,
is_train
=
is_train
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
is_train
=
is_train
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
,
3
,
1
,
1
,
is_train
=
is_train
)
conv3
=
conv_bn_layer
(
conv2
,
ch_out
*
4
,
1
,
1
,
0
,
act
=
None
,
is_train
=
is_train
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv3
,
act
=
'relu'
)
def
layer_warp
(
block_func
,
input
,
ch_out
,
count
,
stride
):
res_out
=
block_func
(
input
,
ch_out
,
stride
)
for
i
in
range
(
1
,
count
):
res_out
=
block_func
(
res_out
,
ch_out
,
1
)
return
res_out
def
resnet_imagenet
(
input
,
class_dim
,
depth
=
50
,
data_format
=
'NCHW'
,
is_train
=
True
):
cfg
=
{
18
:
([
2
,
2
,
2
,
1
],
basicblock
),
34
:
([
3
,
4
,
6
,
3
],
basicblock
),
50
:
([
3
,
4
,
6
,
3
],
bottleneck
),
101
:
([
3
,
4
,
23
,
3
],
bottleneck
),
152
:
([
3
,
8
,
36
,
3
],
bottleneck
)
}
stages
,
block_func
=
cfg
[
depth
]
conv1
=
conv_bn_layer
(
input
,
ch_out
=
64
,
filter_size
=
7
,
stride
=
2
,
padding
=
3
)
pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_type
=
'avg'
,
pool_size
=
3
,
pool_stride
=
2
)
res1
=
layer_warp
(
block_func
,
pool1
,
64
,
stages
[
0
],
1
)
res2
=
layer_warp
(
block_func
,
res1
,
128
,
stages
[
1
],
2
)
res3
=
layer_warp
(
block_func
,
res2
,
256
,
stages
[
2
],
2
)
res4
=
layer_warp
(
block_func
,
res3
,
512
,
stages
[
3
],
2
)
pool2
=
fluid
.
layers
.
pool2d
(
input
=
res4
,
pool_size
=
7
,
pool_type
=
'avg'
,
pool_stride
=
1
,
global_pooling
=
True
)
out
=
fluid
.
layers
.
fc
(
input
=
pool2
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
def
resnet_cifar10
(
input
,
class_dim
,
depth
=
32
,
data_format
=
'NCHW'
):
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
//
6
conv1
=
conv_bn_layer
(
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
input
=
input
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
64
,
n
,
2
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
def
_model_reader_dshape_classdim
(
args
,
is_train
):
def
_model_reader_dshape_classdim
(
args
,
is_train
):
model
=
resnet_cifar10
model
=
None
reader
=
None
reader
=
None
if
args
.
data_set
==
"cifar10"
:
if
args
.
data_set
==
"flowers"
:
class_dim
=
10
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
32
,
32
]
else
:
dshape
=
[
32
,
32
,
3
]
model
=
resnet_cifar10
if
is_train
:
reader
=
paddle
.
dataset
.
cifar
.
train10
()
else
:
reader
=
paddle
.
dataset
.
cifar
.
test10
()
elif
args
.
data_set
==
"flowers"
:
class_dim
=
102
class_dim
=
102
if
args
.
data_format
==
'NCHW'
:
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
224
,
224
]
dshape
=
[
3
,
224
,
224
]
else
:
else
:
dshape
=
[
224
,
224
,
3
]
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
is_train
:
if
is_train
:
reader
=
paddle
.
dataset
.
flowers
.
train
()
reader
=
paddle
.
dataset
.
flowers
.
train
()
else
:
else
:
...
@@ -159,7 +152,6 @@ def _model_reader_dshape_classdim(args, is_train):
...
@@ -159,7 +152,6 @@ def _model_reader_dshape_classdim(args, is_train):
dshape
=
[
3
,
224
,
224
]
dshape
=
[
3
,
224
,
224
]
else
:
else
:
dshape
=
[
224
,
224
,
3
]
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
not
args
.
data_path
:
if
not
args
.
data_path
:
raise
Exception
(
raise
Exception
(
"Must specify --data_path when training with imagenet"
)
"Must specify --data_path when training with imagenet"
)
...
@@ -173,12 +165,11 @@ def _model_reader_dshape_classdim(args, is_train):
...
@@ -173,12 +165,11 @@ def _model_reader_dshape_classdim(args, is_train):
reader
=
train
(
xmap
=
False
)
reader
=
train
(
xmap
=
False
)
else
:
else
:
reader
=
val
(
xmap
=
False
)
reader
=
val
(
xmap
=
False
)
return
model
,
reader
,
dshape
,
class_dim
return
reader
,
dshape
,
class_dim
def
get_model
(
args
,
is_train
,
main_prog
,
startup_prog
):
def
get_model
(
args
,
is_train
,
main_prog
,
startup_prog
):
model
,
reader
,
dshape
,
class_dim
=
_model_reader_dshape_classdim
(
args
,
reader
,
dshape
,
class_dim
=
_model_reader_dshape_classdim
(
args
,
is_train
)
is_train
)
pyreader
=
None
pyreader
=
None
trainer_count
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS"
))
trainer_count
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS"
))
...
@@ -198,7 +189,8 @@ def get_model(args, is_train, main_prog, startup_prog):
...
@@ -198,7 +189,8 @@ def get_model(args, is_train, main_prog, startup_prog):
label
=
fluid
.
layers
.
data
(
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict
=
model
(
input
,
class_dim
,
is_train
=
is_train
)
model
=
ResNet
(
is_train
=
is_train
)
predict
=
model
.
net
(
input
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
...
@@ -216,15 +208,14 @@ def get_model(args, is_train, main_prog, startup_prog):
...
@@ -216,15 +208,14 @@ def get_model(args, is_train, main_prog, startup_prog):
total_images
=
1281167
/
trainer_count
total_images
=
1281167
/
trainer_count
step
=
int
(
total_images
/
args
.
batch_size
+
1
)
step
=
int
(
total_images
/
args
.
batch_size
+
1
)
epochs
=
[
30
,
60
,
80
,
90
]
epochs
=
[
30
,
60
,
90
]
bd
=
[
step
*
e
for
e
in
epochs
]
bd
=
[
step
*
e
for
e
in
epochs
]
base_lr
=
args
.
learning_rate
base_lr
=
args
.
learning_rate
lr
=
[]
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
base_lr
,
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
#learning_rate=fluid.layers.piecewise_decay(
boundaries
=
bd
,
values
=
lr
),
# boundaries=bd, values=lr),
momentum
=
0.9
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
avg_cost
)
optimizer
.
minimize
(
avg_cost
)
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
b084dfab
...
@@ -262,7 +262,7 @@ void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
...
@@ -262,7 +262,7 @@ void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
if
(
buffer
.
empty
()
||
buffer
.
length
()
<
sizeof
(
T
)
*
data
.
size
())
{
if
(
buffer
.
empty
()
||
buffer
.
length
()
<
sizeof
(
T
)
*
data
.
size
())
{
buffer
.
