From af2eb94909a0b938b23b0959b42a1b8c36236778 Mon Sep 17 00:00:00 2001 From: Liu Yiqun Date: Wed, 13 Sep 2017 12:48:22 +0000 Subject: [PATCH] Support inputs and weights of multi-dimensions and refine the output names. --- paddle/operators/fc_op.cc | 53 ++++++++++++------- .../paddle/v2/framework/tests/test_fc_op.py | 49 ++++++++++------- 2 files changed, 64 insertions(+), 38 deletions(-) diff --git a/paddle/operators/fc_op.cc b/paddle/operators/fc_op.cc index 1c6c0454275..3e6cd8f76ad 100644 --- a/paddle/operators/fc_op.cc +++ b/paddle/operators/fc_op.cc @@ -26,7 +26,7 @@ class FCOp : public NetOp { : NetOp(type, inputs, outputs, attrs) { auto x = Inputs("X"); auto w = Inputs("W"); - auto mul_out = Outputs("mul_out"); + auto mul_out = Outputs("MulOut"); PADDLE_ENFORCE_EQ( x.size(), w.size(), "The size of inputs X(%d) should be the same as that of weights W(%d).", @@ -36,36 +36,51 @@ class FCOp : public NetOp { "as that of inputs X(%d).", mul_out.size(), x.size()); - int n = x.size(); - PADDLE_ENFORCE_GE(n, 1, + size_t n = x.size(); + PADDLE_ENFORCE_GE(n, static_cast(1), "The size of inputs X(%d) should be no less than 1.", n); + auto x_num_col_dims = Attr>("xNumColDims"); + auto w_num_col_dims = Attr>("wNumColDims"); + PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n, + "The size of attribute xNumColDims(%d) should be the " + "same as that of inputs X(%d).", + x_num_col_dims.size(), n); + PADDLE_ENFORCE_EQ(w_num_col_dims.size(), n, + "The size of attribute wNumColDims(%d) should be the " + "same as that of inputs X(%d).", + w_num_col_dims.size(), n) + // mul_out[i] = X[i] * W[i] - for (int i = 0; i < n; i++) { - AppendOp(framework::OpRegistry::CreateOp( - "mul", {{"X", {x[i]}}, {"Y", {w[i]}}}, {{"Out", {mul_out[i]}}}, {})); + for (size_t i = 0; i < n; i++) { + framework::AttributeMap mul_attr; + mul_attr["x_num_col_dims"] = static_cast(x_num_col_dims[i]); + mul_attr["y_num_col_dims"] = static_cast(w_num_col_dims[i]); + AppendOp( + framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}}, + {{"Out", {mul_out[i]}}}, mul_attr)); } // sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1] if (n > 1) { AppendOp(framework::OpRegistry::CreateOp( - "sum", {{"X", {mul_out}}}, {{"Out", {Output("sum_out")}}}, {})); + "sum", {{"X", {mul_out}}}, {{"Out", {Output("SumOut")}}}, {})); } else { AppendOp(framework::OpRegistry::CreateOp( - "identity", {{"X", {mul_out[0]}}}, {{"Y", {Output("sum_out")}}}, {})); + "identity", {{"X", {mul_out[0]}}}, {{"Y", {Output("SumOut")}}}, {})); } // add_out = sum_out + b - auto b = Input("b"); - std::string add_out = "sum_out"; + auto b = Input("B"); + std::string add_out = "SumOut"; if (b != framework::kEmptyVarName) { - add_out = "add_out"; + add_out = "AddOut"; AppendOp(framework::OpRegistry::CreateOp( - "rowwise_add", {{"X", {Output("sum_out")}}, {"b", {Input("b")}}}, + "rowwise_add", {{"X", {Output("SumOut")}}, {"b", {Input("B")}}}, {{"Out", {Output(add_out)}}}, {})); } else { - if (Output("add_out") != framework::kEmptyVarName) { - this->Rename(Output("add_out"), framework::kEmptyVarName); + if (Output("AddOut") != framework::kEmptyVarName) { + this->Rename(Output("AddOut"), framework::kEmptyVarName); } } @@ -84,24 +99,26 @@ class FCOpMaker : public framework::OpProtoAndCheckerMaker { .AsDuplicable(); AddInput("W", "The weights of FC operator, a ordered vector of 2-D matrix.") .AsDuplicable(); - AddInput("b", "The 1-D bias vector of FC operator"); + AddInput("B", "The 1-D bias vector of FC