提交 aac42644 编写于 作者: G guosheng

Merge branch 'develop' of https://github.com/PaddlePaddle/paddle into add-reshape-reuse-input

test=develop
...@@ -80,7 +80,6 @@ message OpProto { ...@@ -80,7 +80,6 @@ message OpProto {
optional bool duplicable = 3 [ default = false ]; optional bool duplicable = 3 [ default = false ];
optional bool intermediate = 4 [ default = false ]; optional bool intermediate = 4 [ default = false ];
optional bool dispensable = 5 [ default = false ]; optional bool dispensable = 5 [ default = false ];
optional string reuse = 6;
} }
// AttrProto describes the C++ type Attribute. // AttrProto describes the C++ type Attribute.
......
...@@ -42,12 +42,10 @@ if(WITH_MKLDNN) ...@@ -42,12 +42,10 @@ if(WITH_MKLDNN)
pass_library(mkldnn_placement_pass base) pass_library(mkldnn_placement_pass base)
pass_library(conv_bias_mkldnn_fuse_pass inference) pass_library(conv_bias_mkldnn_fuse_pass inference)
pass_library(conv_relu_mkldnn_fuse_pass inference) pass_library(conv_relu_mkldnn_fuse_pass inference)
pass_library(conv_elementwise_add_mkldnn_fuse_pass inference)
endif() endif()
cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector ) cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector )
if(WITH_MKLDNN)
pass_library(conv_elementwise_add_mkldnn_fuse_pass inference)
endif()
set(GLOB_PASS_LIB ${PASS_LIBRARY} CACHE INTERNAL "Global PASS library") set(GLOB_PASS_LIB ${PASS_LIBRARY} CACHE INTERNAL "Global PASS library")
......
...@@ -200,15 +200,15 @@ TEST(GraphHelperTest, GraphNum) { ...@@ -200,15 +200,15 @@ TEST(GraphHelperTest, GraphNum) {
Graph g(prog); Graph g(prog);
BuildZeroGraph(&g); BuildZeroGraph(&g);
ASSERT_EQ(GraphNum(g), 0); ASSERT_EQ(GraphNum(g), 0UL);
Graph g2(prog); Graph g2(prog);
BuildOneGraph(&g2); BuildOneGraph(&g2);
ASSERT_EQ(GraphNum(g2), 1); ASSERT_EQ(GraphNum(g2), 1UL);
Graph g3(prog); Graph g3(prog);
BuildTwoGraphs(&g3); BuildTwoGraphs(&g3);
ASSERT_EQ(GraphNum(g3), 2); ASSERT_EQ(GraphNum(g3), 2UL);
} }
} // namespace ir } // namespace ir
......
...@@ -124,7 +124,7 @@ TEST(GraphTest, Basic) { ...@@ -124,7 +124,7 @@ TEST(GraphTest, Basic) {
ASSERT_EQ(n->outputs.size(), 0UL); ASSERT_EQ(n->outputs.size(), 0UL);
} }
} }
ASSERT_EQ(nodes.size(), 5); ASSERT_EQ(nodes.size(), 5UL);
} }
TEST(GraphTest, WriteAfterRead) { TEST(GraphTest, WriteAfterRead) {
......
...@@ -21,7 +21,6 @@ namespace framework { ...@@ -21,7 +21,6 @@ namespace framework {
void OpProtoAndCheckerMaker::Validate() { void OpProtoAndCheckerMaker::Validate() {
validated_ = true; validated_ = true;
CheckNoDuplicatedInOutAttrs(); CheckNoDuplicatedInOutAttrs();
CheckReuseVars();
} }
OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddInput( OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddInput(
...@@ -40,40 +39,6 @@ OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddOutput( ...@@ -40,40 +39,6 @@ OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddOutput(
return OpProtoAndCheckerMaker::VariableBuilder{output}; return OpProtoAndCheckerMaker::VariableBuilder{output};
} }
void OpProtoAndCheckerMaker::Reuse(const std::string& name,
const std::string& reused_name) {
bool found = false;
proto::OpProto::Var* var;
for (auto& var : proto_->inputs()) {
if (var.name() == reused_name) {
found = true;
break;
}
}
PADDLE_ENFORCE(found == true,
"Input/Output name: %s reused_name: %s, one of them is not "
"exists or not matched.",
name, reused_name);
found = false;
for (int i = 0; i < proto_->outputs().size(); ++i) {
var = proto_->mutable_outputs()->Mutable(i);
if (var->name() == name) {
PADDLE_ENFORCE(!var->has_reuse(),
"Output(%s) has been set reused var of %s", name,
var->reuse());
found = true;
var->set_reuse(reused_name);
break;
}
}
PADDLE_ENFORCE(found == true,
"Input/Output name: %s reused_name: %s, one of them is not "
"exists or not matched.",
name, reused_name);
}
void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() { void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() {
std::unordered_set<std::string> names; std::unordered_set<std::string> names;
auto checker = [&](const std::string& name) { auto checker = [&](const std::string& name) {
...@@ -91,24 +56,6 @@ void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() { ...@@ -91,24 +56,6 @@ void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() {
} }
} }
void OpProtoAndCheckerMaker::CheckReuseVars() {
std::unordered_set<std::string> names;
for (auto& input : proto_->inputs()) {
names.insert(input.name());
}
auto checker = [&](const std::string& name, const std::string& reused) {
PADDLE_ENFORCE(
names.count(reused),
"Output [%s] reuse Input [%s], but the input is not registered.", name,
reused);
};
for (auto& output : proto_->outputs()) {
if (output.has_reuse()) {
checker(output.name(), output.reuse());
}
}
}
void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto, void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto,
OpAttrChecker* attr_checker) { OpAttrChecker* attr_checker) {
proto_ = proto; proto_ = proto;
......