Resize
(
sizeof
(
T
)
*
data
.
size
());
buffer
.
Resize
(
sizeof
(
T
)
*
data
.
size
());
}
}
std
::
memcpy
(
buffer
.
data
(),
data
.
data
(),
buffer
.
length
());
std
::
memcpy
(
buffer
.
data
(),
data
.
data
(),
sizeof
(
T
)
*
data
.
size
());
// copy LoD
// copy LoD
for
(
const
auto
&
level
:
fetch
.
lod
())
{
for
(
const
auto
&
level
:
fetch
.
lod
())
{
output
->
lod
.
emplace_back
(
level
);
output
->
lod
.
emplace_back
(
level
);
...
...
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
浏览文件 @
b084dfab
...
@@ -117,34 +117,6 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
...
@@ -117,34 +117,6 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
input_slots
->
assign
({
input_tensor
});
input_slots
->
assign
({
input_tensor
});
}
}
void
BenchAllData
(
const
std
::
string
&
model_path
,
const
std
::
string
&
data_file
,
const
int
batch_size
,
const
int
repeat
)
{
NativeConfig
config
;
config
.
model_dir
=
model_path
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
std
::
vector
<
PaddleTensor
>
input_slots
,
outputs_slots
;
DataRecord
data
(
data_file
,
batch_size
);
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
GetOneBatch
(
&
input_slots
,
&
data
,
batch_size
);
for
(
int
i
=
0
;
i
<
FLAGS_burning
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs_slots
);
}
Timer
timer
;
double
sum
=
0
;
for
(
int
i
=
0
;
i
<
repeat
;
i
++
)
{
for
(
size_t
bid
=
0
;
bid
<
data
.
batched_datas
.
size
();
++
bid
)
{
GetOneBatch
(
&
input_slots
,
&
data
,
batch_size
);
timer
.
tic
();
predictor
->
Run
(
input_slots
,
&
outputs_slots
);
sum
+=
timer
.
toc
();
}
}
PrintTime
(
batch_size
,
repeat
,
1
,
0
,
sum
/
repeat
);
}
const
int64_t
lac_ref_data
[]
=
{
24
,
25
,
25
,
25
,
38
,
30
,
31
,
14
,
15
,
44
,
24
,
25
,
const
int64_t
lac_ref_data
[]
=
{
24
,
25
,
25
,
25
,
38
,
30
,
31
,
14
,
15
,
44
,
24
,
25
,
25
,
25
,
25
,
25
,
44
,
24
,
25
,
25
,
25
,
36
,
42
,
43
,
25
,
25
,
25
,
25
,
44
,
24
,
25
,
25
,
25
,
36
,
42
,
43
,
44
,
14
,
15
,
44
,
14
,
15
,
44
,
14
,
15
,
44
,
38
,
39
,
44
,
14
,
15
,
44
,
14
,
15
,
44
,
14
,
15
,
44
,
38
,
39
,
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
b084dfab
...
@@ -130,12 +130,13 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
...
@@ -130,12 +130,13 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryFromPrimitive
(
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_weights_memory_p
,
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_weights_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
// NOLINT
bool
is_persistent
=
false
)
{
auto
user_weights_pd
=
user_weights_memory_p
->
get_primitive_desc
();
auto
user_weights_pd
=
user_weights_memory_p
->
get_primitive_desc
();
auto
weights_pd
=
conv_pd_
->
weights_primitive_desc
();
auto
weights_pd
=
conv_pd_
->
weights_primitive_desc
();
return
this
->
AcquireMemory
(
weights_pd
,
user_weights_pd
,
return
this
->
AcquireMemory
(
weights_pd
,
user_weights_pd
,
user_weights_memory_p
,
"@weights_mem_p"
,
user_weights_memory_p
,
"@weights_mem_p"
,
pipeline
);
pipeline
,
is_persistent
);
}
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBiasMemoryFromPrimitive
(
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBiasMemoryFromPrimitive
(
...
@@ -266,6 +267,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -266,6 +267,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
"It must use CPUPlace."
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
auto
&
dev_ctx
=
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
...
@@ -296,6 +299,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -296,6 +299,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
bool
fuse_relu
=
ctx
.
Attr
<
bool
>
(
"fuse_relu"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// TODO(pzelazko-intel) add support for group convolution and dilation
// TODO(pzelazko-intel) add support for group convolution and dilation
...
@@ -348,11 +352,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -348,11 +352,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
conv_pd
=
strides
,
paddings
,
mkldnn_engine
);
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
);
}
else
{
}
else
{
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
);
paddings
,
mkldnn_engine
,
fuse_relu
);
}
}
// Save conv_pd/src_memory/weights_memory for backward pass
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
...
@@ -371,7 +376,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -371,7 +376,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
src_memory_p
=
auto
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
);
user_weights_memory_p
,
pipeline
,
is_test
);
auto
dst_memory_p
=
auto
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
...
@@ -402,11 +407,26 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -402,11 +407,26 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
}
private:
private:
mkldnn
::
primitive_attr
AddRelu
()
const
{
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
mkldnn
::
primitive_attr
conv_attr
;
constexpr
float
scale
=
1.0
f
;
constexpr
float
negative_slope
=
0.0
f
;
constexpr
float
placeholder
=
0.0
f
;
mkldnn
::
post_ops
post_operations
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_relu
,
negative_slope
,
placeholder
);
conv_attr
.
set_post_ops
(
post_operations
);
return
conv_attr
;
}
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
ConvFwdPrimitiveDesc
(
const
memory
::
desc
&
src
,
const
memory
::
desc
&
weights
,
ConvFwdPrimitiveDesc
(
const
memory
::
desc
&
src
,
const
memory
::
desc
&
weights
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
)
const
{
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
@@ -415,8 +435,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -415,8 +435,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
mkldnn
::
padding_kind
::
zero
);
auto
p_conv_pd
=
mkldnn
::
primitive_attr
conv_attr
;
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
engine
);
if
(
fuse_relu
)
{
conv_attr
=
AddRelu
();
}
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
conv_attr
,
engine
);
return
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
return
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
p_conv_pd
);
p_conv_pd
);
...
@@ -427,7 +452,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -427,7 +452,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
memory
::
desc
&
bias
,
const
memory
::
desc
&
dst
,
const
memory
::
desc
&
bias
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
)
const
{
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
@@ -436,8 +462,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -436,8 +462,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias
,
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
bias
,
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
mkldnn
::
padding_kind
::
zero
);
auto
p_conv_pd
=
mkldnn
::
primitive_attr
conv_attr
;
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
engine
);
if
(
fuse_relu
)
{
conv_attr
=
AddRelu
();
}
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
conv_attr
,
engine
);
return
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
return
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
p_conv_pd
);
p_conv_pd
);
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
b084dfab
...
