Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
abfa81b1
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
abfa81b1
编写于
10月 13, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into seqpool
上级
4c3ef7fc
918d6946
变更
17
显示空白变更内容
内联
并排
Showing
17 changed file
with
1021 addition
and
93 deletion
+1021
-93
paddle/framework/tensor_array.cc
paddle/framework/tensor_array.cc
+17
-11
paddle/framework/tensor_array.h
paddle/framework/tensor_array.h
+9
-3
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+2
-1
paddle/operators/activation_op.cc
paddle/operators/activation_op.cc
+35
-0
paddle/operators/activation_op.h
paddle/operators/activation_op.h
+56
-23
paddle/operators/dynamic_recurrent_op.cc
paddle/operators/dynamic_recurrent_op.cc
+110
-52
paddle/operators/dynamic_recurrent_op.h
paddle/operators/dynamic_recurrent_op.h
+25
-1
paddle/operators/dynamic_recurrent_op_test.cc
paddle/operators/dynamic_recurrent_op_test.cc
+0
-1
paddle/operators/gru_unit_op.cc
paddle/operators/gru_unit_op.cc
+210
-0
paddle/operators/gru_unit_op.cu
paddle/operators/gru_unit_op.cu
+22
-0
paddle/operators/gru_unit_op.h
paddle/operators/gru_unit_op.h
+230
-0
paddle/operators/sum_op.cc
paddle/operators/sum_op.cc
+1
-1
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+28
-0
python/paddle/v2/framework/op.py
python/paddle/v2/framework/op.py
+22
-0
python/paddle/v2/framework/tests/test_activation_op.py
python/paddle/v2/framework/tests/test_activation_op.py
+28
-0
python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py
...on/paddle/v2/framework/tests/test_dynamic_recurrent_op.py
+111
-0
python/paddle/v2/framework/tests/test_gru_unit_op.py
python/paddle/v2/framework/tests/test_gru_unit_op.py
+115
-0
未找到文件。
paddle/framework/tensor_array.cc
浏览文件 @
abfa81b1
...
@@ -76,6 +76,17 @@ LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
...
@@ -76,6 +76,17 @@ LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
const
std
::
vector
<
DySeqMeta
>&
meta
,
const
LoD
&
lod
,
const
std
::
vector
<
DySeqMeta
>&
meta
,
const
LoD
&
lod
,
size_t
level
);
size_t
level
);
std
::
vector
<
size_t
>
GenDyBatchIndice
(
const
DySeqMetaBatch
&
meta
,
int
batch_id
)
{
// collect indice need to copy to the batch
std
::
vector
<
size_t
>
indice
;
for
(
const
auto
&
seq
:
meta
)
{
size_t
id
=
seq
.
begin
+
batch_id
;
if
(
id
>=
seq
.
end
)
break
;
indice
.
push_back
(
id
);
}
return
indice
;
}
}
// namespace detail
}
// namespace detail
const
LoDTensor
&
TensorArray
::
Read
(
size_t
index
)
const
{
const
LoDTensor
&
TensorArray
::
Read
(
size_t
index
)
const
{
...
@@ -113,7 +124,7 @@ LoDTensor TensorArray::Pack(size_t level, const std::vector<DySeqMeta>& meta,
...
@@ -113,7 +124,7 @@ LoDTensor TensorArray::Pack(size_t level, const std::vector<DySeqMeta>& meta,
return
detail
::
PackDynamicBatch
(
values_
,
meta
,
lod
,
level
);
return
detail
::
PackDynamicBatch
(
values_
,
meta
,
lod
,
level
);
}
}
std
::
vector
<
DySeqMeta
>
TensorArray
::
Unpack
(
const
LoDTensor
&
source
,
int
level
,
DySeqMetaBatch
TensorArray
::
Unpack
(
const
LoDTensor
&
source
,
int
level
,
bool
length_desend
)
{
bool
length_desend
)
{
detail
::
DynamicBatchUnpacker
unpacker
(
source
,
level
,
detail
::
DynamicBatchUnpacker
unpacker
(
source
,
level
,
length_desend
/*descend*/
);
length_desend
/*descend*/
);
...
@@ -129,6 +140,7 @@ std::vector<DySeqMeta> TensorArray::Unpack(const LoDTensor& source, int level,
...
@@ -129,6 +140,7 @@ std::vector<DySeqMeta> TensorArray::Unpack(const LoDTensor& source, int level,
Write
(
batch_id
,
unpacker
.
GetBatch
(
batch_id
));
Write
(
batch_id
,
unpacker
.
GetBatch
(
batch_id
));
}
}
PADDLE_ENFORCE
(
!
unpacker
.
meta
.
empty
());
return
unpacker
.
meta
;
return
unpacker
.
meta
;
}
}
...
@@ -218,13 +230,7 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
...
@@ -218,13 +230,7 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
PADDLE_ENFORCE
(
!
meta
.
empty
(),
"should build meta first"
);
PADDLE_ENFORCE
(
!
meta
.
empty
(),
"should build meta first"
);
LoDTensor
result
;
LoDTensor
result
;
// collect indice need to copy to the batch
auto
indice
=
detail
::
GenDyBatchIndice
(
meta
,
index
);
std
::
vector
<
size_t
>
indice
;
for
(
const
auto
&
seq
:
meta
)
{
size_t
id
=
seq
.
begin
+
index
;
if
(
id
>=
seq
.
end
)
break
;
indice
.
push_back
(
id
);
}
PADDLE_ENFORCE
(
!
indice
.
empty
(),
"invalid batch at %d"
,
index
);
PADDLE_ENFORCE
(
!
indice
.
empty
(),
"invalid batch at %d"
,
index
);
// copy the indice of records in LoDTensor
// copy the indice of records in LoDTensor
...
@@ -237,9 +243,9 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
...
@@ -237,9 +243,9 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
for
(
size_t
i
=
0
;
i
<
indice
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
indice
.
size
();
i
++
)
{
auto
index
=
indice
[
i
];
auto
index
=
indice
[
i
];
auto
target
=
result
.
Slice
<
value_type
>
(
i
,
i
+
1
);
auto
target
=
result
.
Slice
<
value_type
>
(
i
,
i
+
1
);
auto
s
ource_
=
source
->
Slice
<
value_type
>
(
index
,
index
+
1
);
auto
s
lice
=
source
->
Slice
<
value_type
>
(
index
,
index
+
1
);
target
.
CopyFrom
<
value_type
>
(
s
ource_
,
platform
::
CPUPlace
(),
target
.
CopyFrom
<
value_type
>
(
s
lice
,
platform
::
CPUPlace
(),
platform
::
CPUDeviceContext
());
platform
::
CPUDeviceContext
());
}
}
...
...
paddle/framework/tensor_array.h
浏览文件 @
abfa81b1
...
@@ -34,6 +34,13 @@ struct DySeqMeta {
...
@@ -34,6 +34,13 @@ struct DySeqMeta {
size_t
ori_idx
;
size_t
ori_idx
;
};
};
using
DySeqMetaBatch
=
std
::
vector
<
DySeqMeta
>
;
/*
* Extract the indices of instances.
*/
std
::
vector
<
size_t
>
GenDyBatchIndice
(
const
DySeqMetaBatch
&
metas
,
int
batch_id
);
/*
/*
* TensorArray is a C-array-like array of tensors, it is meant to be used with
* TensorArray is a C-array-like array of tensors, it is meant to be used with
* dynamic iteration primitives such as while_loop. It is used to segment inputs
* dynamic iteration primitives such as while_loop. It is used to segment inputs
...
@@ -69,7 +76,7 @@ class TensorArray {
...
@@ -69,7 +76,7 @@ class TensorArray {
* Recover the original LoD-arranged LoDTensor with the `values`, `level` and
* Recover the original LoD-arranged LoDTensor with the `values`, `level` and
* `indice_map`.
* `indice_map`.
*/
*/
LoDTensor
Pack
(
size_t
level
,
const
std
::
vector
<
DySeqMeta
>
&
meta
,
LoDTensor
Pack
(
size_t
level
,
const
DySeqMetaBatch
&
meta
,
const
LoD
&
lod
)
const
;
const
LoD
&
lod
)
const
;
/*
/*
...