...@@ -14,8 +14,6 @@ limitations under the License. */ ...@@ -14,8 +14,6 @@ limitations under the License. */
#pragma once #pragma once
#include <string> #include <string>
#include <unordered_set>
#include "glog/logging.h" #include "glog/logging.h"
#include "paddle/fluid/framework/attribute.h" #include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/framework.pb.h"
...@@ -73,11 +71,6 @@ class OpProtoAndCheckerMaker { ...@@ -73,11 +71,6 @@ class OpProtoAndCheckerMaker {
var_->set_dispensable(true); var_->set_dispensable(true);
return *this; return *this;
} }
VariableBuilder &Reuse(const std::string &name) {
var_->set_reuse(name);
return *this;
}
}; };
VariableBuilder AddInput(const std::string &name, const std::string &comment); VariableBuilder AddInput(const std::string &name, const std::string &comment);
...@@ -85,8 +78,6 @@ class OpProtoAndCheckerMaker { ...@@ -85,8 +78,6 @@ class OpProtoAndCheckerMaker {
VariableBuilder AddOutput(const std::string &name, VariableBuilder AddOutput(const std::string &name,
const std::string &comment); const std::string &comment);
void Reuse(const std::string &name, const std::string &reused_name);
template <typename T> template <typename T>
TypedAttrChecker<T> &AddAttr(const std::string &name, TypedAttrChecker<T> &AddAttr(const std::string &name,
const std::string &comment, const std::string &comment,
...@@ -105,8 +96,6 @@ class OpProtoAndCheckerMaker { ...@@ -105,8 +96,6 @@ class OpProtoAndCheckerMaker {
void CheckNoDuplicatedInOutAttrs(); void CheckNoDuplicatedInOutAttrs();
void Validate(); void Validate();
void CheckReuseVars();
proto::OpProto *proto_; proto::OpProto *proto_;
OpAttrChecker *op_checker_; OpAttrChecker *op_checker_;
bool validated_{false}; bool validated_{false};
......
...@@ -47,120 +47,3 @@ TEST(ProtoMaker, DuplicatedInOut) { ...@@ -47,120 +47,3 @@ TEST(ProtoMaker, DuplicatedInOut) {
ASSERT_THROW(proto_maker(&op_proto, &op_checker), ASSERT_THROW(proto_maker(&op_proto, &op_checker),
paddle::platform::EnforceNotMet); paddle::platform::EnforceNotMet);
} }
class TestInplaceProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "input of test op");
AddOutput("XOut", "output of test op").Reuse("X");
}
};
class TestInplaceProtoMaker2
: public paddle::framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "input of test op");
AddOutput("XOut", "output of test op").Reuse("X");
AddOutput("NoOut", "output of test op").Reuse("NotExists");
}
};
TEST(ProtoMaker, InplaceOutput) {
paddle::framework::proto::OpProto op_proto, op_proto2;
paddle::framework::OpAttrChecker op_checker;
TestInplaceProtoMaker proto_maker;
TestInplaceProtoMaker2 proto_maker2;
proto_maker(&op_proto, &op_checker);
ASSERT_THROW(proto_maker2(&op_proto2, &op_checker),
paddle::platform::EnforceNotMet);
}
// normal reuse
class TestReuseProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "input of test op");
AddInput("Y", "input of test op");
AddOutput("Out", "output of test op");
AddOutput("XOut", "output of test op");
// avoid destructor exception.
// Validate();
TestReuse();
}
virtual void TestReuse() {}
};
// test duplicate reuse error
class TestReuseProtoMaker2 : public TestReuseProtoMaker {
public:
void TestReuse() {
Reuse("Out", "X");
Reuse("Out", "Y");
}
};
// NotExists Input
class TestReuseProtoMaker3 : public TestReuseProtoMaker {
public:
void TestReuse() {
Reuse("Out", "NotExists");
Reuse("XOut", "X");
}
};
// NotExists Output
class TestReuseProtoMaker4 : public TestReuseProtoMaker {
public:
void TestReuse() { Reuse("NotExists", "X"); }
};
TEST(ProtoMaker, Reuse) {
paddle::framework::proto::OpProto op_proto;
paddle::framework::OpAttrChecker op_checker;
TestReuseProtoMaker proto_maker;
proto_maker(&op_proto, &op_checker);
}
// NOTE(dzhwinter):
// There is a Fatal CHECK on base class destructor, which will call abort inside
// instead of
// throw an exception. If we throw an exception in Make(), we will trigger the
// CHECK and terminate the tests.
//
// I had tried to replace the default CHECK with a exception, however, it's
// still not supported by glog.
// the details:
// https://github.com/google/glog/issues/249
// https://github.com/facebookresearch/TensorComprehensions/issues/351
/*
TEST(ProtoMaker, ReuseWithException) {
paddle::framework::proto::OpProto op_proto2, op_proto3, op_proto4;
paddle::framework::OpAttrChecker op_checker;
TestReuseProtoMaker2 proto_maker2;
TestReuseProtoMaker3 proto_maker3;
TestReuseProtoMaker4 proto_maker4;
EXPECT_THROW(proto_maker2(&op_proto2, &op_checker),
paddle::platform::EnforceNotMet);
EXPECT_THROW(proto_maker3(&op_proto3, &op_checker),
paddle::platform::EnforceNotMet);
EXPECT_THROW(proto_maker4(&op_proto4, &op_checker),
paddle::platform::EnforceNotMet);
}
void FailureFunction() {
throw std::runtime_error("Check failed in destructor.");
// return 0;
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
google::InstallFailureFunction(&FailureFunction);
return RUN_ALL_TESTS();
}
*/
...@@ -156,13 +156,11 @@ ParallelExecutor::ParallelExecutor( ...@@ -156,13 +156,11 @@ ParallelExecutor::ParallelExecutor(
params, member_->local_scopes_, member_->use_cuda_); params, member_->local_scopes_, member_->use_cuda_);
#endif #endif
if (VLOG_IS_ON(5)) {
// If the loss_var_name is given, the number of graph should be only one. // If the loss_var_name is given, the number of graph should be only one.
if (loss_var_name.size()) { if (loss_var_name.size()) {
PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1, PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1,
"The number of graph should be only one"); "The number of graph should be only one");
} }
}
if (exec_strategy.type_ == ExecutionStrategy::kDefault) { if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
member_->executor_.reset(new details::ThreadedSSAGraphExecutor( member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
......