@@ -109,6 +109,7 @@ framework::OpKernelType ConvOp::GetExpectedKernelType(
...
@@ -109,6 +109,7 @@ framework::OpKernelType ConvOp::GetExpectedKernelType(
}
}
void
Conv2DOpMaker
::
Make
()
{
void
Conv2DOpMaker
::
Make
()
{
AddAttr
<
bool
>
(
"is_test"
,
""
).
SetDefault
(
false
);
AddInput
(
AddInput
(
"Input"
,
"Input"
,
"(Tensor) The input tensor of convolution operator. "
"(Tensor) The input tensor of convolution operator. "
...
@@ -161,6 +162,8 @@ void Conv2DOpMaker::Make() {
...
@@ -161,6 +162,8 @@ void Conv2DOpMaker::Make() {
AddAttr
<
bool
>
(
"use_mkldnn"
,
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_relu"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
AddAttr
<
std
::
string
>
(
"data_format"
,
"data_format"
,
"(string, default NCHW) Only used in "
"(string, default NCHW) Only used in "
...
...
paddle/fluid/operators/distributed/CMakeLists.txt
浏览文件 @
b084dfab
...
@@ -20,6 +20,7 @@ if(WITH_GRPC)
...
@@ -20,6 +20,7 @@ if(WITH_GRPC)
DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc scope profiler math_function SERIAL
)
DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc scope profiler math_function SERIAL
)
cc_test
(
rpc_server_test SRCS rpc_server_test.cc
cc_test
(
rpc_server_test SRCS rpc_server_test.cc
DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf executor proto_desc lookup_sparse_table_op SERIAL
)
DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf executor proto_desc lookup_sparse_table_op SERIAL
)
cc_test
(
varhandle_test SRCS varhandle_test.cc
)
return
()
return
()
endif
()
endif
()
...
...
paddle/fluid/operators/distributed/grpc_client.cc
浏览文件 @
b084dfab
...
@@ -59,40 +59,32 @@ GRPCClient::~GRPCClient() {
...
@@ -59,40 +59,32 @@ GRPCClient::~GRPCClient() {
}
}
channels_
.
clear
();
channels_
.
clear
();
}
}
client_thread_
->
join
();
client_thread_
->
join
();
}
}
bool
GRPCClient
::
AsyncSendVar
(
const
std
::
string
&
ep
,
VarHandlePtr
GRPCClient
::
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
var_name_val
=
var_name
;
const
std
::
string
var_name_val
=
var_name
;
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
auto
ch
=
GetChannel
(
ep_val
);
const
auto
ch
=
GetChannel
(
ep_val
);
SendProcessor
*
s
=
new
SendProcessor
(
ch
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"Send"
,
var_name_val
,
p_ctx
,
p_scope
));
s
->
Prepare
(
h
,
time_out
);
framework
::
AsyncIO
([
var_name_val
,
p_ctx
,
ep_val
,
p_scope
,
time_out
,
ch
,
framework
::
AsyncIO
([
var_name_val
,
p_scope
,
p_ctx
,
s
,
this
]
{
this
]
{
auto
*
var
=
p_scope
->
FindVar
(
var_name_val
);
auto
*
var
=
p_scope
->
FindVar
(
var_name_val
);
::
grpc
::
ByteBuffer
req
;
::
grpc
::
ByteBuffer
req
;
SerializeToByteBuffer
(
var_name_val
,
var
,
*
p_ctx
,
&
req
);
SerializeToByteBuffer
(
var_name_val
,
var
,
*
p_ctx
,
&
req
);
// varhandle
VLOG
(
3
)
<<
s
->
GetVarHandlePtr
()
->
String
()
<<
" begin"
;
VarHandle
var_h
;
var_h
.
ep
=
ep_val
;
var_h
.
scope
=
p_scope
;
var_h
.
name
=
var_name_val
;
var_h
.
ctx
=
p_ctx
;
var_h
.
method
=
"Send"
;
VLOG
(
3
)
<<
var_h
.
String
()
<<
" begin"
;
// stub context
// stub context
SendProcessor
*
s
=
new
SendProcessor
(
ch
);
s
->
Prepare
(
var_h
,
time_out
);
s
->
response_call_back_
=
nullptr
;
s
->
response_call_back_
=
nullptr
;
auto
call
=
s
->
stub_g_
.
PrepareUnaryCall
(
auto
call
=
s
->
stub_g_
.
PrepareUnaryCall
(
...
@@ -102,13 +94,13 @@ bool GRPCClient::AsyncSendVar(const std::string& ep,
...
@@ -102,13 +94,13 @@ bool GRPCClient::AsyncSendVar(const std::string& ep,
});
});
req_count_
++
;
req_count_
++
;
return
true
;
return
h
;
}
}
void
ProcGetResponse
(
const
VarHandle
&
var_h
,
void
ProcGetResponse
(
const
VarHandle
&
var_h
,
const
::
grpc
::
ByteBuffer
&
ret_msg
)
{
const
::
grpc
::
ByteBuffer
&
ret_msg
)
{
framework
::
Variable
*
outvar
=
nullptr
;
framework
::
Variable
*
outvar
=
nullptr
;
DeserializeFromByteBuffer
(
ret_msg
,
*
var_h
.
ctx
,
var_h
.
scope
,
&
outvar
);
DeserializeFromByteBuffer
(
ret_msg
,
*
var_h
.
ctx
(),
var_h
.
scope
()
,
&
outvar
);
}
}
template
<
typename
T
>
template
<
typename
T
>
...
@@ -119,37 +111,30 @@ void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) {
...
@@ -119,37 +111,30 @@ void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) {
result
->
Swap
(
&
tmp
);
result
->
Swap
(
&
tmp
);
}
}
bool
GRPCClient
::
AsyncGetVar
(
const
std
::
string
&
ep
,
VarHandlePtr
GRPCClient
::
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
var_name_val
=
var_name
;
const
std
::
string
var_name_val
=
var_name
;
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
auto
ch
=
GetChannel
(
ep_val
);
const
auto
ch
=
GetChannel
(
ep_val
);
GetProcessor
*
s
=
new
GetProcessor
(
ch
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"Get"
,
var_name_val
,
p_ctx
,
p_scope
));
s
->
Prepare
(
h
,
time_out
);
framework
::
AsyncIO
([
var_name_val
,
ep_val
,
p_scope
,
p_ctx
,
time_out
,
ch
,
framework
::
AsyncIO
([
var_name_val
,
p_scope
,
p_ctx
,
s
,
this
]
{
this
]
{
// prepare input
// prepare input
sendrecv
::
VariableMessage
req
;
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
var_name_val
);
req
.
set_varname
(
var_name_val
);
::
grpc
::
ByteBuffer
buf
;
::
grpc
::
ByteBuffer
buf
;
RequestToByteBuffer
<
sendrecv
::
VariableMessage
>
(
req
,
&
buf
);
RequestToByteBuffer
<
sendrecv
::
VariableMessage
>
(
req
,
&
buf
);
// var handle
VLOG
(
3
)
<<
s
->
GetVarHandlePtr
()
->
String
()
<<
" begin"
;
VarHandle
var_h
;
var_h
.
ep
=
ep_val
;
var_h
.
scope
=
p_scope
;
var_h
.
name
=
var_name_val
;
var_h
.
ctx
=
p_ctx
;
var_h
.
method
=
"Get"
;
VLOG
(
3
)
<<
var_h
.