@@ -77,8 +84,7 @@ class TensorArray {
...
@@ -77,8 +84,7 @@ class TensorArray {
* `values`, if set `desend`, will sort by length in descending order else in
* `values`, if set `desend`, will sort by length in descending order else in
* ascending order.
* ascending order.
*/
*/
std
::
vector
<
DySeqMeta
>
Unpack
(
const
LoDTensor
&
source
,
int
level
,
DySeqMetaBatch
Unpack
(
const
LoDTensor
&
source
,
int
level
,
bool
length_desend
);
bool
length_desend
);
/*
/*
* Pack the values into a tensor with rank one higher than each tensor in
* Pack the values into a tensor with rank one higher than each tensor in
...
...
paddle/operators/CMakeLists.txt
浏览文件 @
abfa81b1
...
@@ -84,8 +84,9 @@ function(op_library TARGET)
...
@@ -84,8 +84,9 @@ function(op_library TARGET)
endif
()
endif
()
# pybind USE_NO_KERNEL_OP
# pybind USE_NO_KERNEL_OP
# HACK: if REGISTER_OP_CPU_KERNEL presents the operator must have kernel
file
(
READ
${
TARGET
}
.cc TARGET_CONTENT
)
file
(
READ
${
TARGET
}
.cc TARGET_CONTENT
)
string
(
REGEX MATCH
"
OperatorWithKernel
"
regex_result
"
${
TARGET_CONTENT
}
"
)
string
(
REGEX MATCH
"
REGISTER_OP_CPU_KERNEL
"
regex_result
"
${
TARGET_CONTENT
}
"
)
string
(
REPLACE
"_op"
""
TARGET
"
${
TARGET
}
"
)
string
(
REPLACE
"_op"
""
TARGET
"
${
TARGET
}
"
)
if
(
${
pybind_flag
}
EQUAL 0 AND regex_result STREQUAL
""
)
if
(
${
pybind_flag
}
EQUAL 0 AND regex_result STREQUAL
""
)
file
(
APPEND
${
pybind_file
}
"USE_NO_KERNEL_OP(
${
TARGET
}
);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_NO_KERNEL_OP(
${
TARGET
}
);
\n
"
)
...
...
paddle/operators/activation_op.cc
浏览文件 @
abfa81b1
...
@@ -338,6 +338,38 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -338,6 +338,38 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
}
}
};
};
template
<
typename
AttrType
>
class
HardSigmoidOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
HardSigmoidOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of HardSigmoid operator"
);
AddOutput
(
"Y"
,
"Output of HardSigmoid operator"
);
AddComment
(
R"DOC(
Hard Sigmoid activation operator.
Segment-wise linear approximation of sigmoid[1].
This is much faster than sigmoid.
hard_sigmoid = max(0, min(1, slope * x + shift))
The slope should be positive. The offset can be either positive or negative.
The default slope and shift are set from [1].
It is recommended to use the defaults for this activation.
References:
[1] Noisy Activation Functions
(https://arxiv.org/abs/1603.00391)
)DOC"
);
AddAttr
<
AttrType
>
(
"slope"
,
"Slope for linear approximation of sigmoid"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.2
));
AddAttr
<
AttrType
>
(
"offset"
,
"Offset for linear approximation of sigmoid"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
));
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
@@ -413,6 +445,9 @@ REGISTER_OP(thresholded_relu, ops::ActivationOp,
...
@@ -413,6 +445,9 @@ REGISTER_OP(thresholded_relu, ops::ActivationOp,
ops
::
ThresholdedReluOpMaker
<
float
>
,
thresholded_relu_grad
,
ops
::
ThresholdedReluOpMaker
<
float
>
,
thresholded_relu_grad
,
ops
::
ActivationOpGrad
);
ops
::
ActivationOpGrad
);
REGISTER_OP
(
hard_sigmoid
,
ops
::
ActivationOp
,
ops
::
HardSigmoidOpMaker
<
float
>
,
hard_sigmoid_grad
,
ops
::
ActivationOpGrad
);
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \
REGISTER_OP_CPU_KERNEL( \
REGISTER_OP_CPU_KERNEL( \
act_type, \
act_type, \
...
...
paddle/operators/activation_op.h
浏览文件 @
abfa81b1
...
@@ -616,6 +616,38 @@ struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
...
@@ -616,6 +616,38 @@ struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
}
}
};
};
template
<
typename
T
>
struct
HardSigmoidFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
slope
;
float
offset
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"slope"
,
&
slope
},
{
"offset"
,
&
offset
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
auto
temp
=
x
*
static_cast
<
T
>
(
slope
)
+
static_cast
<
T
>
(
offset
);
y
.
device
(
d
)
=
temp
.
cwiseMax
(
static_cast
<
T
>
(
0
)).
cwiseMin
(
static_cast
<
T
>
(
1
));
}
};
template
<
typename
T
>
struct
HardSigmoidGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
slope
;
float
offset
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"slope"
,
&
slope
},
{
"offset"
,
&
offset
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
((
y
>
static_cast
<
T
>
(
0
))
*
(
y
<
static_cast
<
T
>
(
1
))).
template
cast
<
T
>()
*
static_cast
<
T
>
(
slope
);
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
@@ -642,4 +674,5 @@ struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
...
@@ -642,4 +674,5 @@ struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
__macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
__macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
__macro(elu, ELUFunctor, ELUGradFunctor); \
__macro(elu, ELUFunctor, ELUGradFunctor); \
__macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor); \
__macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor); \
__macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
__macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);
__macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);
paddle/operators/dynamic_recurrent_op.cc
浏览文件 @
abfa81b1
...
@@ -23,6 +23,7 @@ using framework::Scope;
...
@@ -23,6 +23,7 @@ using framework::Scope;
using
framework
::
TensorArray
;
using
framework
::
TensorArray
;
using
framework
::
LoDTensor
;
using
framework
::
LoDTensor
;
using
framework
::
Variable
;
using
framework
::
Variable
;
using
framework
::
DySeqMetaBatch
;
namespace
detail
{
namespace
detail
{
...
@@ -33,6 +34,29 @@ inline void CreateVariables(Scope& scope,
...
@@ -33,6 +34,29 @@ inline void CreateVariables(Scope& scope,
}
}
}
}
/*
* The inputs with sequence should be reordered when they are split, so the
* boot_states should be reordered in the same order.
*
* NOTE This may require that the `pre_state` of the first time step should just
* copy the `boot_state` rather than reference it, for that the content should
* be reordered, but the RNN op should not change the `boot_state` as an input
* variable's content.
*/
template
<
typename
T
>
inline
void
ReorderBootState
(
const
DySeqMetaBatch
&
metas
,
const
LoDTensor
&
boot_state
,
LoDTensor
*
tensor
,
const
platform
::
Place
&
dst_place
)
{
for
(
size_t
seq_id
=
0
;
seq_id
<
metas
.
size
();
seq_id
++
)
{
auto
slice
=
tensor
->
Slice
<
T
>
(
seq_id
,
seq_id
+
1
);
auto
boot_slice
=
boot_state
.
Slice
<
T
>
(
metas
[
seq_id
].
ori_idx
,
metas
[
seq_id
].
ori_idx
+
1
);
// TODO(superjom) pass in device context as an argument
slice
.
template
CopyFrom
<
T
>(
boot_slice
,
dst_place
,
platform
::
CPUDeviceContext
());
}
}
}
// namespace detail
}
// namespace detail
class
DynamicRecurrentOpProtoAndCheckerMaker
class
DynamicRecurrentOpProtoAndCheckerMaker
...
@@ -69,6 +93,7 @@ void DynamicRecurrentOp::Run(const Scope& scope,
...
@@ -69,6 +93,7 @@ void DynamicRecurrentOp::Run(const Scope& scope,
CreateScopes
();
CreateScopes
();
WriteStepInputs
();
WriteStepInputs
();
InitStates
();
InitStates
();
WriteStepOutputs
();
// call stepnet in all the time steps
// call stepnet in all the time steps
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
...
@@ -76,7 +101,6 @@ void DynamicRecurrentOp::Run(const Scope& scope,
...