...@@ -103,7 +103,7 @@ TEST(ProgramDesc, copy_ctor) { ...@@ -103,7 +103,7 @@ TEST(ProgramDesc, copy_ctor) {
ASSERT_EQ(1, op->GetBlockAttrId("sub_block")); ASSERT_EQ(1, op->GetBlockAttrId("sub_block"));
found_sub_block = true; found_sub_block = true;
ASSERT_EQ(2, op->GetBlocksAttrIds("sub_blocks").size()); ASSERT_EQ(2UL, op->GetBlocksAttrIds("sub_blocks").size());
found_sub_blocks = true; found_sub_blocks = true;
} }
} }
......
...@@ -40,7 +40,7 @@ TEST(READER, decorate_chain) { ...@@ -40,7 +40,7 @@ TEST(READER, decorate_chain) {
auto endpoints = root->GetEndPoints(); auto endpoints = root->GetEndPoints();
ASSERT_EQ(endpoints.size(), 2U); ASSERT_EQ(endpoints.size(), 2U);
ASSERT_NE(endpoints.count(end_point1.get()), 0UL); ASSERT_NE(endpoints.count(end_point1.get()), 0UL);
ASSERT_NE(endpoints.count(end_point2.get()), 0); ASSERT_NE(endpoints.count(end_point2.get()), 0UL);
} }
{ {
......
...@@ -21,7 +21,7 @@ else ...@@ -21,7 +21,7 @@ else
fi fi
USE_TENSORRT=OFF USE_TENSORRT=OFF
if [ [-d"$TENSORRT_INCLUDE_DIR"] -a [-d"$TENSORRT_LIB_DIR"] ]; then if [ -d "$TENSORRT_INCLUDE_DIR" -a -d "$TENSORRT_LIB_DIR" ]; then
USE_TENSORRT=ON USE_TENSORRT=ON
fi fi
......
...@@ -42,16 +42,22 @@ class Pool2dOpConverter : public OpConverter { ...@@ -42,16 +42,22 @@ class Pool2dOpConverter : public OpConverter {
boost::get<std::vector<int>>(op_desc.GetAttr("strides")); boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
std::vector<int> paddings = std::vector<int> paddings =
boost::get<std::vector<int>>(op_desc.GetAttr("paddings")); boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
bool ceil_mode = boost::get<bool>(op_desc.GetAttr("ceil_mode"));
nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
if (global_pooling == true) {
nvinfer1::Dims input_shape = input1->getDimensions(); nvinfer1::Dims input_shape = input1->getDimensions();
int nbDims = input_shape.nbDims; int nbDims = input_shape.nbDims;
nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);
if (global_pooling == true) {
nv_ksize.d[0] = input_shape.d[nbDims - 2]; nv_ksize.d[0] = input_shape.d[nbDims - 2];
nv_ksize.d[1] = input_shape.d[nbDims - 1]; nv_ksize.d[1] = input_shape.d[nbDims - 1];
nv_strides.h() = 1;
nv_strides.w() = 1;
nv_paddings.h() = 0;
nv_paddings.w() = 0;
} }
const nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
const nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);
PADDLE_ENFORCE_EQ(input1->getDimensions().nbDims, 3UL); PADDLE_ENFORCE_EQ(input1->getDimensions().nbDims, 3UL);
...@@ -64,6 +70,36 @@ class Pool2dOpConverter : public OpConverter { ...@@ -64,6 +70,36 @@ class Pool2dOpConverter : public OpConverter {
PADDLE_THROW("TensorRT unsupported pooling type!"); PADDLE_THROW("TensorRT unsupported pooling type!");
} }
if (ceil_mode) {
nvinfer1::DimsHW pre_pad(0, 0);
nvinfer1::DimsHW post_pad(0, 0);
int input_height = input_shape.d[nbDims - 2];
int input_width = input_shape.d[nbDims - 1];
int floor_h_output_size =
(input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
int ceil_h_output_size =
(input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
strides[0] +
1;
int floor_w_output_size =
(input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
int ceil_w_output_size =
(input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) /
strides[1] +
1;
if (floor_h_output_size != ceil_h_output_size) {
post_pad.h() = strides[0] - 1;
}
if (floor_w_output_size != ceil_w_output_size) {
post_pad.w() = strides[1] - 1;
}
auto* layer = TRT_ENGINE_ADD_LAYER(
engine_, Padding, *const_cast<nvinfer1::ITensor*>(input1), pre_pad,
post_pad);
input1 = layer->getOutput(0);
}
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling,
*const_cast<nvinfer1::ITensor*>(input1), *const_cast<nvinfer1::ITensor*>(input1),
nv_pool_type, nv_ksize); nv_pool_type, nv_ksize);
......
...@@ -20,18 +20,20 @@ namespace paddle { ...@@ -20,18 +20,20 @@ namespace paddle {
namespace inference { namespace inference {
namespace tensorrt { namespace tensorrt {
void test_pool2d(bool global_pooling) { void test_pool2d(bool global_pooling, bool ceil_mode) {
framework::Scope scope; framework::Scope scope;
std::unordered_set<std::string> parameters; std::unordered_set<std::string> parameters;
TRTConvertValidation validator(5, parameters, scope, 1 << 15); TRTConvertValidation validator(5, parameters, scope, 1 << 15);
// The ITensor's Dims should not contain the batch size. // The ITensor's Dims should not contain the batch size.