String
()
<<
" begin"
;
// stub context
// stub context
GetProcessor
*
s
=
new
GetProcessor
(
ch
);
s
->
Prepare
(
var_h
,
time_out
);
s
->
response_call_back_
=
ProcGetResponse
;
s
->
response_call_back_
=
ProcGetResponse
;
auto
call
=
s
->
stub_g_
.
PrepareUnaryCall
(
auto
call
=
s
->
stub_g_
.
PrepareUnaryCall
(
...
@@ -160,10 +145,10 @@ bool GRPCClient::AsyncGetVar(const std::string& ep,
...
@@ -160,10 +145,10 @@ bool GRPCClient::AsyncGetVar(const std::string& ep,
req_count_
++
;
req_count_
++
;
return
true
;
return
h
;
}
}
bool
GRPCClient
::
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
VarHandlePtr
GRPCClient
::
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
in_var_name
,
...
@@ -175,27 +160,21 @@ bool GRPCClient::AsyncPrefetchVar(const std::string& ep,
...
@@ -175,27 +160,21 @@ bool GRPCClient::AsyncPrefetchVar(const std::string& ep,
const
std
::
string
out_var_name_val
=
out_var_name
;
const
std
::
string
out_var_name_val
=
out_var_name
;
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
auto
ch
=
GetChannel
(
ep_val
);
const
auto
ch
=
GetChannel
(
ep_val
);
GetProcessor
*
s
=
new
GetProcessor
(
ch
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"Prefetch"
,
out_var_name_val
,
p_ctx
,
p_scope
));
s
->
Prepare
(
h
,
time_out
);
framework
::
AsyncIO
([
in_var_name_val
,
out_var_name_val
,
ep_val
,
p_scope
,
p_ctx
,
framework
::
AsyncIO
([
in_var_name_val
,
out_var_name_val
,
ep_val
,
p_scope
,
p_ctx
,
time_out
,
ch
,
this
]
{
time_out
,
s
,
this
]
{
auto
*
var
=
p_scope
->
FindVar
(
in_var_name_val
);
auto
*
var
=
p_scope
->
FindVar
(
in_var_name_val
);
::
grpc
::
ByteBuffer
req
;
::
grpc
::
ByteBuffer
req
;
SerializeToByteBuffer
(
in_var_name_val
,
var
,
*
p_ctx
,
&
req
,
out_var_name_val
);
SerializeToByteBuffer
(
in_var_name_val
,
var
,
*
p_ctx
,
&
req
,
out_var_name_val
);
// var handle
VLOG
(
3
)
<<
s
->
GetVarHandlePtr
()
->
String
()
<<
" begin"
;
VarHandle
var_h
;
var_h
.
ep
=
ep_val
;
var_h
.
scope
=
p_scope
;
var_h
.
name
=
out_var_name_val
;
var_h
.
ctx
=
p_ctx
;
var_h
.
method
=
"Prefetch"
;
VLOG
(
3
)
<<
var_h
.
String
()
<<
" begin"
;
// stub context
// stub context
GetProcessor
*
s
=
new
GetProcessor
(
ch
);
s
->
Prepare
(
var_h
,
time_out
);
s
->
response_call_back_
=
ProcGetResponse
;
s
->
response_call_back_
=
ProcGetResponse
;
auto
call
=
s
->
stub_g_
.
PrepareUnaryCall
(
auto
call
=
s
->
stub_g_
.
PrepareUnaryCall
(
...
@@ -206,56 +185,68 @@ bool GRPCClient::AsyncPrefetchVar(const std::string& ep,
...
@@ -206,56 +185,68 @@ bool GRPCClient::AsyncPrefetchVar(const std::string& ep,
});
});
req_count_
++
;
req_count_
++
;
return
true
;
return
h
;
}
}
void
GRPCClient
::
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
VarHandlePtr
GRPCClient
::
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
const
auto
ch
=
GetChannel
(
ep
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"BatchBarrier"
,
BATCH_BARRIER_MESSAGE
,
nullptr
,
nullptr
));
s
->
Prepare
(
h
,
time_out
);
sendrecv
::
VariableMessage
req
;
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
BATCH_BARRIER_MESSAGE
);
req
.
set_varname
(
BATCH_BARRIER_MESSAGE
);
auto
rpc
=
s
->
stub_
->
AsyncSendVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
auto
rpc
=
s
->
stub_
->
AsyncSendVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
req_count_
++
;
return
h
;
}
}
void
GRPCClient
::
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
VarHandlePtr
GRPCClient
::
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
const
auto
ch
=
GetChannel
(
ep
);
FetchBarrierProcessor
*
s
=
new
FetchBarrierProcessor
(
ch
);
FetchBarrierProcessor
*
s
=
new
FetchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"FetchBarrier"
,
FETCH_BARRIER_MESSAGE
,
nullptr
,
nullptr
));
s
->
Prepare
(
h
,
time_out
);
sendrecv
::
VariableMessage
req
;
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
FETCH_BARRIER_MESSAGE
);
req
.
set_varname
(
FETCH_BARRIER_MESSAGE
);
auto
rpc
=
s
->
stub_
->
AsyncGetVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
auto
rpc
=
s
->
stub_
->
AsyncGetVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
req_count_
++
;
return
h
;
}
}
void
GRPCClient
::
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
VarHandlePtr
GRPCClient
::
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
const
auto
ch
=
GetChannel
(
ep
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"SendComplete"
,
COMPLETE_MESSAGE
,
nullptr
,
nullptr
));
s
->
Prepare
(
h
,
time_out
);
sendrecv
::
VariableMessage
req
;
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
COMPLETE_MESSAGE
);
req
.
set_varname
(
COMPLETE_MESSAGE
);
auto
rpc
=
s
->
stub_
->
AsyncSendVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
auto
rpc
=
s
->
stub_
->
AsyncSendVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
req_count_
++
;
return
h
;
}
}
void
GRPCClient
::
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
VarHandlePtr
GRPCClient
::
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
const
std
::
string
&
dir
,
int64_t
time_out
)
{
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
const
auto
ch
=
GetChannel
(
ep
);
CheckpointNotifyProcessor
*
s
=
new
CheckpointNotifyProcessor
(
ch
);
CheckpointNotifyProcessor
*
s
=
new
CheckpointNotifyProcessor
(
ch
);
s
->
Prepare
(
time_out
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"CheckPointNotify"
,
CHECKPOINT_SAVE_MESSAGE
,
nullptr
,
nullptr
));
s
->
Prepare
(
h
,
time_out
);
sendrecv
::
VariableMessage
req
;
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
CHECKPOINT_SAVE_MESSAGE
);
req
.
set_varname
(
CHECKPOINT_SAVE_MESSAGE
);
...