operator"); AddOutput("Y", "The activated output matrix of FC operator"); - AddOutput("mul_out", + AddOutput("MulOut", "The intermediate outputs of FC operator, " "saving the product of X[i] * W[i]") .AsIntermediate() .AsDuplicable(); - AddOutput("sum_out", + AddOutput("SumOut", "The intermediate output of FC operator, " "saving the sum of products, sum(X[i] * W[i])") .AsIntermediate(); - AddOutput("add_out", + AddOutput("AddOut", "The non-actived output of FC operator, saving X * W + b") .AsIntermediate(); AddAttr("activation", "The activation type of FC operator.") .SetDefault("identity") .InEnum({"identity", "sigmoid", "softmax"}); + AddAttr>("xNumColDims", ""); + AddAttr>("wNumColDims", ""); AddComment(R"DOC( Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer diff --git a/python/paddle/v2/framework/tests/test_fc_op.py b/python/paddle/v2/framework/tests/test_fc_op.py index 00c48709971..39906c8b332 100644 --- a/python/paddle/v2/framework/tests/test_fc_op.py +++ b/python/paddle/v2/framework/tests/test_fc_op.py @@ -5,52 +5,61 @@ from op_test import OpTest class TestFCOp1(OpTest): def setUp(self): - self.op_type = "fc" x0 = np.random.random((16, 32)).astype("float32") w0 = np.random.random((32, 10)).astype("float32") b = np.random.random(10).astype("float32") - self.inputs = {"X": [("X0", x0)], "W": [("W0", w0)], "b": b} + mul_out0 = np.dot(x0, w0) sum_out = mul_out0 add_out = sum_out + b identity_out = add_out + + self.op_type = "fc" + self.inputs = {"X": [("X0", x0)], "W": [("W0", w0)], "B": b} self.outputs = { - "mul_out": [("mul_out0", mul_out0)], - "sum_out": sum_out, - "add_out": add_out, + "MulOut": [("MulOut0", mul_out0)], + "SumOut": sum_out, + "AddOut": add_out, "Y": identity_out } + self.attrs = {"xNumColDims": [1], "wNumColDims": [1]} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(["X0", "W0", "b"], "Y", max_relative_error=0.01) + self.check_grad(["X0", "W0", "B"], "Y", max_relative_error=0.01) class TestFCOp2(OpTest): def setUp(self): - self.op_type = "fc" - x0 = np.random.random((16, 32)).astype("float32") + x0 = np.random.random((16, 4, 8)).astype("float32") x1 = np.random.random((16, 32)).astype("float32") w0 = np.random.random((32, 10)).astype("float32") - w1 = np.random.random((32, 10)).astype("float32") + w1 = np.random.random((4, 8, 10)).astype("float32") b = np.random.random(10).astype("float32") + + mul_out0 = np.dot(x0.reshape(16, 4 * 8), w0) + mul_out1 = np.dot(x1, w1.reshape(4 * 8, 10)) + sum_out = mul_out0 + mul_out1 + add_out = np.add(sum_out, b) + sigmoid_out = 1 / (1 + np.exp(-add_out)) + + self.op_type = "fc" self.inputs = { "X": [("X0", x0), ("X1", x1)], "W": [("W0", w0), ("W1", w1)], - "b": b + "B": b + } + self.attrs = { + "xNumColDims": [1, 1], + "wNumColDims": [1, 2], + "activation": "sigmoid" } - self.attrs = {"activation": "sigmoid"} - mul_out0 = np.dot(x0, w0) - mul_out1 = np.dot(x1, w1) - sum_out = mul_out0 + mul_out1 - add_out = np.add(sum_out, b) - sigmoid_out = 1 / (1 + np.exp(-add_out)) self.outputs = { - "mul_out": [("mul_out0", mul_out0), ("mul_out1", mul_out1)], - "sum_out": sum_out, - "add_out": add_out, + "MulOut": [("MulOut0", mul_out0), ("MulOut1", mul_out1)], + "SumOut": sum_out, + "AddOut": add_out, "Y": sigmoid_out } @@ -59,7 +68,7 @@ class TestFCOp2(OpTest): def test_check_grad(self): self.check_grad( - ["X0", "X1", "W0", "W1", "b"], "Y", max_relative_error=0.01) + ["X0", "X1", "W0", "W1", "B"], "Y", max_relative_error=0.01) if __name__ == '__main__': -- GitLab