@@ -76,7 +101,6 @@ void DynamicRecurrentOp::Run(const Scope& scope,
stepnet_
->
Run
(
step_scope
,
dev_ctx
);
stepnet_
->
Run
(
step_scope
,
dev_ctx
);
}
}
WriteStepOutputs
();
ConcatOutputs
();
ConcatOutputs
();
}
}
...
@@ -84,11 +108,11 @@ void DynamicRecurrentOp::SplitInputs() const {
...
@@ -84,11 +108,11 @@ void DynamicRecurrentOp::SplitInputs() const {
// TODO(superjom) make level a config
// TODO(superjom) make level a config
// TODO(superjom) check all the inputs has the same LoD
// TODO(superjom) check all the inputs has the same LoD
int
level
=
0
;
int
level
=
0
;
const
auto
&
inlinks
=
cache_
.
inlinks
;
for
(
const
auto
&
item
:
cache_
.
inlinks
)
{
for
(
const
auto
&
item
:
inlinks
)
{
const
auto
&
var
=
item
.
second
;
const
auto
&
var
=
item
.
second
;
const
auto
&
tensor
=
var
->
Get
<
LoDTensor
>
();
const
auto
&
tensor
=
var
->
Get
<
LoDTensor
>
();
TensorArray
&
ta
=
step_inputs_
[
item
.
first
];
TensorArray
&
ta
=
step_inputs_
[
item
.
first
];
dy_seq_metas_
[
item
.
first
]
=
dy_seq_metas_
[
item
.
first
]
=
ta
.
Unpack
(
tensor
,
level
,
true
/*length_descend*/
);
ta
.
Unpack
(
tensor
,
level
,
true
/*length_descend*/
);
...
@@ -120,17 +144,11 @@ void DynamicRecurrentOp::WriteStepInputs() const {
...
@@ -120,17 +144,11 @@ void DynamicRecurrentOp::WriteStepInputs() const {
}
}
void
DynamicRecurrentOp
::
WriteStepOutputs
()
const
{
void
DynamicRecurrentOp
::
WriteStepOutputs
()
const
{
for
(
size_t
step
=
0
;
step
<
cache_
.
scopes
->
size
();
step
++
)
{
// initialize step outputs
auto
&
scope
=
cache_
.
GetScope
(
step
);
for
(
const
auto
&
item
:
cache_
.
outlinks
)
{
for
(
auto
&
item
:
step_outputs_
)
{
step_outputs_
.
emplace
(
item
.
first
,
TensorArray
());
auto
*
var
=
scope
.
FindVar
(
item
.
first
);
if
(
var
==
nullptr
)
{
var
=
scope
.
NewVar
(
item
.
first
);
}
auto
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
item
.
second
.
WriteShared
(
step
,
*
tensor
);
}
}
}
PADDLE_ENFORCE_GT
(
step_outputs_
.
size
(),
0UL
);
}
}
void
DynamicRecurrentOp
::
CreateScopes
()
const
{
void
DynamicRecurrentOp
::
CreateScopes
()
const
{
...
@@ -145,12 +163,18 @@ void DynamicRecurrentOp::CreateScopes() const {
...
@@ -145,12 +163,18 @@ void DynamicRecurrentOp::CreateScopes() const {
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
,
"stepnet should be set first"
);
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
,
"stepnet should be set first"
);
std
::
vector
<
std
::
string
>
memories
;
std
::
vector
<
std
::
string
>
memories
;
std
::
vector
<
std
::
string
>
pre_memories
;
std
::
vector
<
std
::
string
>
pre_memories
;
std
::
vector
<
std
::
string
>
stepnet_outputs
;
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
back_inserter
(
memories
),
std
::
back_inserter
(
memories
),
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
var
;
});
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
var
;
});
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
back_inserter
(
pre_memories
),
std
::
back_inserter
(
pre_memories
),
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
pre_var
;
});
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
pre_var
;
});
for
(
const
auto
&
item
:
stepnet_
->
Outputs
())
{
for
(
const
auto
&
var
:
item
.
second
)
{
stepnet_outputs
.
push_back
(
var
);
}
}
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
auto
&
scope
=
cache_
.
GetScope
(
step
);
auto
&
scope
=
cache_
.
GetScope
(
step
);
...
@@ -158,58 +182,86 @@ void DynamicRecurrentOp::CreateScopes() const {
...
@@ -158,58 +182,86 @@ void DynamicRecurrentOp::CreateScopes() const {
detail
::
CreateVariables
(
scope
,
arg_
.
outlinks
);
detail
::
CreateVariables
(
scope
,
arg_
.
outlinks
);
detail
::
CreateVariables
(
scope
,
memories
);
detail
::
CreateVariables
(
scope
,
memories
);
detail
::
CreateVariables
(
scope
,
pre_memories
);
detail
::
CreateVariables
(
scope
,
pre_memories
);
detail
::
CreateVariables
(
scope
,
stepnet_outputs
);
}
}
}
}
void
DynamicRecurrentOp
::
ConcatOutputs
()
const
{
void
DynamicRecurrentOp
::
ConcatOutputs
()
const
{
// TODO(superjom) transform this to a config
// TODO(superjom) transform this to a config
int
level
=
0
;
int
level
=
0
;
// TODO(superjom) pass in some lod
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
// just a placeholder
auto
&
scope
=
cache_
.
GetScope
(
step
);
framework
::
LoD
lod
;
for
(
auto
&
item
:
step_outputs_
)
{
for
(
auto
&
item
:
step_outputs_
)
{
auto
tensor
=
item
.
second
.
Pack
(
level
,
dy_seq_metas_
[
item
.
first
],
lod
);
auto
*
var
=
scope
.
FindVar
(
item
.
first
);
auto
&
output
=
cache_
.
outlinks
[
item
.
first
]
->
Get
<
LoDTensor
>
();
PADDLE_ENFORCE_NOT_NULL
(
var
);
const_cast
<
LoDTensor
*>
(
&
output
)
->
ShareDataWith
<
value_type
>
(
tensor
);
auto
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
tensor
->
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
item
.
second
.
WriteShared
(
step
,
*
tensor
);
}
}
// the inlinks' lods should be the same, so randomly get one lod.
const
auto
&
some_lod
=
cache_
.
scope
->
FindVar
(
arg_
.
inlinks
.
front
())
->
Get
<
LoDTensor
>
().
lod
();
const
auto
&
some_meta
=
dy_seq_metas_
[
arg_
.
inlinks
.
front
()];
for
(
auto
&
item
:
step_outputs_
)
{
auto
tensor
=
item
.
second
.
Pack
(
level
,
some_meta
,
some_lod
);
auto
*
output
=
cache_
.
outlinks
[
item
.
first
]
->
GetMutable
<
LoDTensor
>
();
const_cast
<
LoDTensor
*>
(
output
)
->
ShareDataWith
<
value_type
>
(
tensor
);
}
}
}
}
void
DynamicRecurrentOp
::
InitStates
()
const
{
void
DynamicRecurrentOp
::
InitStates
()
const
{
// init the first state
// TODO(superjom) parepare the scenerio that boot state not exists
for
(
auto
memory
:
arg_
.
memories
)
{
auto
*
boot_state_var
=
cache_
.
scope
->
FindVar
(
memory
.
boot_var
);
PADDLE_ENFORCE_NOT_NULL
(
boot_state_var
);
auto
&
boot_state
=
boot_state_var
->
Get
<
LoDTensor
>
();
const
auto
&
dims
=
boot_state
.
dims
();
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
auto
&
cur_scope
=
cache_
.
GetScope
(
step
);
for
(
const
auto
&
memory
:
arg_
.
memories
)
{
// link pre-state to boot_state
CreateState
(
memory
,
step
);
// init state and pre-state
LinkState
(
memory
,
step
);
auto
*
pre_state
=
cur_scope
.
FindVar
(
memory
.
pre_var
);
}
PADDLE_ENFORCE_NOT_NULL
(
pre_state
);
}
pre_state
->
GetMutable
<
LoDTensor
>
();
}
auto
*
state
=
cur_scope
.