@@ -264,6 +255,7 @@ void GRPCClient::AsyncCheckpointNotify(const std::string& ep,
...
@@ -264,6 +255,7 @@ void GRPCClient::AsyncCheckpointNotify(const std::string& ep,
auto
rpc
=
s
->
stub_
->
AsyncCheckpointNotify
(
s
->
context_
.
get
(),
req
,
&
cq_
);
auto
rpc
=
s
->
stub_
->
AsyncCheckpointNotify
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
req_count_
++
;
return
h
;
}
}
bool
GRPCClient
::
Wait
()
{
bool
GRPCClient
::
Wait
()
{
...
@@ -276,25 +268,28 @@ void GRPCClient::Proceed() {
...
@@ -276,25 +268,28 @@ void GRPCClient::Proceed() {
void
*
tag
=
nullptr
;
void
*
tag
=
nullptr
;
bool
ok
=
false
;
bool
ok
=
false
;
VLOG
(
3
)
<<
"GRPCClient Proceed begin"
;
while
(
!
stopped_
&&
cq_
.
Next
(
&
tag
,
&
ok
))
{
while
(
!
stopped_
&&
cq_
.
Next
(
&
tag
,
&
ok
))
{
BaseProcessor
*
c
=
static_cast
<
BaseProcessor
*>
(
tag
);
BaseProcessor
*
c
=
static_cast
<
BaseProcessor
*>
(
tag
);
GPR_ASSERT
(
ok
);
GPR_ASSERT
(
ok
);
PADDLE_ENFORCE
(
c
);
PADDLE_ENFORCE
(
c
);
if
(
c
->
status_
.
ok
())
{
if
(
c
->
status_
.
ok
())
{
VLOG
(
3
)
<<
c
->
var_h_
.
String
()
<<
" process"
;
VLOG
(
3
)
<<
c
->
GetVarHandlePtr
()
->
String
()
<<
" process"
;
c
->
Process
();
c
->
Process
();
}
else
if
(
c
->
status_
.
error_code
()
==
grpc
::
StatusCode
::
DEADLINE_EXCEEDED
)
{
}
else
if
(
c
->
status_
.
error_code
()
==
grpc
::
StatusCode
::
DEADLINE_EXCEEDED
)
{
LOG
(
ERROR
)
<<
c
->
var_h_
.
String
()
LOG
(
ERROR
)
<<
c
->
GetVarHandlePtr
()
->
String
()
<<
" meets grpc error:"
<<
c
->
status_
.
error_message
();
<<
" meets grpc error:"
<<
c
->
status_
.
error_message
();
{
{
std
::
lock_guard
<
std
::
mutex
>
lk
(
sync_mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lk
(
sync_mutex_
);
ok_
=
false
;
ok_
=
false
;
}
}
sync_cond_
.
notify_all
(
);
c
->
Finish
(
false
);
}
else
{
}
else
{
LOG
(
FATAL
)
<<
c
->
var_h_
.
String
()
LOG
(
FATAL
)
<<
c
->
GetVarHandlePtr
()
->
String
()
<<
" meets grpc error:"
<<
c
->
status_
.
error_message
();
<<
" meets grpc error:"
<<
c
->
status_
.
error_message
();
c
->
Finish
(
false
);
}
}
delete
c
;
delete
c
;
{
{
std
::
lock_guard
<
std
::
mutex
>
lk
(
sync_mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lk
(
sync_mutex_
);
...
@@ -302,6 +297,7 @@ void GRPCClient::Proceed() {
...
@@ -302,6 +297,7 @@ void GRPCClient::Proceed() {
}
}
sync_cond_
.
notify_all
();
sync_cond_
.
notify_all
();
}
}
VLOG
(
3
)
<<
"GRPCClient Proceed end"
;
}
}
std
::
shared_ptr
<
grpc
::
Channel
>
GRPCClient
::
GetChannel
(
const
std
::
string
&
ep
)
{
std
::
shared_ptr
<
grpc
::
Channel
>
GRPCClient
::
GetChannel
(
const
std
::
string
&
ep
)
{
...
...
paddle/fluid/operators/distributed/grpc_client.h
浏览文件 @
b084dfab
...
@@ -53,15 +53,14 @@ void ProcGetResponse(const VarHandle& var_h, const grpc::ByteBuffer& msg);
...
@@ -53,15 +53,14 @@ void ProcGetResponse(const VarHandle& var_h, const grpc::ByteBuffer& msg);
class
BaseProcessor
{
class
BaseProcessor
{
public:
public:
explicit
BaseProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
{
BaseProcessor
()
{
context_
=
nullptr
;
}
context_
=
nullptr
;
}
virtual
~
BaseProcessor
()
{}
virtual
~
BaseProcessor
()
{}
virtual
void
Prepare
(
const
VarHandle
&
var_info
,
int64_t
time_out
)
{
virtual
void
Prepare
(
VarHandlePtr
h
,
int64_t
time_out
)
{
var_h_
=
h
;
context_
.
reset
(
new
grpc
::
ClientContext
());
context_
.
reset
(
new
grpc
::
ClientContext
());
var_h_
=
var_info
;
context_
->
set_wait_for_ready
(
true
);
context_
->
set_wait_for_ready
(
true
);
if
(
time_out
)
{
if
(
time_out
)
{
std
::
chrono
::
system_clock
::
time_point
deadline
=
std
::
chrono
::
system_clock
::
time_point
deadline
=
...
@@ -71,21 +70,21 @@ class BaseProcessor {
...
@@ -71,21 +70,21 @@ class BaseProcessor {
}
}
}
}
virtual
void
Prepare
(
int64_t
time_out
)
{
void
Process
()
{
context_
.
reset
(
new
grpc
::
ClientContext
());
ProcessImpl
();
context_
->
set_wait_for_ready
(
true
);
var_h_
->
Finish
(
true
);
std
::
chrono
::
system_clock
::
time_point
deadline
=
std
::
chrono
::
system_clock
::
now
()
+
std
::
chrono
::
milliseconds
(
time_out
);
context_
->
set_deadline
(
deadline
);
}
}
virtual
void
Process
()
=
0
;
VarHandlePtr
GetVarHandlePtr
()
{
return
var_h_
;
}
bool
Wait
()
{
return
var_h_
->
Wait
();
}
void
Finish
(
bool
ok
)
{
return
var_h_
->
Finish
(
ok
);
}
virtual
void
ProcessImpl
()
=
0
;
std
::
unique_ptr
<
grpc
::
ClientContext
>
context_
;
std
::
unique_ptr
<
grpc
::
ClientContext
>
context_
;
grpc
::
Status
status_
;
grpc
::
Status
status_
;
VarHandle
var_h_
;
protected:
VarHandlePtr
var_h_
;
};
};
typedef
std
::
function
<
void
(
const
VarHandle
&
,
const
::
grpc
::
ByteBuffer
&
)
>
typedef
std
::
function
<
void
(
const
VarHandle
&
,
const
::
grpc
::
ByteBuffer
&
)
>
...