// So, the ITensor's Dims of input and output should be C * H * W. // So, the ITensor's Dims of input and output should be C * H * W.
validator.DeclInputVar("pool2d-X", nvinfer1::Dims3(3, 4, 4)); validator.DeclInputVar("pool2d-X", nvinfer1::Dims3(3, 13, 14));
if (global_pooling) if (global_pooling)
validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 1, 1)); validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 1, 1));
else if (ceil_mode)
validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 6, 7));
else else
validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 2, 2)); validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 6, 6));
// Prepare Op description // Prepare Op description
framework::OpDesc desc; framework::OpDesc desc;
...@@ -39,7 +41,7 @@ void test_pool2d(bool global_pooling) { ...@@ -39,7 +41,7 @@ void test_pool2d(bool global_pooling) {
desc.SetInput("X", {"pool2d-X"}); desc.SetInput("X", {"pool2d-X"});
desc.SetOutput("Out", {"pool2d-Out"}); desc.SetOutput("Out", {"pool2d-Out"});
std::vector<int> ksize({2, 2}); std::vector<int> ksize({3, 3});
std::vector<int> strides({2, 2}); std::vector<int> strides({2, 2});
std::vector<int> paddings({0, 0}); std::vector<int> paddings({0, 0});
std::string pooling_t = "max"; std::string pooling_t = "max";
...@@ -49,6 +51,7 @@ void test_pool2d(bool global_pooling) { ...@@ -49,6 +51,7 @@ void test_pool2d(bool global_pooling) {
desc.SetAttr("strides", strides); desc.SetAttr("strides", strides);
desc.SetAttr("paddings", paddings); desc.SetAttr("paddings", paddings);
desc.SetAttr("global_pooling", global_pooling); desc.SetAttr("global_pooling", global_pooling);
desc.SetAttr("ceil_mode", ceil_mode);
LOG(INFO) << "set OP"; LOG(INFO) << "set OP";
validator.SetOp(*desc.Proto()); validator.SetOp(*desc.Proto());
...@@ -57,9 +60,10 @@ void test_pool2d(bool global_pooling) { ...@@ -57,9 +60,10 @@ void test_pool2d(bool global_pooling) {
validator.Execute(3); validator.Execute(3);
} }
TEST(Pool2dOpConverter, normal) { test_pool2d(false); } TEST(Pool2dOpConverter, normal) { test_pool2d(false, false); }
TEST(Pool2dOpConverter, test_global_pooling) { test_pool2d(true, false); }
TEST(Pool2dOpConverter, test_global_pooling) { test_pool2d(true); } TEST(Pool2dOpConverter, test_ceil_mode) { test_pool2d(false, true); }
} // namespace tensorrt } // namespace tensorrt
} // namespace inference } // namespace inference
......
...@@ -71,7 +71,7 @@ void profile(bool use_mkldnn = false) { ...@@ -71,7 +71,7 @@ void profile(bool use_mkldnn = false) {
} }
TEST(Analyzer_resnet50, profile) { profile(); } TEST(Analyzer_resnet50, profile) { profile(); }
#ifndef PADDLE_WITH_MKLDNN #ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_resnet50, profile_mkldnn) { profile(true /* use_mkldnn */); } TEST(Analyzer_resnet50, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif #endif
......
...@@ -50,7 +50,7 @@ void CompareResult(const std::vector<PaddleTensor> &outputs, ...@@ -50,7 +50,7 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
auto &ref_out = ref_outputs[i]; auto &ref_out = ref_outputs[i];
size_t size = VecReduceToInt(out.shape); size_t size = VecReduceToInt(out.shape);
size_t ref_size = VecReduceToInt(ref_out.shape); size_t ref_size = VecReduceToInt(ref_out.shape);
EXPECT_GT(size, 0); EXPECT_GT(size, 0UL);
EXPECT_EQ(size, ref_size); EXPECT_EQ(size, ref_size);
EXPECT_EQ(out.dtype, ref_out.dtype); EXPECT_EQ(out.dtype, ref_out.dtype);
switch (out.dtype) { switch (out.dtype) {
......
...@@ -284,10 +284,10 @@ op_library(max_sequence_len_op DEPS lod_rank_table) ...@@ -284,10 +284,10 @@ op_library(max_sequence_len_op DEPS lod_rank_table)
op_library(sequence_conv_op DEPS context_project) op_library(sequence_conv_op DEPS context_project)
op_library(sequence_pool_op DEPS sequence_pooling) op_library(sequence_pool_op DEPS sequence_pooling)
if (NOT WIN32) if (NOT WIN32)
op_library(lstm_op DEPS sequence2batch lstm_compute) op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library(hierarchical_sigmoid_op DEPS matrix_bit_code) op_library(hierarchical_sigmoid_op DEPS matrix_bit_code)
op_library(lstmp_op DEPS sequence2batch lstm_compute) op_library(lstmp_op DEPS sequence2batch lstm_compute)
op_library(gru_op DEPS sequence2batch gru_compute) op_library(gru_op DEPS sequence2batch gru_compute)
endif(NOT WIN32) endif(NOT WIN32)
op_library(recurrent_op DEPS executor) op_library(recurrent_op DEPS executor)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale) op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
...@@ -316,7 +316,7 @@ op_library(save_op DEPS lod_tensor) ...@@ -316,7 +316,7 @@ op_library(save_op DEPS lod_tensor)
op_library(load_op DEPS lod_tensor) op_library(load_op DEPS lod_tensor)
op_library(save_combine_op DEPS lod_tensor) op_library(save_combine_op DEPS lod_tensor)
op_library(load_combine_op DEPS lod_tensor) op_library(load_combine_op DEPS lod_tensor)
op_library(concat_op DEPS concat) op_library(concat_op DEPS concat_and_split)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
...@@ -348,6 +348,6 @@ cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory) ...@@ -348,6 +348,6 @@ cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory)
cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op) cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op)
cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op) cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op)
if(NOT WIN32) if(NOT WIN32)
nv_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context) nv_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context)
endif() endif()
nv_test(dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor) nv_test(dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor)
...@@ -28,7 +28,7 @@ using paddle::framework::Tensor; ...@@ -28,7 +28,7 @@ using paddle::framework::Tensor;
public: \ public: \
void Make() override { \ void Make() override { \
AddInput("X", "Input of " #OP_NAME " operator"); \ AddInput("X", "Input of " #OP_NAME " operator"); \
AddOutput("Out", "Output of " #OP_NAME " operator").Reuse("X"); \ AddOutput("Out", "Output of " #OP_NAME " operator"); \
AddAttr<bool>("use_mkldnn", \ AddAttr<bool>("use_mkldnn", \
"(bool, default false) Only used in mkldnn kernel") \ "(bool, default false) Only used in mkldnn kernel") \
.SetDefault(false); \ .SetDefault(false); \
......