FindVar
(
memory
.
var
);
void
DynamicRecurrentOp
::
CreateState
(
const
rnn
::
MemoryAttr
&
memory
,
PADDLE_ENFORCE_NOT_NULL
(
state
);
size_t
step
)
const
{
state
->
GetMutable
<
LoDTensor
>
()
->
Resize
(
dims
);
auto
&
scope
=
cache_
.
GetScope
(
step
);
state
->
GetMutable
<
LoDTensor
>
()
->
mutable_data
<
value_type
>
(
auto
&
state
=
*
cache_
.
GetTensor
(
scope
,
memory
.
var
);
platform
::
CPUPlace
()
);
auto
&
boot_state
=
*
cache_
.
GetTensor
(
*
cache_
.
scope
,
memory
.
boot_var
);
size_t
num_instances
=
step_inputs_
[
arg_
.
inlinks
.
front
()].
Read
(
step
).
dims
()[
0
];
auto
dims
=
boot_state
.
dims
();
dims
[
0
]
=
num_instances
;
state
.
Resize
(
dims
);
state
.
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
states_
[
memory
.
var
].
WriteShared
(
step
,
state
);
}
void
DynamicRecurrentOp
::
LinkState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
{
auto
&
scope
=
cache_
.
GetScope
(
step
);
auto
&
state_pre
=
*
cache_
.
GetTensor
(
scope
,
memory
.
pre_var
);
// all the step_inputs' metas should be the same, just randomly select one
// and get the dyseq meta.
const
auto
&
some_meta
=
dy_seq_metas_
[
arg_
.
inlinks
.
front
()];
size_t
num_instances
=
step_inputs_
[
arg_
.
inlinks
.
front
()].
Read
(
step
).
dims
()[
0
];
LoDTensor
*
pre_state
{
nullptr
};
if
(
step
==
0
)
{
if
(
step
==
0
)
{
auto
*
pre_state_tensor
=
pre_state
->
GetMutable
<
LoDTensor
>
();
pre_state
=
cache_
.
GetTensor
(
*
cache_
.
scope
,
memory
.
boot_var
);
pre_state_tensor
->
Resize
(
boot_state
.
dims
());
pre_state
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
pre_state_tensor
->
ShareDataWith
<
value_type
>
(
boot_state
);
// allocate memory
state_pre
.
Resize
(
pre_state
->
dims
());
state_pre
.
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
detail
::
ReorderBootState
<
value_type
>
(
some_meta
,
*
pre_state
,
&
state_pre
,
pre_state
->
place
());
}
else
{
}
else
{
auto
&
pre_scope
=
cache_
.
GetScope
(
step
-
1
);
pre_state
=
cache_
.
GetTensor
(
cache_
.
GetScope
(
step
-
1
),
memory
.
var
);
auto
*
state_pre
=
pre_scope
.
FindVar
(
memory
.
var
);
PADDLE_ENFORCE_NOT_NULL
(
state_pre
);
pre_state
->
GetMutable
<
LoDTensor
>
()
->
ShareDataWith
<
value_type
>
(
*
state_pre
->
GetMutable
<
LoDTensor
>
());
}
}
}
}
// shink and share from previous state
auto
shrinked_pre_state
=
pre_state
->
Slice
<
value_type
>
(
0
,
num_instances
);
state_pre
.
ShareDataWith
<
value_type
>
(
shrinked_pre_state
);
}
}
void
DynamicRecurrentOp
::
ArgCache
::
Init
(
void
DynamicRecurrentOp
::
ArgCache
::
Init
(
...
@@ -261,6 +313,12 @@ Variable* DynamicRecurrentOp::ArgCache::GetVariable(const Scope& scope,
...
@@ -261,6 +313,12 @@ Variable* DynamicRecurrentOp::ArgCache::GetVariable(const Scope& scope,
return
var
;
return
var
;
}
}
LoDTensor
*
DynamicRecurrentOp
::
ArgCache
::
GetTensor
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
)
{
auto
*
var
=
GetVariable
(
scope
,
name
);
return
var
->
GetMutable
<
LoDTensor
>
();
}
const
rnn
::
ArgumentName
DynamicRecurrentOp
::
kArgName
{
const
rnn
::
ArgumentName
DynamicRecurrentOp
::
kArgName
{
"step_net"
,
"step_scopes"
,
"inlinks"
,
"outlinks"
,
"step_net"
,
"step_scopes"
,
"inlinks"
,
"outlinks"
,
"memories"
,
"pre_memories"
,
"boot_memories"
};
"memories"
,
"pre_memories"
,
"boot_memories"
};
...
...
paddle/operators/dynamic_recurrent_op.h
浏览文件 @
abfa81b1
...
@@ -77,6 +77,17 @@ class DynamicRecurrentOp : public framework::OperatorBase {
...
@@ -77,6 +77,17 @@ class DynamicRecurrentOp : public framework::OperatorBase {
*/
*/
void
InitStates
()
const
;
void
InitStates
()
const
;
/*
* Create state variables for each time step.
*/
void
CreateState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
;
/*
* Link pre-state variable in current scope to the state variable in the
* previous time step (scope).
*/
void
LinkState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
;
/*
/*
* Concatenate outputs in each time step and generate a LoDTensor.
* Concatenate outputs in each time step and generate a LoDTensor.
*/
*/
...
@@ -91,6 +102,16 @@ class DynamicRecurrentOp : public framework::OperatorBase {
...
@@ -91,6 +102,16 @@ class DynamicRecurrentOp : public framework::OperatorBase {
}
}
const
OperatorBase
&
GetStepNet
()
const
{
return
*
stepnet_
;
}
const
OperatorBase
&
GetStepNet
()
const
{
return
*
stepnet_
;
}
const
framework
::
TensorArray
&
state
(
const
std
::
string
&
name
)
const
{
return
states_
[
name
];
}
const
framework
::
TensorArray
&
step_input
(
const
std
::
string
&
name
)
const
{
return
step_inputs_
[
name
];
}
const
framework
::
TensorArray
&
step_output
(
const
std
::
string
&
name
)
const
{
return
step_outputs_
[
name
];
}
protected:
protected:
struct
ArgCache
{
struct
ArgCache
{
framework
::
Scope
const
*
scope
;
framework
::
Scope
const
*
scope
;
...
@@ -108,6 +129,9 @@ class DynamicRecurrentOp : public framework::OperatorBase {
...
@@ -108,6 +129,9 @@ class DynamicRecurrentOp : public framework::OperatorBase {
return
*
scopes
->
at
(
index
);
return
*
scopes
->
at
(
index
);
}
}
framework
::
LoDTensor
*
GetTensor
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
);
private:
private:
void
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
void
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
rnn
::
Argument
*
arg
);
rnn
::
Argument
*
arg
);
...
@@ -122,7 +146,7 @@ class DynamicRecurrentOp : public framework::OperatorBase {
...
@@ -122,7 +146,7 @@ class DynamicRecurrentOp : public framework::OperatorBase {
private:
private:
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
mutable
framework
::
TensorArray
states_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
states_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_inputs_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_inputs_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_outputs_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_outputs_
;
mutable
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
DySeqMeta
>>
mutable
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
DySeqMeta
>>
...
...
paddle/operators/dynamic_recurrent_op_test.cc
浏览文件 @
abfa81b1
...
@@ -87,7 +87,6 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test {
...
@@ -87,7 +87,6 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test {
platform
::
CPUPlace
place
;
platform
::
CPUPlace
place
;
scope
.
NewVar
(
"step_scopes"
);
scope
.
NewVar
(
"step_scopes"
);
CreateVar
(
scope
,
"boot_mem"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
CreateVar
(
scope
,
"boot_mem"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
// auto* out0 =
CreateVar
(
scope
,
"out0"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
CreateVar
(
scope
,
"out0"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
auto
*
in0
=
CreateVar
(
scope
,
"in0"
,
framework
::
make_ddim
({
10
,
8
}),
place
);
auto
*
in0
=
CreateVar
(
scope
,
"in0"
,
framework
::
make_ddim
({
10
,
8
}),
place
);
// 10 instanes with 4 sentences, length is 4, 3, 2, 1 respectively.
// 10 instanes with 4 sentences, length is 4, 3, 2, 1 respectively.
...