@@ -94,13 +93,13 @@ typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
...
@@ -94,13 +93,13 @@ typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
class
SendProcessor
:
public
BaseProcessor
{
class
SendProcessor
:
public
BaseProcessor
{
public:
public:
explicit
SendProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
explicit
SendProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
),
stub_g_
(
ch
)
{}
:
BaseProcessor
(),
stub_g_
(
ch
)
{}
virtual
~
SendProcessor
()
{}
virtual
~
SendProcessor
()
{}
v
irtual
void
Process
()
{
v
oid
ProcessImpl
()
override
{
if
(
response_call_back_
)
{
if
(
response_call_back_
)
{
response_call_back_
(
var_h_
,
reply_
);
response_call_back_
(
*
var_h_
.
get
()
,
reply_
);
}
}
}
}
...
@@ -115,13 +114,13 @@ typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
...
@@ -115,13 +114,13 @@ typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
class
GetProcessor
:
public
BaseProcessor
{
class
GetProcessor
:
public
BaseProcessor
{
public:
public:
explicit
GetProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
explicit
GetProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
),
stub_g_
(
ch
)
{}
:
BaseProcessor
(),
stub_g_
(
ch
)
{}
virtual
~
GetProcessor
()
{}
virtual
~
GetProcessor
()
{}
v
irtual
void
Process
()
{
v
oid
ProcessImpl
()
override
{
if
(
response_call_back_
)
{
if
(
response_call_back_
)
{
response_call_back_
(
var_h_
,
reply_
);
response_call_back_
(
*
var_h_
.
get
()
,
reply_
);
}
}
}
}
...
@@ -133,13 +132,13 @@ class GetProcessor : public BaseProcessor {
...
@@ -133,13 +132,13 @@ class GetProcessor : public BaseProcessor {
class
BatchBarrierProcessor
:
public
BaseProcessor
{
class
BatchBarrierProcessor
:
public
BaseProcessor
{
public:
public:
explicit
BatchBarrierProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
explicit
BatchBarrierProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
)
{
:
BaseProcessor
()
{
stub_
=
sendrecv
::
SendRecvService
::
NewStub
(
ch
);
stub_
=
sendrecv
::
SendRecvService
::
NewStub
(
ch
);
}
}
virtual
~
BatchBarrierProcessor
()
{}
virtual
~
BatchBarrierProcessor
()
{}
v
irtual
void
Process
()
{}
v
oid
ProcessImpl
()
override
{}
sendrecv
::
VoidMessage
reply_
;
sendrecv
::
VoidMessage
reply_
;
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
};
};
...
@@ -147,13 +146,13 @@ class BatchBarrierProcessor : public BaseProcessor {
...
@@ -147,13 +146,13 @@ class BatchBarrierProcessor : public BaseProcessor {
class
FetchBarrierProcessor
:
public
BaseProcessor
{
class
FetchBarrierProcessor
:
public
BaseProcessor
{
public:
public:
explicit
FetchBarrierProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
explicit
FetchBarrierProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
)
{
:
BaseProcessor
()
{
stub_
=
sendrecv
::
SendRecvService
::
NewStub
(
ch
);
stub_
=
sendrecv
::
SendRecvService
::
NewStub
(
ch
);
}
}
virtual
~
FetchBarrierProcessor
()
{}
virtual
~
FetchBarrierProcessor
()
{}
v
irtual
void
Process
()
{}
v
oid
ProcessImpl
()
override
{}
sendrecv
::
VariableMessage
reply_
;
sendrecv
::
VariableMessage
reply_
;
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
};
};
...
@@ -161,13 +160,13 @@ class FetchBarrierProcessor : public BaseProcessor {
...
@@ -161,13 +160,13 @@ class FetchBarrierProcessor : public BaseProcessor {
class
CheckpointNotifyProcessor
:
public
BaseProcessor
{
class
CheckpointNotifyProcessor
:
public
BaseProcessor
{
public:
public:
explicit
CheckpointNotifyProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
explicit
CheckpointNotifyProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
)
{
:
BaseProcessor
()
{
stub_
=
sendrecv
::
SendRecvService
::
NewStub
(
ch
);
stub_
=
sendrecv
::
SendRecvService
::
NewStub
(
ch
);
}
}
virtual
~
CheckpointNotifyProcessor
()
{}
virtual
~
CheckpointNotifyProcessor
()
{}
v
irtual
void
Process
()
{}
v
oid
ProcessImpl
()
override
{}
sendrecv
::
VoidMessage
reply_
;
sendrecv
::
VoidMessage
reply_
;
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
};
};
...
@@ -177,32 +176,37 @@ class GRPCClient : public RPCClient {
...
@@ -177,32 +176,37 @@ class GRPCClient : public RPCClient {
GRPCClient
()
:
ok_
(
true
),
completed_
(
false
),
stopped_
(
false
)
{}
GRPCClient
()
:
ok_
(
true
),
completed_
(
false
),
stopped_
(
false
)
{}
virtual
~
GRPCClient
();
virtual
~
GRPCClient
();
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
VarHandlePtr
AsyncSendVar
(
const
std
::
string
&
ep
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
VarHandlePtr
AsyncGetVar
(
const
std
::
string
&
ep
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
bool
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
VarHandlePtr
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
VarHandlePtr
AsyncSendBatchBarrier
(
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
VarHandlePtr
AsyncSendFetchBarrier
(
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
VarHandlePtr
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncSendComplete
(
const
std
::
string
&
ep
,
VarHandlePtr
AsyncSendComplete
(
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
bool
Wait
()
override
;
bool
Wait
()
override
;
...
...
paddle/fluid/operators/distributed/request_handler.h
浏览文件 @
b084dfab
...
@@ -28,6 +28,7 @@
...
@@ -28,6 +28,7 @@
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/macros.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -49,23 +50,77 @@ constexpr char kRequestPassBarrier[] = "RequestPassBarrier";
...