...@@ -92,9 +92,9 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -92,9 +92,9 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator"); AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator"); AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");
AddOutput("ParamOut", "(Tensor) Output parameter").Reuse("Param"); AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("Moment1Out", "(Tensor) Output first moment").Reuse("Moment1"); AddOutput("Moment1Out", "(Tensor) Output first moment");
AddOutput("Moment2Out", "(Tensor) Output second moment").Reuse("Moment2"); AddOutput("Moment2Out", "(Tensor) Output second moment");
AddAttr<float>("beta1", AddAttr<float>("beta1",
"(float, default 0.9) " "(float, default 0.9) "
......
...@@ -11,7 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,7 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <paddle/fluid/operators/math/concat.h> #include <paddle/fluid/operators/math/concat_and_split.h>
#include <numeric> #include <numeric>
#include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_rank_table.h"
......
...@@ -135,15 +135,13 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -135,15 +135,13 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Variance", AddInput("Variance",
"The global variance (for training) " "The global variance (for training) "
"or estimated Variance (for testing)"); "or estimated Variance (for testing)");
AddOutput("Y", "result after normalization").Reuse("X"); AddOutput("Y", "result after normalization");
AddOutput("MeanOut", AddOutput("MeanOut",
"Share memory with Mean. " "Share memory with Mean. "
"Store the global mean when training") "Store the global mean when training");
.Reuse("Mean");
AddOutput("VarianceOut", AddOutput("VarianceOut",
"Share memory with Variance. " "Share memory with Variance. "
"Store the global Variance when training") "Store the global Variance when training");
.Reuse("Variance");
AddOutput("SavedMean", AddOutput("SavedMean",
"Mean of the current mini batch, " "Mean of the current mini batch, "
"will apply to output when training") "will apply to output when training")
......
...@@ -17,7 +17,7 @@ limitations under the License. */ ...@@ -17,7 +17,7 @@ limitations under the License. */
#include <utility> #include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat.h" #include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h" #include "paddle/fluid/operators/strided_memcpy.h"
namespace paddle { namespace paddle {
...@@ -89,28 +89,16 @@ class ConcatGradKernel : public framework::OpKernel<T> { ...@@ -89,28 +89,16 @@ class ConcatGradKernel : public framework::OpKernel<T> {
outputs.push_back(nullptr); outputs.push_back(nullptr);
} }
} }
auto& dev_ctx = ctx.template device_context<DeviceContext>();
// Sometimes direct copies will be faster, this maybe need deeply analysis. // Sometimes direct copies will be faster, this maybe need deeply analysis.
if (axis == 0 && outs.size() < 10) { if (axis == 0 && outs.size() < 10) {
size_t input_offset = 0; std::vector<const framework::Tensor*> ref_shape;
const auto in_stride = framework::stride_numel(out_grad->dims()); ref_shape.insert(ref_shape.begin(), ins.begin(), ins.end());
StridedMemcpyWithAxis0<T>(dev_ctx, *out_grad, ref_shape, &outputs);
for (size_t i = 0; i < outs.size(); ++i) {
auto out_stride = framework::stride_numel(ins[i]->dims());
auto* out = outputs[i];
if (out != nullptr) {
StridedNumelCopyWithAxis<T>(
ctx.device_context(), axis, out->data<T>(), out_stride,
out_grad->data<T>() + input_offset, in_stride, out_stride[axis]);
}
input_offset += out_stride[axis];
}
} else { } else {
auto& dev_ctx = ctx.template device_context<DeviceContext>(); math::SplitFunctor<DeviceContext, T> split_functor;
paddle::operators::math::ConcatGradFunctor<DeviceContext, T> split_functor(dev_ctx, *out_grad, ctx.MultiInput<framework::Tensor>("X"),
concat_grad_functor;
concat_grad_functor(dev_ctx, *out_grad,
ctx.MultiInput<framework::Tensor>("X"),
static_cast<int>(axis), &outputs); static_cast<int>(axis), &outputs);
} }
} }
......
...@@ -130,8 +130,7 @@ void Conv2DOpMaker::Make() { ...@@ -130,8 +130,7 @@ void Conv2DOpMaker::Make() {
.AsDispensable(); .AsDispensable();
AddOutput("Output", AddOutput("Output",
"(Tensor) The output tensor of convolution operator. " "(Tensor) The output tensor of convolution operator. "
"The format of output tensor is also NCHW.") "The format of output tensor is also NCHW.");
.Reuse("Input");
AddInput("ResidualData", AddInput("ResidualData",
"(Tensor) Tensor with residual data " "(Tensor) Tensor with residual data "
"to which convolution output will be added." "to which convolution output will be added."
...@@ -238,8 +237,7 @@ void Conv3DOpMaker::Make() { ...@@ -238,8 +237,7 @@ void Conv3DOpMaker::Make() {
"input image channels divided by the groups."); "input image channels divided by the groups.");
AddOutput("Output", AddOutput("Output",
"(Tensor) The output tensor of convolution operator." "(Tensor) The output tensor of convolution operator."
"The format of output tensor is also NCDHW.") "The format of output tensor is also NCDHW.");
.Reuse("Input");
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"(vector<int>, default:{1, 1, 1}), the " "(vector<int>, default:{1, 1, 1}), the "
"strides(d_stride, h_stride, w_stride) of " "strides(d_stride, h_stride, w_stride) of "
......
...@@ -16,7 +16,7 @@ limitations under the License. */ ...@@ -16,7 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/bbox_util.h" #include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/gather.h" #include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/concat.h" #include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
namespace paddle { namespace paddle {
......