...
paddle/operators/gru_unit_op.cc
0 → 100644
浏览文件 @
abfa81b1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gru_unit_op.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
GRUUnitOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(%s) of GRUUnitOp should not be null."
,
"Input"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"HiddenPrev"
),
"Input(%s) of GRUUnitOp should not be null."
,
"HiddenPrev"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(%s) of GRUUnitOp should not be null."
,
"Weight"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Gate"
),
"Output(%s) of GRUUnitOp should not be null."
,
"Gate"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ResetHiddenPrev"
),
"Output(%s) of GRUUnitOp should not be null."
,
"ResetHiddenPrev"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(%s) of GRUUnitOp should not be null."
,
"Hidden"
);
auto
input_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
hidden_prev_dims
=
ctx
->
GetInputDim
(
"HiddenPrev"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
int
batch_size
=
input_dims
[
0
];
int
input_size
=
input_dims
[
1
];
int
frame_size
=
hidden_prev_dims
[
1
];
int
weight_height
=
weight_dims
[
0
];
int
weight_width
=
weight_dims
[
1
];
PADDLE_ENFORCE_EQ
(
input_size
,
frame_size
*
3
,
"The input_size must be 3 times of frame_size in GRUUnitOp."
);
PADDLE_ENFORCE_EQ
(
weight_height
,
frame_size
,
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
weight_width
,
frame_size
*
3
,
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
int
bias_height
=
bias_dims
[
0
];
int
bias_width
=
bias_dims
[
1
];
PADDLE_ENFORCE_EQ
(
bias_height
,
1
,
"The shape of Bias must be [1, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
bias_width
,
frame_size
*
3
,
"The shape of Bias must be [1, frame_size * 3]."
);
}
ctx
->
SetOutputDim
(
"Gate"
,
{
batch_size
,
frame_size
*
3
});
ctx
->
SetOutputDim
(
"ResetHiddenPrev"
,
{
batch_size
,
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
{
batch_size
,
frame_size
});
}
};
class
GRUUnitOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
GRUUnitOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
"input."
);
AddInput
(
"HiddenPrev"
,
"(Tensor) Matrix with shape [batch_size, frame_size] for the "
"states of previous time step."
);
AddInput
(
"Weight"
,
"(Tensor) Weight matrix with shape [frame_size, frame_size * 3]. "
"The elements continuous in memory can be divided into two parts. "
"The first part are weights of the update gate and reset gate "
"with shape [frame_size, frame_size * 2], and the second part are "
"weights of output candidate with shape [frame_size, frame_size]"
);
AddInput
(
"Bias"
,
"(Tensor) Bias vector with shape [1, frame_size * 3] concating "
"bias of the update gate, reset gate and output candidate."
);
AddOutput
(
"Gate"
,
"(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
"output of update gate, reset gate and output candidate"
)
.
AsIntermediate
();
AddOutput
(
"ResetHiddenPrev"
,
"(Tensor) Matrix with shape [batch_size, frame_size] for the "
"reseted hidden state of previous time step."
)
.
AsIntermediate
();
AddOutput
(
"Hidden"
,
"(Tensor) The GRU hidden state of the current time step "
"with shape [batch_size, frame_size]."
);
AddAttr
<
int
>
(
"activation"
,
"(enum int, default tanh) "
"The activation type used for output candidate {h}_t."
)
.
SetDefault
(
tanh
)
.
InEnum
({
identity
,
sigmoid
,
tanh
,
relu
});
AddAttr
<
int
>
(
"gate_activation"
,
"(enum int, default sigmoid) "
"The activation type used in update gate and reset gate."
)
.
SetDefault
(
sigmoid
)
.
InEnum
({
identity
,
sigmoid
,
tanh
,
relu
});
AddComment
(
R"DOC(
GRUUnitOp implements part calculations of the GRU unit as following:
\f[
update \ gate: u_t = actGate(xu_t + W_u * hidden_prev + bias_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * hidden_prev + bias_r) \\
output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, hidden_prev) + bias_c) \\
output: h_t = dot((1-u_t), {h}_t) + dot(u_t, hidden_prev)
\f]
The rest of GRU unit can be completed by using FCOp's output as the input of GRUUnitOp.
)DOC"
);
}
};
class
GRUUnitGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"Input"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"HiddenPrev"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"HiddenPrev"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"Weight"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Gate"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"Gate"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ResetHiddenPrev"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"ResetHiddenPrev"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Hidden"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"Hidden"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Gate"
)),
"Input(%s@GRAD) of GRUUnitGradOp should not be null."
,
"Gate"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"ResetHiddenPrev"
)),
"Input(%s@GRAD) of GRUUnitGradOp should not be null."
,
"ResetHiddenPrev"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Hidden"
)),
"Input(%s@GRAD) of GRUUnitGradOp should not be null."
,
"Hidden"
);
auto
input_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
hidden_prev_dims
=
ctx
->
GetInputDim
(
"HiddenPrev"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
// int batch_size = input_dims[0];
int
input_size
=
input_dims
[
1
];
int
frame_size
=
hidden_prev_dims
[
1
];
int
weight_height
=
weight_dims
[
0
];
int
weight_width
=
weight_dims
[
1
];
PADDLE_ENFORCE_EQ
(
input_size
,
frame_size
*
3
,
"The input_size must be 3 times of frame_size in GRUUnitOp."
);
PADDLE_ENFORCE_EQ
(
weight_height
,
frame_size
,
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
weight_width
,
frame_size
*
3
,
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
int
bias_height
=
bias_dims
[
0
];
int
bias_width
=
bias_dims
[
1
];
PADDLE_ENFORCE_EQ
(
bias_height
,
1
,
"The shape of Bias must be [1, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
bias_width
,
frame_size
*
3
,
"The shape of Bias must be [1, frame_size * 3]."
);
auto
bias_grad_name
=
framework
::
GradVarName
(
"Bias"
);
if
(
ctx
->
HasOutput
(
bias_grad_name
))
ctx
->
SetOutputDim
(
bias_grad_name
,
bias_dims
);
}
auto
input_grad_name
=
framework
::
GradVarName
(
"Input"
);
if
(
ctx
->
HasOutput
(
input_grad_name
))
ctx
->
SetOutputDim
(
input_grad_name
,
input_dims
);
auto
hidden_prev_grad_name
=
framework
::
GradVarName
(
"HiddenPrev"
);
if
(
ctx
->
HasOutput
(
hidden_prev_grad_name
))
ctx
->
SetOutputDim
(
hidden_prev_grad_name
,
hidden_prev_dims
);
auto
weight_grad_name
=
framework
::
GradVarName
(
"Weight"
);
if
(
ctx
->
HasOutput
(
weight_grad_name
))
ctx
->
SetOutputDim
(
weight_grad_name
,
weight_dims
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
gru_unit
,
ops
::
GRUUnitOp
,
ops
::
GRUUnitOpMaker
,
gru_unit_grad
,
ops
::
GRUUnitGradOp
);
REGISTER_OP_CPU_KERNEL
(
gru_unit
,
ops
::
GRUUnitKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
gru_unit_grad
,
ops
::
GRUUnitGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/gru_unit_op.cu
0 → 100644
浏览文件 @
abfa81b1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/gru_unit_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
gru_unit
,
ops
::
GRUUnitKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
gru_unit_grad
,
ops
::
GRUUnitGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/gru_unit_op.h
0 → 100644
浏览文件 @
abfa81b1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/activation_op.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
enum
GRUActivationType
{
identity
=
0
,
sigmoid
=
1
,
tanh
=
2
,
relu
=
3
};
template
<
typename
Place
,
typename
T
>
class
GRUUnitKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
ActCompute
(
const
int
act_type
,
const
Device
&
d
,
X
x
,
Y
y
)
const
{
if
(
act_type
==
identity
)
y
.
device
(
d
)
=
x
;
else
if
(
act_type
==
sigmoid
)
SigmoidFunctor
<
T
>
()(
d
,
x
,
y
);
else
if
(
act_type
==
tanh
)
TanhFunctor
<
T
>
()(
d
,
x
,
y
);
else
if
(
act_type
==
relu
)
ReluFunctor
<
T
>
()(
d
,
x
,
y
);
else
PADDLE_THROW
(
"unsupported activation type"
);
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
auto
*
hidden_prev
=
context
.