@@ -49,23 +50,77 @@ constexpr char kRequestPassBarrier[] = "RequestPassBarrier";
class
RPCServer
;
class
RPCServer
;
struct
VarHandle
{
class
VarHandle
{
// RPC endpoint.
public:
std
::
string
ep
;
VarHandle
(
const
std
::
string
ep
,
const
std
::
string
&
method
,
const
platform
::
DeviceContext
*
ctx
;
const
std
::
string
&
name
,
const
framework
::
Scope
*
scope
;
const
platform
::
DeviceContext
*
p_ctx
=
nullptr
,
// Variable name.
const
framework
::
Scope
*
p_scope
=
nullptr
)
std
::
string
name
;
:
ok_
(
kVarHandleDefaultState
)
{
// RPC method name.
ep_
=
ep
;
std
::
string
method
;
ctx_
=
p_ctx
;
scope_
=
p_scope
;
name_
=
name
;
method_
=
method
;
}
virtual
~
VarHandle
()
{}
public:
bool
Wait
()
{
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
sync_mutex_
);
wait_cond_
.
wait
(
lk
,
[
this
]
{
return
ok_
!=
kVarHandleDefaultState
;
});
}
VLOG
(
7
)
<<
"VarHandle wait:"
<<
ok_
;
return
ok_
!=
0
;
}
void
Finish
(
bool
ok
)
{
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
sync_mutex_
);
ok_
=
ok
;
}
VLOG
(
7
)
<<
"VarHandle finish:"
<<
ok
;
wait_cond_
.
notify_all
();
}
std
::
string
String
()
const
{
std
::
string
String
()
const
{
std
::
ostringstream
s
;
std
::
ostringstream
s
;
s
<<
method
<<
" name:["
<<
name
<<
"], ep:["
<<
ep
<<
"]"
;
s
<<
method_
<<
" name:["
<<
name_
<<
"], ep:["
<<
ep_
<<
"], ok:["
<<
ok_
<<
"]"
;
return
s
.
str
();
return
s
.
str
();
}
}
std
::
string
ep
()
const
{
return
ep_
;
}
const
platform
::
DeviceContext
*
ctx
()
const
{
return
ctx_
;
}
const
framework
::
Scope
*
scope
()
const
{
return
scope_
;
}
std
::
string
name
()
const
{
return
name_
;
}
std
::
string
method
()
const
{
return
method_
;
}
protected:
// RPC endpoint.
std
::
string
ep_
;
const
platform
::
DeviceContext
*
ctx_
;
const
framework
::
Scope
*
scope_
;
// Variable name.
std
::
string
name_
;
// RPC method name.
std
::
string
method_
;
protected:
std
::
mutex
sync_mutex_
;
std
::
condition_variable
wait_cond_
;
int
ok_
;
static
const
int
kVarHandleDefaultState
=
-
1
;
private:
DISABLE_COPY_AND_ASSIGN
(
VarHandle
);
};
};
typedef
std
::
shared_ptr
<
VarHandle
>
VarHandlePtr
;
class
RequestHandler
{
class
RequestHandler
{
public:
public:
explicit
RequestHandler
(
bool
sync_mode
)
explicit
RequestHandler
(
bool
sync_mode
)
...
...
paddle/fluid/operators/distributed/rpc_client.h
浏览文件 @
b084dfab
...
@@ -14,12 +14,14 @@
...
@@ -14,12 +14,14 @@
#pragma once
#pragma once
#include <condition_variable> // NOLINT
#include <string>
#include <string>
#include "gflags/gflags.h"
#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/operators/distributed/request_handler.h"
DECLARE_int32
(
rpc_deadline
);
DECLARE_int32
(
rpc_deadline
);
...
@@ -31,37 +33,36 @@ class RPCClient {
...
@@ -31,37 +33,36 @@ class RPCClient {
public:
public:
RPCClient
()
{}
RPCClient
()
{}
virtual
~
RPCClient
()
{}
virtual
~
RPCClient
()
{}
virtual
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
virtual
VarHandlePtr
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
virtual
VarHandlePtr
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
bool
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
virtual
VarHandlePtr
AsyncPrefetchVar
(
const
platform
::
DeviceContext
&
ctx
,
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
virtual
VarHandlePtr
AsyncSendBatchBarrier
(
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
virtual
VarHandlePtr
AsyncSendFetchBarrier
(
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
virtual
VarHandlePtr
AsyncCheckpointNotify
(
const
std
::
string
&
dir
,
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncSendComplete
(
const
std
::
string
&
ep
,
virtual
VarHandlePtr
AsyncSendComplete
(
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
// Complete tells all the pserver instances that finishe the training,
// Complete tells all the pserver instances that finishe the training,
// the pserver can reduce it's barrier count, and continue to train
// the pserver can reduce it's barrier count, and continue to train
...
...
paddle/fluid/operators/distributed/varhandle_test.cc
0 → 100644
浏览文件 @
b084dfab
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <unistd.h>
#include <string>
#include <thread> // NOLINT
#include "google/protobuf/text_format.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/distributed/request_handler.h"
using
paddle
::
operators
::
distributed
::
VarHandlePtr
;
using
paddle
::
operators
::
distributed
::
VarHandle
;
void
WaitTrue
(
VarHandlePtr
s
)
{
EXPECT_TRUE
(
s
->
Wait
());
}
void
WaitFalse
(
VarHandlePtr
s
)
{
EXPECT_FALSE
(
s
->
Wait
());
}
TEST
(
VarHandle
,
Run
)
{
std
::
vector
<
VarHandlePtr
>
a
;
for
(
int
i
=
0
;
i
<
12
;
i
++
)
{
VarHandlePtr
s
(
new
VarHandle
(
""
,
""
,
""
,
nullptr
,
nullptr
));
a
.
push_back
(
s
);
}
std
::
vector
<
std
::
unique_ptr
<
std
::
thread
>>
t
;
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
t
.
emplace_back
(
new
std
::
thread
(
WaitFalse
,
a
[
i
]));
}
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
a
[
i
]
->
Finish
(
false
);
t
[
i
]
->
join
();
}
for
(
int
i
=
6
;
i
<
12
;
i
++
)
{
t
.
emplace_back
(
new
std
::
thread
(
WaitTrue
,
a
[
i
]));
}
for
(
int
i
=
6
;
i
<
12
;
i
++
)
{
a
[
i
]
->
Finish
(
true
);
t
[
i
]
->
join
();
}
}
paddle/fluid/operators/prefetch_op.cc
浏览文件 @
b084dfab
...
@@ -44,16 +44,20 @@ class PrefetchOp : public framework::OperatorBase {
...
@@ -44,16 +44,20 @@ class PrefetchOp : public framework::OperatorBase {
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
<<
outs
[
i
]
<<
" back"
;
<<
outs
[
i
]
<<
" back"
;
rpc_client
->
AsyncPrefetchVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
],
outs
[
i
]);
rets
.
push_back
(
rpc_client
->
AsyncPrefetchVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
],
outs
[
i
]));
}
else
{
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
}
}
}
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
}
}
}
};
};
...
...
paddle/fluid/operators/recv_op.cc
浏览文件 @
b084dfab
...
@@ -44,12 +44,15 @@ class RecvOp : public framework::OperatorBase {
...