...@@ -52,6 +52,9 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel { ...@@ -52,6 +52,9 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE( PADDLE_ENFORCE(
ctx->HasOutput("TargetBBox"), ctx->HasOutput("TargetBBox"),
"Output(TargetBBox) of RpnTargetAssignOp should not be null"); "Output(TargetBBox) of RpnTargetAssignOp should not be null");
PADDLE_ENFORCE(
ctx->HasOutput("BBoxInsideWeight"),
"Output(BBoxInsideWeight) of RpnTargetAssignOp should not be null");
auto anchor_dims = ctx->GetInputDim("Anchor"); auto anchor_dims = ctx->GetInputDim("Anchor");
auto gt_boxes_dims = ctx->GetInputDim("GtBoxes"); auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
...@@ -68,6 +71,7 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel { ...@@ -68,6 +71,7 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("ScoreIndex", {-1}); ctx->SetOutputDim("ScoreIndex", {-1});
ctx->SetOutputDim("TargetLabel", {-1, 1}); ctx->SetOutputDim("TargetLabel", {-1, 1});
ctx->SetOutputDim("TargetBBox", {-1, 4}); ctx->SetOutputDim("TargetBBox", {-1, 4});
ctx->SetOutputDim("BBoxInsideWeight", {-1, 4});
} }
protected: protected:
...@@ -169,6 +173,7 @@ void ScoreAssign(const T* anchor_by_gt_overlap_data, ...@@ -169,6 +173,7 @@ void ScoreAssign(const T* anchor_by_gt_overlap_data,
const float rpn_positive_overlap, const float rpn_positive_overlap,
const float rpn_negative_overlap, std::vector<int>* fg_inds, const float rpn_negative_overlap, std::vector<int>* fg_inds,
std::vector<int>* bg_inds, std::vector<int>* tgt_lbl, std::vector<int>* bg_inds, std::vector<int>* tgt_lbl,
std::vector<int>* fg_fake, std::vector<T>* bbox_inside_weight,
std::minstd_rand engine, bool use_random) { std::minstd_rand engine, bool use_random) {
float epsilon = 0.00001; float epsilon = 0.00001;
int anchor_num = anchor_to_gt_max.dims()[0]; int anchor_num = anchor_to_gt_max.dims()[0];
...@@ -201,12 +206,12 @@ void ScoreAssign(const T* anchor_by_gt_overlap_data, ...@@ -201,12 +206,12 @@ void ScoreAssign(const T* anchor_by_gt_overlap_data,
// Reservoir Sampling // Reservoir Sampling
int fg_num = static_cast<int>(rpn_fg_fraction * rpn_batch_size_per_im); int fg_num = static_cast<int>(rpn_fg_fraction * rpn_batch_size_per_im);
ReservoirSampling(fg_num, &fg_inds_fake, engine, use_random); ReservoirSampling(fg_num, &fg_inds_fake, engine, use_random);
fg_num = static_cast<int>(fg_inds_fake.size()); int fg_fake_num = static_cast<int>(fg_inds_fake.size());
for (int64_t i = 0; i < fg_num; ++i) { for (int64_t i = 0; i < fg_fake_num; ++i) {
target_label[fg_inds_fake[i]] = 1; target_label[fg_inds_fake[i]] = 1;
} }
int bg_num = rpn_batch_size_per_im - fg_num; int bg_num = rpn_batch_size_per_im - fg_fake_num;
for (int64_t i = 0; i < anchor_num; ++i) { for (int64_t i = 0; i < anchor_num; ++i) {
if (anchor_to_gt_max_data[i] < rpn_negative_overlap) { if (anchor_to_gt_max_data[i] < rpn_negative_overlap) {
bg_inds_fake.push_back(i); bg_inds_fake.push_back(i);
...@@ -214,12 +219,28 @@ void ScoreAssign(const T* anchor_by_gt_overlap_data, ...@@ -214,12 +219,28 @@ void ScoreAssign(const T* anchor_by_gt_overlap_data,
} }
ReservoirSampling(bg_num, &bg_inds_fake, engine, use_random); ReservoirSampling(bg_num, &bg_inds_fake, engine, use_random);
bg_num = static_cast<int>(bg_inds_fake.size()); bg_num = static_cast<int>(bg_inds_fake.size());
int fake_num = 0;
for (int64_t i = 0; i < bg_num; ++i) { for (int64_t i = 0; i < bg_num; ++i) {
// fg fake found
if (target_label[bg_inds_fake[i]] == 1) {
fake_num++;
fg_fake->emplace_back(fg_inds_fake[0]);
for (int j = 0; j < 4; ++j) {
bbox_inside_weight->emplace_back(T(0.));
}
}
target_label[bg_inds_fake[i]] = 0; target_label[bg_inds_fake[i]] = 0;
} }
for (int64_t i = 0; i < (fg_fake_num - fake_num) * 4; ++i) {
bbox_inside_weight->emplace_back(T(1.));
}
for (int64_t i = 0; i < anchor_num; ++i) { for (int64_t i = 0; i < anchor_num; ++i) {
if (target_label[i] == 1) fg_inds->emplace_back(i); if (target_label[i] == 1) {
fg_inds->emplace_back(i);
fg_fake->emplace_back(i);
}
if (target_label[i] == 0) bg_inds->emplace_back(i); if (target_label[i] == 0) bg_inds->emplace_back(i);
} }
fg_num = fg_inds->size(); fg_num = fg_inds->size();
...@@ -248,7 +269,8 @@ std::vector<Tensor> SampleRpnFgBgGt(const platform::CPUDeviceContext& ctx, ...@@ -248,7 +269,8 @@ std::vector<Tensor> SampleRpnFgBgGt(const platform::CPUDeviceContext& ctx,
std::vector<int> bg_inds; std::vector<int> bg_inds;
std::vector<int> gt_inds; std::vector<int> gt_inds;
std::vector<int> tgt_lbl; std::vector<int> tgt_lbl;
std::vector<int> fg_fake;
std::vector<T> bbox_inside_weight;
// Calculate the max IoU between anchors and gt boxes // Calculate the max IoU between anchors and gt boxes
// Map from anchor to gt box that has highest overlap // Map from anchor to gt box that has highest overlap
auto place = ctx.GetPlace(); auto place = ctx.GetPlace();
...@@ -275,32 +297,37 @@ std::vector<Tensor> SampleRpnFgBgGt(const platform::CPUDeviceContext& ctx, ...@@ -275,32 +297,37 @@ std::vector<Tensor> SampleRpnFgBgGt(const platform::CPUDeviceContext& ctx,
// Follow the Faster RCNN's implementation // Follow the Faster RCNN's implementation
ScoreAssign(anchor_by_gt_overlap_data, anchor_to_gt_max, gt_to_anchor_max, ScoreAssign(anchor_by_gt_overlap_data, anchor_to_gt_max, gt_to_anchor_max,
rpn_batch_size_per_im, rpn_fg_fraction, rpn_positive_overlap, rpn_batch_size_per_im, rpn_fg_fraction, rpn_positive_overlap,