Input
<
Tensor
>
(
"HiddenPrev"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
bias
=
context
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
gate
=
context
.
Output
<
Tensor
>
(
"Gate"
);
gate
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
reset_hidden_prev
=
context
.
Output
<
Tensor
>
(
"ResetHiddenPrev"
);
reset_hidden_prev
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
hidden
=
context
.
Output
<
Tensor
>
(
"Hidden"
);
hidden
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
batch_size
=
input
->
dims
()[
0
];
int
frame_size
=
hidden_prev
->
dims
()[
1
];
auto
x
=
EigenMatrix
<
T
>::
From
(
*
input
);
auto
h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev
);
auto
g
=
EigenMatrix
<
T
>::
From
(
*
gate
);
auto
r_h_p
=
EigenMatrix
<
T
>::
From
(
*
reset_hidden_prev
);
auto
h
=
EigenMatrix
<
T
>::
From
(
*
hidden
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
// calculate unactivated gate outputs
if
(
bias
)
{
auto
b
=
EigenMatrix
<
T
>::
From
(
*
bias
);
g
.
device
(
place
)
=
x
+
b
.
reshape
(
Eigen
::
array
<
int
,
2
>
({{
1
,
frame_size
*
3
}}))
.
broadcast
(
Eigen
::
array
<
int
,
2
>
({{
batch_size
,
1
}}));
}
else
{
g
.
device
(
place
)
=
x
;
}
const
T
*
hidden_prev_data
=
hidden_prev
->
data
<
T
>
();
const
T
*
weight_data
=
weight
->
data
<
T
>
();
T
*
gate_data
=
gate
->
data
<
T
>
();
T
*
reset_hidden_prev_data
=
reset_hidden_prev
->
data
<
T
>
();
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
false
,
false
,
batch_size
,
2
*
frame_size
,
frame_size
,
1
,
hidden_prev_data
,
frame_size
,
weight_data
,
frame_size
*
2
,
1
,
gate_data
,
frame_size
*
3
);
// calculate activited gate
Eigen
::
array
<
int
,
2
>
extents
({{
batch_size
,
frame_size
}});
Eigen
::
array
<
int
,
2
>
u_offsets
({{
0
,
0
}});
ActCompute
(
context
.
Attr
<
int
>
(
"gate_activation"
),
place
,
g
.
slice
(
u_offsets
,
extents
),
g
.
slice
(
u_offsets
,
extents
));
auto
u
=
g
.
slice
(
u_offsets
,
extents
);
// update gate
Eigen
::
array
<
int
,
2
>
r_offsets
({{
0
,
frame_size
}});
ActCompute
(
context
.
Attr
<
int
>
(
"gate_activation"
),
place
,
g
.
slice
(
r_offsets
,
extents
),
g
.
slice
(
r_offsets
,
extents
));
auto
r
=
g
.
slice
(
r_offsets
,
extents
);
// reset gate
r_h_p
.
device
(
place
)
=
r
*
h_p
;
// reset previous hidden state
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
false
,
false
,
batch_size
,
frame_size
,
frame_size
,
1
,
reset_hidden_prev_data
,
frame_size
,
weight_data
+
frame_size
*
frame_size
*
2
,
frame_size
,
1
,
gate_data
+
frame_size
*
2
,
frame_size
*
3
);
Eigen
::
array
<
int
,
2
>
c_offsets
({{
0
,
frame_size
*
2
}});
ActCompute
(
context
.
Attr
<
int
>
(
"activation"
),
place
,
g
.
slice
(
c_offsets
,
extents
),
g
.
slice
(
c_offsets
,
extents
));
auto
c
=
g
.
slice
(
c_offsets
,
extents
);
// output candidate
// calculate final output
h
.
device
(
place
)
=
u
*
(
h_p
-
c
)
+
c
;
}
};
template
<
typename
Place
,
typename
T
>
class
GRUUnitGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
>
void
ActGradCompute
(
const
int
act_type
,
const
Device
&
d
,
X
x
,
Y
y
,
DX
dx
,
DY
dy
)
const
{
// x is dummy and won't be used even in Relu(use y instead)
if
(
act_type
==
identity
)
dx
.
device
(
d
)
=
dy
;
else
if
(
act_type
==
sigmoid
)
SigmoidGradFunctor
<
T
>
()(
d
,
x
,
y
,
dy
,
dx
);
else
if
(
act_type
==
tanh
)
TanhGradFunctor
<
T
>
()(
d
,
x
,
y
,
dy
,
dx
);
else
if
(
act_type
==
relu
)
ReluGradFunctor
<
T
>
()(
d
,
x
,
y
,
dy
,
dx
);
else
PADDLE_THROW
(
"unsupported activation type"
);
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
auto
*
hidden_prev
=
context
.
Input
<
Tensor
>
(
"HiddenPrev"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
gate
=
context
.
Input
<
Tensor
>
(
"Gate"
);
auto
*
reset_hidden_prev
=
context
.
Input
<
Tensor
>
(
"ResetHiddenPrev"
);
auto
*
hidden_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Hidden"
));
auto
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
*
hidden_prev_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"HiddenPrev"
));
auto
*
weight_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
auto
*
bias_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
hidden_prev_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
weight_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
gate_grad
;
gate_grad
.
mutable_data
<
T
>
(
input
->
dims
(),
context
.
GetPlace
());
Tensor
reset_hidden_prev_grad
;
reset_hidden_prev_grad
.
mutable_data
<
T
>
(
reset_hidden_prev
->
dims
(),
context
.
GetPlace
());
int
batch_size
=
input
->
dims
()[
0
];
int
frame_size
=
hidden_prev
->
dims
()[
1
];
const
T
*
hidden_prev_data
=
hidden_prev
->
data
<
T
>
();
T
*
hidden_prev_grad_data
=
hidden_prev_grad
->
data
<
T
>
();
const
T
*
weight_data
=
weight
->
data
<
T
>
();
T
*
weight_grad_data
=
weight_grad
->
data
<
T
>
();
T
*
gate_grad_data
=
gate_grad
.
data
<
T
>
();
const
T
*
reset_hidden_prev_data
=
reset_hidden_prev
->
data
<
T
>
();
T
*
reset_hidden_prev_grad_data
=
reset_hidden_prev_grad
.
data
<
T
>
();
auto
h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev
);
auto
g
=
EigenMatrix
<
T
>::
From
(
*
gate
);
auto
d_h
=
EigenMatrix
<
T
>::
From
(
*
hidden_grad
);
auto
d_x
=
EigenMatrix
<
T
>::
From
(
*
input_grad
);
auto
d_h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev_grad
);
auto
d_g
=
EigenMatrix
<
T
>::
From
(
gate_grad
);
auto
d_r_h_p
=
EigenMatrix
<
T
>::
From
(
reset_hidden_prev_grad
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Eigen
::
array
<
int
,
2
>
extents
({{
batch_size
,
frame_size
}});
Eigen
::
array
<
int
,
2
>
u_offsets
({{
0
,
0
}});
auto
u
=
g
.
slice
(
u_offsets
,
extents
);
// update gate
Eigen
::
array
<
int
,
2
>
r_offsets
({{
0
,
frame_size
}});
auto
r
=
g
.
slice
(
r_offsets
,
extents
);
// reset gate
Eigen
::
array
<
int
,
2
>
c_offsets
({{
0
,
frame_size
*
2
}});
auto
c
=
g
.
slice
(
c_offsets
,
extents
);
// output candidate
// backward for unactivated update gate
ActGradCompute
(
context
.
Attr
<
int
>
(
"gate_activation"
),
place
,
u
,
u
,
d_g
.
slice
(
u_offsets
,
extents
),
d_h
*
(
h_p
-
c
));
// backward for unactivated output candidate
ActGradCompute
(
context
.