@@ -44,12 +44,15 @@ class RecvOp : public framework::OperatorBase {
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
i
++
)
{
VLOG
(
3
)
<<
"getting "
<<
outs
[
i
]
<<
" from "
<<
epmap
[
i
];
VLOG
(
3
)
<<
"getting "
<<
outs
[
i
]
<<
" from "
<<
epmap
[
i
];
r
pc_client
->
AsyncGetVar
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]
);
r
ets
.
push_back
(
rpc_client
->
AsyncGetVar
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
])
);
}
}
if
(
sync_mode
)
{
if
(
sync_mode
)
{
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
}
}
}
}
}
};
};
...
...
paddle/fluid/operators/send_op.cc
浏览文件 @
b084dfab
...
@@ -15,6 +15,7 @@ limitations under the License. */
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include <future> // NOLINT
#include <future> // NOLINT
#include <ostream>
#include <ostream>
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
...
@@ -45,18 +46,19 @@ class SendOp : public framework::OperatorBase {
...
@@ -45,18 +46,19 @@ class SendOp : public framework::OperatorBase {
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
];
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
];
// TODO(Yancey1989): we need to use an IO threadpool which has
rets
.
push_back
(
rpc_client
->
AsyncSendVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]));
// a larger number of threads than the computing threadpool.
rpc_client
->
AsyncSendVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
}
else
{
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
}
}
}
if
(
sync_send
)
{
if
(
sync_send
)
{
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
}
}
}
}
}
};
};
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
b084dfab
...
@@ -192,7 +192,8 @@ class MKLDNNHandler {
...
@@ -192,7 +192,8 @@ class MKLDNNHandler {
mkldnn
::
memory
::
primitive_desc
&
user_mpd
,
// NOLINT
mkldnn
::
memory
::
primitive_desc
&
user_mpd
,
// NOLINT
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
const
std
::
string
&
suffix
,
const
std
::
string
&
suffix
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
// NOLINT
bool
is_persistent
=
false
)
{
// create reorder primitive if the input format is not the preferred one
// create reorder primitive if the input format is not the preferred one
auto
local_key
=
key_
+
suffix
;
auto
local_key
=
key_
+
suffix
;
auto
key_reorder_p
=
key_
+
suffix
+
"reorder_p"
;
auto
key_reorder_p
=
key_
+
suffix
+
"reorder_p"
;
...
@@ -213,7 +214,7 @@ class MKLDNNHandler {
...
@@ -213,7 +214,7 @@ class MKLDNNHandler {
pipeline
.
push_back
(
*
reorder_p
);
pipeline
.
push_back
(
*
reorder_p
);
}
}
dev_ctx_
.
SetBlob
(
local_key
,
target_memory_p
);
dev_ctx_
.
SetBlob
(
local_key
,
target_memory_p
);
}
else
{
}
else
if
(
!
is_persistent
)
{
// Make reorder if needed
// Make reorder if needed
auto
reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
auto
reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
key_reorder_p
));
dev_ctx_
.
GetBlob
(
key_reorder_p
));
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
b084dfab
...
@@ -128,6 +128,13 @@ class ParallelExecutor(object):
...
@@ -128,6 +128,13 @@ class ParallelExecutor(object):
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
*
2
exec_strategy
.
num_threads
=
cpu_num
*
2
# Set 1 thread num under nccl2 distribute
# env to make sure all gpus run ops in same order.
if
num_trainers
>
1
:
assert
(
use_cuda
)
# FIXME(gongwb): avoid this set.
exec_strategy
.
num_threads
=
1
if
build_strategy
is
None
:
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
build_strategy
=
BuildStrategy
()
...
...
python/paddle/fluid/transpiler/inference_transpiler.py
浏览文件 @
b084dfab
...
@@ -60,12 +60,46 @@ class InferenceTranspiler(object):
...
@@ -60,12 +60,46 @@ class InferenceTranspiler(object):
if
not
isinstance
(
scope
,
core
.
Scope
):
if
not
isinstance
(
scope
,
core
.
Scope
):
raise
TypeError
(
"scope should be as Scope type or None"
)
raise
TypeError
(
"scope should be as Scope type or None"
)
use_mkldnn
=
bool
(
os
.
getenv
(
"FLAGS_use_mkldnn"
,
False
))
use_mkldnn
=
bool
(
os
.
getenv
(
"FLAGS_use_mkldnn"
,
False
))
self
.
_fuse_batch_norm
(
program
,
place
,
scope
)
self
.
_fuse_batch_norm
(
program
,
place
,
scope
)
if
use_mkldnn
:
if
use_mkldnn
:
self
.
_fuse_relu_mkldnn
(
program
)
self
.
_fuse_conv_bias_mkldnn
(
program
)
self
.
_fuse_conv_bias_mkldnn
(
program
)
self
.
_fuse_conv_relu_mkldnn
(
program
)
self
.
_fuse_bn_relu_mkldnn
(
program
)
def
_fuse_conv_relu_mkldnn
(
self
,
program
):
'''
Transpile the program by fused relu activation for MKLDNN program.
Relu activation following convolution OP can be fused by adding
'fuse_relu' attribute to convolution OP.
The result of fuse is:
- before:
- conv->relu->any_other_op
- after:
- conv->any_other_op
:param program: program to transpile
:type program: Program
'''
self
.
block
=
program
.
block
(
0
)
i
=
0
while
i
<
len
(
self
.
block
.
ops
):
current_op
=
self
.
block
.
ops
[
i
]
if
current_op
.
type
in
[
'conv2d'
]:
next_op
=
self
.
block
.
ops
[
i
+
1
]
if
next_op
.
type
==
'relu'
:
# modify conv OP to include relu
current_op
.
set_attr
(
"fuse_relu"
,
True
)
# remove conv OP
self
.
block
.
_remove_op
(
i
+
1
)
i
=
i
+
1
def
_fuse_relu_mkldnn
(
self
,
program
):
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program
=
program
.
clone
()
def
_fuse_bn_relu_mkldnn
(
self
,
program
):
'''
'''
Transpile the program by fused relu activation for MKLDNN program.
Transpile the program by fused relu activation for MKLDNN program.
...
@@ -160,7 +194,6 @@ class InferenceTranspiler(object):
...
@@ -160,7 +194,6 @@ class InferenceTranspiler(object):
self
.
block
.
_remove_op
(
i
+
1
)
# Remove old conv
self
.
block
.
_remove_op
(
i
+
1
)
# Remove old conv
self
.
block
.
_remove_op
(
i
+
1
)
# Remove elementwise_add
self
.
block
.
_remove_op
(
i
+
1
)
# Remove elementwise_add
i
=
i
+
1
i
=
i
+
1
i
=
i
+
1
self
.
_remove_unused_var
()
self
.
_remove_unused_var
()
# TODO(luotao): use clone() method to flush the program.desc in force,
# TODO(luotao): use clone() method to flush the program.desc in force,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录