rpn_negative_overlap, &fg_inds, &bg_inds, &tgt_lbl, engine, rpn_negative_overlap, &fg_inds, &bg_inds, &tgt_lbl, &fg_fake,
use_random); &bbox_inside_weight, engine, use_random);
int fg_num = fg_inds.size(); int fg_num = fg_inds.size();
int bg_num = bg_inds.size(); int bg_num = bg_inds.size();
gt_inds.reserve(fg_num); int fg_fake_num = fg_fake.size();
for (int i = 0; i < fg_num; ++i) { gt_inds.reserve(fg_fake_num);
gt_inds.emplace_back(argmax[fg_inds[i]]); for (int i = 0; i < fg_fake_num; ++i) {
gt_inds.emplace_back(argmax[fg_fake[i]]);
} }
Tensor loc_index_t, score_index_t, tgt_lbl_t, gt_inds_t, bbox_inside_weight_t;
Tensor loc_index_t, score_index_t, tgt_lbl_t, gt_inds_t; int* loc_index_data = loc_index_t.mutable_data<int>({fg_fake_num}, place);
int* loc_index_data = loc_index_t.mutable_data<int>({fg_num}, place);
int* score_index_data = int* score_index_data =
score_index_t.mutable_data<int>({fg_num + bg_num}, place); score_index_t.mutable_data<int>({fg_num + bg_num}, place);
int* tgt_lbl_data = tgt_lbl_t.mutable_data<int>({fg_num + bg_num}, place); int* tgt_lbl_data = tgt_lbl_t.mutable_data<int>({fg_num + bg_num}, place);
int* gt_inds_data = gt_inds_t.mutable_data<int>({fg_num}, place); int* gt_inds_data = gt_inds_t.mutable_data<int>({fg_fake_num}, place);
std::copy(fg_inds.begin(), fg_inds.end(), loc_index_data); T* bbox_inside_weight_data =
bbox_inside_weight_t.mutable_data<T>({fg_fake_num, 4}, place);
std::copy(fg_fake.begin(), fg_fake.end(), loc_index_data);
std::copy(fg_inds.begin(), fg_inds.end(), score_index_data); std::copy(fg_inds.begin(), fg_inds.end(), score_index_data);
std::copy(bg_inds.begin(), bg_inds.end(), score_index_data + fg_num); std::copy(bg_inds.begin(), bg_inds.end(), score_index_data + fg_num);
std::copy(tgt_lbl.begin(), tgt_lbl.end(), tgt_lbl_data); std::copy(tgt_lbl.begin(), tgt_lbl.end(), tgt_lbl_data);
std::copy(gt_inds.begin(), gt_inds.end(), gt_inds_data); std::copy(gt_inds.begin(), gt_inds.end(), gt_inds_data);
std::copy(bbox_inside_weight.begin(), bbox_inside_weight.end(),
bbox_inside_weight_data);
std::vector<Tensor> loc_score_tgtlbl_gt; std::vector<Tensor> loc_score_tgtlbl_gt;
loc_score_tgtlbl_gt.emplace_back(loc_index_t); loc_score_tgtlbl_gt.emplace_back(loc_index_t);
loc_score_tgtlbl_gt.emplace_back(score_index_t); loc_score_tgtlbl_gt.emplace_back(score_index_t);
loc_score_tgtlbl_gt.emplace_back(tgt_lbl_t); loc_score_tgtlbl_gt.emplace_back(tgt_lbl_t);
loc_score_tgtlbl_gt.emplace_back(gt_inds_t); loc_score_tgtlbl_gt.emplace_back(gt_inds_t);
loc_score_tgtlbl_gt.emplace_back(bbox_inside_weight_t);
return loc_score_tgtlbl_gt; return loc_score_tgtlbl_gt;
} }
...@@ -318,6 +345,7 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> { ...@@ -318,6 +345,7 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
auto* score_index = context.Output<LoDTensor>("ScoreIndex"); auto* score_index = context.Output<LoDTensor>("ScoreIndex");
auto* tgt_bbox = context.Output<LoDTensor>("TargetBBox"); auto* tgt_bbox = context.Output<LoDTensor>("TargetBBox");
auto* tgt_lbl = context.Output<LoDTensor>("TargetLabel"); auto* tgt_lbl = context.Output<LoDTensor>("TargetLabel");
auto* bbox_inside_weight = context.Output<LoDTensor>("BBoxInsideWeight");
PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL, PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL,
"RpnTargetAssignOp gt_boxes needs 1 level of LoD"); "RpnTargetAssignOp gt_boxes needs 1 level of LoD");
...@@ -340,7 +368,7 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> { ...@@ -340,7 +368,7 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
score_index->mutable_data<int>({max_num}, place); score_index->mutable_data<int>({max_num}, place);
tgt_bbox->mutable_data<T>({max_num, 4}, place); tgt_bbox->mutable_data<T>({max_num, 4}, place);
tgt_lbl->mutable_data<int>({max_num, 1}, place); tgt_lbl->mutable_data<int>({max_num, 1}, place);
bbox_inside_weight->mutable_data<T>({max_num, 4}, place);
auto& dev_ctx = context.device_context<platform::CPUDeviceContext>(); auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();
std::random_device rnd; std::random_device rnd;
...@@ -394,6 +422,7 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> { ...@@ -394,6 +422,7 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
Tensor sampled_score_index = loc_score_tgtlbl_gt[1]; Tensor sampled_score_index = loc_score_tgtlbl_gt[1];
Tensor sampled_tgtlbl = loc_score_tgtlbl_gt[2]; Tensor sampled_tgtlbl = loc_score_tgtlbl_gt[2];
Tensor sampled_gt_index = loc_score_tgtlbl_gt[3]; Tensor sampled_gt_index = loc_score_tgtlbl_gt[3];
Tensor sampled_bbox_inside_weight = loc_score_tgtlbl_gt[4];
int loc_num = sampled_loc_index.dims()[0]; int loc_num = sampled_loc_index.dims()[0];
int score_num = sampled_score_index.dims()[0]; int score_num = sampled_score_index.dims()[0];
...@@ -432,6 +461,8 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> { ...@@ -432,6 +461,8 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
AppendRpns<int>(score_index, total_score_num, &sampled_score_index_unmap); AppendRpns<int>(score_index, total_score_num, &sampled_score_index_unmap);
AppendRpns<T>(tgt_bbox, total_loc_num * 4, &sampled_tgt_bbox); AppendRpns<T>(tgt_bbox, total_loc_num * 4, &sampled_tgt_bbox);
AppendRpns<int>(tgt_lbl, total_score_num, &sampled_tgtlbl); AppendRpns<int>(tgt_lbl, total_score_num, &sampled_tgtlbl);