Attr
<
int
>
(
"activation"
),
place
,
c
,
c
,
d_g
.
slice
(
c_offsets
,
extents
),
d_h
*
(
u
.
constant
(
T
(
1
))
-
u
));
// backward for reset_hidden_prev
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
false
,
true
,
batch_size
,
frame_size
,
frame_size
,
1
,
gate_grad_data
+
frame_size
*
2
,
frame_size
*
3
,
weight_data
+
frame_size
*
frame_size
*
2
,
frame_size
,
0
,
reset_hidden_prev_grad_data
,
frame_size
);
// backward for state_weight
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
true
,
false
,
frame_size
,
frame_size
,
batch_size
,
1
,
reset_hidden_prev_data
,
frame_size
,
gate_grad_data
+
frame_size
*
2
,
frame_size
*
3
,
0
,
weight_grad_data
+
frame_size
*
frame_size
*
2
,
frame_size
);
// backward for unactivated reset gate
ActGradCompute
(
context
.
Attr
<
int
>
(
"gate_activation"
),
place
,
r
,
r
,
d_g
.
slice
(
r_offsets
,
extents
),
d_r_h_p
*
h_p
);
// backward for update_gate_weight and reset_gate_weight
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
true
,
false
,
frame_size
,
frame_size
*
2
,
batch_size
,
1
,
hidden_prev_data
,
frame_size
,
gate_grad_data
,
frame_size
*
3
,
0
,
weight_grad_data
,
frame_size
*
2
);
// backward for hidden_prev
d_h_p
.
device
(
place
)
=
d_r_h_p
*
r
+
d_h
*
u
;
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
false
,
true
,
batch_size
,
frame_size
,
frame_size
*
2
,
1
,
gate_grad_data
,
frame_size
*
3
,
weight_data
,
frame_size
*
2
,
1
,
hidden_prev_grad_data
,
frame_size
);
// backward for input
d_x
.
device
(
place
)
=
d_g
;
// backward for bias
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_b
=
EigenMatrix
<
T
>::
From
(
*
bias_grad
);
d_b
.
device
(
place
)
=
d_g
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/operators/sum_op.cc
浏览文件 @
abfa81b1
...
@@ -34,7 +34,7 @@ class SumOp : public framework::OperatorWithKernel {
...
@@ -34,7 +34,7 @@ class SumOp : public framework::OperatorWithKernel {
auto
in_dim
=
x_dims
[
0
];
auto
in_dim
=
x_dims
[
0
];
for
(
size_t
i
=
1
;
i
<
N
;
i
++
)
{
for
(
size_t
i
=
1
;
i
<
N
;
i
++
)
{
auto
dim
=
x_dims
[
i
];
auto
dim
=
x_dims
[
i
];
PADDLE_ENFORCE
(
in_dim
==
dim
,
"Input tensors must have same shape"
);
PADDLE_ENFORCE
_EQ
(
in_dim
,
dim
,
"Input tensors must have same shape"
);
}
}
ctx
->
SetOutputDim
(
"Out"
,
in_dim
);
ctx
->
SetOutputDim
(
"Out"
,
in_dim
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
...
...
paddle/pybind/pybind.cc
浏览文件 @
abfa81b1
...
@@ -18,6 +18,7 @@ limitations under the License. */
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor_array.h"
#include "paddle/framework/tensor_array.h"
#include "paddle/operators/cond_op.h"
#include "paddle/operators/cond_op.h"
#include "paddle/operators/dynamic_recurrent_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
#include "paddle/operators/recurrent_op.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/enforce.h"
...
@@ -341,6 +342,33 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -341,6 +342,33 @@ All parameter, weight, gradient are variables in Paddle.
self
.
set_stepnet
(
net
.
Clone
());
self
.
set_stepnet
(
net
.
Clone
());
});
});
py
::
class_
<
operators
::
DynamicRecurrentOp
,
OperatorBase
>
(
m
,
"DynamicRecurrentOp"
)
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
->
operators
::
DynamicRecurrentOp
*
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
auto
rnn_op
=
OpRegistry
::
CreateOp
(
desc
);
return
static_cast
<
operators
::
DynamicRecurrentOp
*>
(
rnn_op
.
release
());
})
.
def
(
"set_stepnet"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
operators
::
NetOp
&
net
)
->
void
{
self
.
SetStepNet
(
net
.
Clone
());
})
.
def
(
"get_state"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
std
::
string
&
name
)
->
const
TensorArray
&
{
return
self
.
state
(
name
);
})
.
def
(
"get_step_input"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
std
::
string
&
name
)
->
const
TensorArray
&
{
return
self
.
step_input
(
name
);
})
.
def
(
"get_step_output"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
std
::
string
&
name
)
->
const
TensorArray
&
{
return
self
.
step_output
(
name
);
});
// cond_op
// cond_op
py
::
class_
<
operators
::
CondOp
,
OperatorBase
>
(
m
,
"CondOp"
)
py
::
class_
<
operators
::
CondOp
,
OperatorBase
>
(
m
,
"CondOp"
)
.
def_static
(
"create"
,
.
def_static
(
"create"
,
...
...
python/paddle/v2/framework/op.py
浏览文件 @
abfa81b1
...
@@ -219,6 +219,27 @@ class __RecurrentOp__(object):
...
@@ -219,6 +219,27 @@ class __RecurrentOp__(object):
return
core
.
RecurrentOp
.
create
(
proto
.
SerializeToString
())
return
core
.
RecurrentOp
.
create
(
proto
.
SerializeToString
())
class
__DynamicRecurrentOp__
(
object
):
__proto__
=
None
type
=
"dynamic_recurrent"
def
__init__
(
self
):
# cache recurrent_op's proto
if
self
.
__proto__
is
None
:
for
op_proto
in
get_all_op_protos
():
if
op_proto
.
type
==
self
.
type
:
self
.
__proto__
=
op_proto
def
__call__
(
self
,
*
args
,
**
kwargs
):
if
self
.
type
not
in
args
and
"type"
not
in
kwargs
:
kwargs
[
"type"
]
=
self
.
type
# create proto
create_method
=
OpDescCreationMethod
(
self
.
__proto__
)
proto
=
create_method
(
*
args
,
**
kwargs
)
# create rnnop
return
core
.
DynamicRecurrentOp
.
create
(
proto
.
SerializeToString
())
class
__CondOp__
(
object
):
class
__CondOp__
(
object
):
__proto__
=
None
__proto__
=
None
type
=
"cond"
type
=
"cond"
...
@@ -242,4 +263,5 @@ class __CondOp__(object):
...
@@ -242,4 +263,5 @@ class __CondOp__(object):
Operator
=
OperatorFactory
()
# The default global factory
Operator
=
OperatorFactory
()
# The default global factory
RecurrentOp
=
__RecurrentOp__
()
RecurrentOp
=
__RecurrentOp__
()
DynamicRecurrentOp
=
__DynamicRecurrentOp__
()
CondOp
=
__CondOp__
()
CondOp
=
__CondOp__
()
python/paddle/v2/framework/tests/test_activation_op.py
浏览文件 @
abfa81b1
...
@@ -384,5 +384,33 @@ class TestThresholdedRelu(OpTest):
...
@@ -384,5 +384,33 @@ class TestThresholdedRelu(OpTest):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
self
.
relative_error
)
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
self
.
relative_error
)
class
TestHardSigmoid
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hard_sigmoid"
self
.
relative_error
=
0.002
X
=
np
.
random
.
uniform
(
-
5
,
5
,
[
2
,
2
]).
astype
(
"float32"
)
slope
=
0.2
offset
=
0.5
lower_threshold
=
-
offset
/
slope
upper_threshold
=
(
1
-
offset
)
/
slope
self
.
inputs
=
{
'X'
:
X
}
# Same reason as TestAbs
X
[
np
.
abs
(
X
-
lower_threshold
)
<
self
.
relative_error
]
=
\
lower_threshold
+
0.2
X
[
np
.
abs
(
X
-
upper_threshold
)
<
self
.
relative_error
]
=
\
upper_threshold
-
0.2
temp
=
X
*
slope
+
offset
self
.
outputs
=
{
'Y'
:
np
.
maximum
(
0.0
,
np
.
minimum
(
1.0
,
temp
))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.002
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py
0 → 100644
浏览文件 @
abfa81b1
import
logging
import
paddle.v2.framework.core
as
core
import
unittest
from
paddle.v2.framework.op
import
Operator
,
DynamicRecurrentOp
import
numpy
as
np
def
create_tensor
(
scope
,
name
,
shape
,
np_data
):
tensor
=
scope
.
new_var
(
name
).
get_tensor
()
tensor
.
set_dims
(
shape
)
tensor
.
set
(
np_data
,
core
.
