Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ad6c3b92
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ad6c3b92
编写于
8月 16, 2021
作者:
S
shangliang Xu
提交者:
GitHub
8月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[dev] fix dice_loss bug (#34757)
* fix dice_loss bug
上级
e84b2e9b
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
83 addition
and
5 deletion
+83
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+20
-5
python/paddle/fluid/tests/unittests/test_nn_dice_loss.py
python/paddle/fluid/tests/unittests/test_nn_dice_loss.py
+63
-0
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
ad6c3b92
...
@@ -7105,11 +7105,11 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
...
@@ -7105,11 +7105,11 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
Parameters:
Parameters:
input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_
k,
D]`, where :math:`N_1` is
the batch_size, :math:`
N_D` is 1. It is usually the output predictions of sigmoid activation.
the batch_size, :math:`
D` is the number of categories. It is usually the output
The data type can be float32 or float64.
predictions of sigmoid activation.
The data type can be float32 or float64.
label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_
D
]`.
label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_
k, 1
]`.
where :math:`N_1` is the batch_size
, :math:`N_D` is 1. The data type can be float32 or floa
t64.
where :math:`N_1` is the batch_size
. The data type can be int32 or in
t64.
epsilon (float): The epsilon will be added to the numerator and denominator.
epsilon (float): The epsilon will be added to the numerator and denominator.
If both input and label are empty, it makes sure dice is 1.
If both input and label are empty, it makes sure dice is 1.
Default: 0.00001
Default: 0.00001
...
@@ -7131,6 +7131,21 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
...
@@ -7131,6 +7131,21 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
predictions = F.softmax(x)
predictions = F.softmax(x)
loss = F.dice_loss(input=predictions, label=label)
loss = F.dice_loss(input=predictions, label=label)
"""
"""
assert input.dtype in (paddle.float32, paddle.float64)
assert label.dtype in (paddle.int32, paddle.int64)
assert len(input.shape) >= 2, \
"The rank of input should be greater than or equal to 2."
assert len(input.shape) == len(label.shape), (
"The rank of input and label should be equal, "
"but received input: %d, label: %d." %
(len(input.shape), len(label.shape)))
assert label.shape[-1] == 1, ("The last dimension of label should be 1, "
"but received %d." % label.shape[-1])
assert input.shape[:-1] == label.shape[:-1], (
"All dimensions should be equal except the last one.")
assert input.numel() > 0 and label.numel() > 0, \
"Any dimension of input and label cannot be equal to 0."
label = one_hot(label, depth=input.shape[-1])
label = one_hot(label, depth=input.shape[-1])
reduce_dim = list(range(1, len(input.shape)))
reduce_dim = list(range(1, len(input.shape)))
inse = reduce_sum(input * label, dim=reduce_dim)
inse = reduce_sum(input * label, dim=reduce_dim)
...
...
python/paddle/fluid/tests/unittests/test_nn_dice_loss.py
0 → 100644
浏览文件 @
ad6c3b92
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.layers.nn
as
nn
num_classes
=
4
eps
=
1e-6
class
TestDiceLossValue
(
unittest
.
TestCase
):
def
test_dice_loss
(
self
):
input_
=
paddle
.
rand
([
2
,
3
,
num_classes
])
label_
=
paddle
.
randint
(
0
,
num_classes
,
[
2
,
3
,
1
],
dtype
=
paddle
.
int64
)
input_np
,
label_np
=
input_
.
numpy
(),
label_
.
numpy
()
eye_np
=
np
.
eye
(
num_classes
)
label_np
=
np
.
float32
(
eye_np
[
np
.
squeeze
(
label_np
)])
input_np
=
np
.
reshape
(
input_np
,
[
2
,
-
1
])
label_np
=
np
.
reshape
(
label_np
,
[
2
,
-
1
])
intersection_np
=
np
.
sum
(
input_np
*
label_np
,
axis
=-
1
)
union_np
=
input_np
.
sum
(
-
1
)
+
label_np
.
sum
(
-
1
)
dice_np
=
np
.
mean
(
1
-
2
*
intersection_np
/
(
union_np
+
eps
))
dice_paddle
=
nn
.
dice_loss
(
input_
,
label_
,
eps
)
self
.
assertTrue
(
np
.
isclose
(
dice_np
,
dice_paddle
.
numpy
()).
all
())
class
TestDiceLossInvalidInput
(
unittest
.
TestCase
):
def
test_error
(
self
):
def
test_invalid_dtype
():
input_
=
paddle
.
rand
([
2
,
3
,
num_classes
],
dtype
=
paddle
.
float32
)
label_
=
paddle
.
randint
(
0
,
num_classes
,
[
2
,
3
,
1
],
dtype
=
paddle
.
int64
)
nn
.
dice_loss
(
input_
,
label_
.
astype
(
paddle
.
float32
))
self
.
assertRaises
(
AssertionError
,
test_invalid_dtype
)
def
test_zero_shape_input
():
input_
=
paddle
.
rand
([
0
,
3
,
num_classes
],
dtype
=
paddle
.
float32
)
label_
=
paddle
.
randint
(
0
,
num_classes
,
[
0
,
3
,
1
],
dtype
=
paddle
.
int64
)
nn
.
dice_loss
(
input_
,
label_
)
self
.
assertRaises
(
AssertionError
,
test_zero_shape_input
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录