CPUPlace
())
return
tensor
class
DynamicRecurrentOpTest
(
unittest
.
TestCase
):
'''
Test RNNOp
equation:
h_t = \sigma (W x_t + U h_{t-1})
weights:
- W
- U
vars:
- x
memories:
- h
outputs:
- h
'''
# for siplicity, just one level LoD
lod_py
=
[[
0
,
4
,
7
,
9
,
10
]]
input_dim
=
30
num_sents
=
len
(
lod_py
[
0
])
-
1
weight_dim
=
15
def
forward
(
self
):
self
.
scope
=
core
.
Scope
()
self
.
create_global_variables
()
self
.
create_rnn_op
()
self
.
create_step_net
()
ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
self
.
rnnop
.
run
(
self
.
scope
,
ctx
)
state
=
self
.
rnnop
.
get_state
(
"h@mem"
)
print
'state size: '
,
state
.
size
()
step_inputs
=
self
.
rnnop
.
get_step_input
(
"x"
)
print
"x size "
,
step_inputs
.
size
()
for
i
in
range
(
step_inputs
.
size
()):
print
"x %d"
%
i
,
np
.
array
(
step_inputs
.
read
(
i
).
get_dims
())
step_outputs
=
self
.
rnnop
.
get_step_output
(
'h@mem'
)
print
'step_outputs.size '
,
step_outputs
.
size
()
output
=
self
.
scope
.
find_var
(
"h@mem"
).
get_tensor
()
print
'output'
,
np
.
array
(
output
).
shape
def
create_global_variables
(
self
):
x
=
np
.
random
.
normal
(
size
=
(
self
.
lod_py
[
0
][
-
1
],
self
.
input_dim
)).
astype
(
"float32"
)
W
=
np
.
random
.
normal
(
size
=
(
self
.
input_dim
,
self
.
input_dim
)).
astype
(
"float32"
)
U
=
np
.
random
.
normal
(
size
=
(
self
.
input_dim
,
self
.
input_dim
)).
astype
(
"float32"
)
h_boot
=
np
.
random
.
normal
(
size
=
(
self
.
num_sents
,
self
.
input_dim
)).
astype
(
"float32"
)
# create inlink
x_tensor
=
create_tensor
(
self
.
scope
,
"x"
,
[
self
.
num_sents
,
self
.
input_dim
],
x
)
x_tensor
.
set_lod
(
self
.
lod_py
)
create_tensor
(
self
.
scope
,
"W"
,
[
self
.
input_dim
,
self
.
input_dim
],
W
)
create_tensor
(
self
.
scope
,
"U"
,
[
self
.
input_dim
,
self
.
input_dim
],
U
)
create_tensor
(
self
.
scope
,
"h_boot"
,
[
self
.
num_sents
,
self
.
input_dim
],
h_boot
)
self
.
scope
.
new_var
(
"step_scopes"
)
self
.
scope
.
new_var
(
"h@mem"
)
def
create_rnn_op
(
self
):
# create RNNOp
self
.
rnnop
=
DynamicRecurrentOp
(
# inputs
inlinks
=
[
"x"
],
boot_memories
=
[
"h_boot"
],
step_net
=
"stepnet"
,
# outputs
outlinks
=
[
"h@mem"
],
step_scopes
=
"step_scopes"
,
# attributes
pre_memories
=
[
"h@pre"
],
memories
=
[
"h@mem"
])
def
create_step_net
(
self
):
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"sum"
,
X
=
[
"Wx"
,
"Uh"
],
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@mem"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
append_op
(
op
)
stepnet
.
complete_add_op
(
True
)
self
.
rnnop
.
set_stepnet
(
stepnet
)
def
test_forward
(
self
):
print
'test recurrent op forward'
pd_output
=
self
.
forward
()
print
'pd_output'
,
pd_output
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_gru_unit_op.py
0 → 100644
浏览文件 @
abfa81b1
import
math
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
GRUActivationType
(
OpTest
):
identity
=
0
sigmoid
=
1
tanh
=
2
relu
=
3
def
identity
(
x
):
return
x
def
sigmoid
(
x
):
return
1.
/
(
1.
+
np
.
exp
(
-
x
))
def
tanh
(
x
):
return
2.
*
sigmoid
(
2.
*
x
)
-
1.
def
relu
(
x
):
return
np
.
maximum
(
x
,
0
)
class
TestGRUUnitOp
(
OpTest
):
batch_size
=
3
frame_size
=
5
activate
=
{
GRUActivationType
.
identity
:
identity
,
GRUActivationType
.
sigmoid
:
sigmoid
,
GRUActivationType
.
tanh
:
tanh
,
GRUActivationType
.
relu
:
relu
,
}
def
set_inputs
(
self
):
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
self
.
op_type
=
'gru_unit'
self
.
inputs
=
{
'Input'
:
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
batch_size
,
frame_size
*
3
)).
astype
(
'float32'
),
'HiddenPrev'
:
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
batch_size
,
frame_size
)).
astype
(
'float32'
),
'Weight'
:
np
.
random
.
uniform
(
-
1.
/
math
.
sqrt
(
frame_size
),
1.
/
math
.
sqrt
(
frame_size
),
(
frame_size
,
frame_size
*
3
)).
astype
(
'float32'
),
}
self
.
attrs
=
{
'activation'
:
GRUActivationType
.
tanh
,
'gate_activation'
:
GRUActivationType
.
sigmoid
}
def
set_outputs
(
self
):
# GRU calculations
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
x
=
self
.
inputs
[
'Input'
]
h_p
=
self
.
inputs
[
'HiddenPrev'
]
w
=
self
.
inputs
[
'Weight'
]
b
=
self
.
inputs
[
'Bias'
]
if
self
.
inputs
.
has_key
(
'Bias'
)
else
np
.
zeros
(
(
1
,
frame_size
*
3
))
g
=
x
+
np
.
tile
(
b
,
(
batch_size
,
1
))
w_u_r
=
w
.
flatten
()[:
frame_size
*
frame_size
*
2
].
reshape
(
(
frame_size
,
frame_size
*
2
))
u_r
=
self
.
activate
[
self
.
attrs
[
'gate_activation'
]](
np
.
dot
(
h_p
,
w_u_r
)
+
g
[:,
:
frame_size
*
2
])
u
=
u_r
[:,
:
frame_size
]
r
=
u_r
[:,
frame_size
:
frame_size
*
2
]
r_h_p
=
r
*
h_p
w_c
=
w
.
flatten
()[
frame_size
*
frame_size
*
2
:].
reshape
(
(
frame_size
,
frame_size
))
c
=
self
.
activate
[
self
.
attrs
[
'activation'
]](
np
.
dot
(
r_h_p
,
w_c
)
+
g
[:,
frame_size
*
2
:])
g
=
np
.
hstack
((
u_r
,
c
))
h
=
u
*
h_p
+
(
1
-
u
)
*
c
self
.
outputs
=
{
'Gate'
:
g
,
'ResetHiddenPrev'
:
r_h_p
,
'Hidden'
:
h
}
def
setUp
(
self
):
self
.
set_inputs
()
self
.
set_outputs
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'Input'
,
'HiddenPrev'
,
'Weight'
],
[
'Hidden'
],
max_relative_error
=
0.007
)
class
TestGRUUnitOpWithBias
(
TestGRUUnitOp
):
def
set_inputs
(
self
):
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
super
(
TestGRUUnitOpWithBias
,
self
).
set_inputs
()
self
.
inputs
[
'Bias'
]
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
1
,
frame_size
*
3
)).
astype
(
'float32'
)
self
.
attrs
=
{
'activation'
:
GRUActivationType
.
identity
,
'gate_activation'
:
GRUActivationType
.
sigmoid
}
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'Input'
,
'HiddenPrev'
,
'Weight'
,
'Bias'
],
[
'Hidden'
],
max_relative_error
=
0.007
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录