AppendRpns<T>(bbox_inside_weight, total_loc_num * 4,
&sampled_bbox_inside_weight);
total_loc_num += loc_num; total_loc_num += loc_num;
total_score_num += score_num; total_score_num += score_num;
...@@ -448,10 +479,12 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> { ...@@ -448,10 +479,12 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
score_index->set_lod(loc_score); score_index->set_lod(loc_score);
tgt_bbox->set_lod(lod_loc); tgt_bbox->set_lod(lod_loc);
tgt_lbl->set_lod(loc_score); tgt_lbl->set_lod(loc_score);
bbox_inside_weight->set_lod(lod_loc);
loc_index->Resize({total_loc_num}); loc_index->Resize({total_loc_num});
score_index->Resize({total_score_num}); score_index->Resize({total_score_num});
tgt_bbox->Resize({total_loc_num, 4}); tgt_bbox->Resize({total_loc_num, 4});
tgt_lbl->Resize({total_score_num, 1}); tgt_lbl->Resize({total_score_num, 1});
bbox_inside_weight->Resize({total_loc_num, 4});
} }
}; };
...@@ -514,6 +547,9 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -514,6 +547,9 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
"TargetLabel", "TargetLabel",
"(Tensor<int>), The target labels of each anchor with shape " "(Tensor<int>), The target labels of each anchor with shape "
"[F + B, 1], F and B are sampled foreground and backgroud number."); "[F + B, 1], F and B are sampled foreground and backgroud number.");
AddOutput("BBoxInsideWeight",
"(Tensor), The bbox inside weight with shape "
"[F, 4], F is the sampled foreground number.");
AddComment(R"DOC( AddComment(R"DOC(
This operator can be, for a given set of ground truth bboxes and the This operator can be, for a given set of ground truth bboxes and the
anchors, to assign classification and regression targets to each prediction. anchors, to assign classification and regression targets to each prediction.
......
...@@ -80,8 +80,6 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -80,8 +80,6 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
void Make() final { void Make() final {
AddInput("X", "(Tensor), The first input tensor of elementwise op."); AddInput("X", "(Tensor), The first input tensor of elementwise op.");
AddInput("Y", "(Tensor), The second input tensor of elementwise op."); AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
// AddOutput("SavedShape", "(Tensor), save X, Y shape for grad to save
// memory.").AsIntermediate();
AddOutput("Out", "The output of elementwise op."); AddOutput("Out", "The output of elementwise op.");
AddAttr<int>("axis", AddAttr<int>("axis",
"(int, default -1). The start dimension index " "(int, default -1). The start dimension index "
...@@ -129,13 +127,11 @@ But the output only shares the LoD information with the input $X$. ...@@ -129,13 +127,11 @@ But the output only shares the LoD information with the input $X$.
)DOC", )DOC",
GetName(), GetEquation())); GetName(), GetEquation()));
SetReuse();
} }
protected: protected:
virtual std::string GetName() const = 0; virtual std::string GetName() const = 0;
virtual std::string GetEquation() const = 0; virtual std::string GetEquation() const = 0;
virtual void SetReuse() {}
}; };
class ElementwiseOpGrad : public framework::OperatorWithKernel { class ElementwiseOpGrad : public framework::OperatorWithKernel {
...@@ -269,7 +265,6 @@ class ElemwiseGradKernel : public framework::OpKernel<T> { ...@@ -269,7 +265,6 @@ class ElemwiseGradKernel : public framework::OpKernel<T> {
protected: \ protected: \
virtual std::string GetName() const { return op_name; } \ virtual std::string GetName() const { return op_name; } \
virtual std::string GetEquation() const { return equation; } \ virtual std::string GetEquation() const { return equation; } \
virtual void SetReuse() { Reuse(__VA_ARGS__); } \
}; \ }; \
REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp, \ REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp, \
__ElemwiseOp##op_type##Maker__, \ __ElemwiseOp##op_type##Maker__, \
......
...@@ -17,7 +17,7 @@ limitations under the License. */ ...@@ -17,7 +17,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h" #include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/concat.h" #include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/port.h" #include "paddle/fluid/platform/port.h"
...@@ -79,7 +79,7 @@ struct LoDTensorToArrayFunctor : public boost::static_visitor<void> { ...@@ -79,7 +79,7 @@ struct LoDTensorToArrayFunctor : public boost::static_visitor<void> {
template <typename DeviceContext> template <typename DeviceContext>
template <typename T> template <typename T>
void LoDTensorToArrayFunctorImpl<DeviceContext>::apply() { void LoDTensorToArrayFunctorImpl<DeviceContext>::apply() {
math::ConcatGradFunctor<DeviceContext, T> func; math::SplitFunctor<DeviceContext, T> func;
func(*dev_ctx_, prev_functor_->input_, prev_functor_->ref_inputs_, 0, func(*dev_ctx_, prev_functor_->input_, prev_functor_->ref_inputs_, 0,
&prev_functor_->outputs_); &prev_functor_->outputs_);
} }
......
if (NOT WIN32) if (NOT WIN32)
add_subdirectory(detail) add_subdirectory(detail)
endif(NOT WIN32) endif(NOT WIN32)
function(math_library TARGET) function(math_library TARGET)
...@@ -35,7 +35,7 @@ function(math_library TARGET) ...@@ -35,7 +35,7 @@ function(math_library TARGET)
endfunction() endfunction()
# please add new math_library in alphabetical order # please add new math_library in alphabetical order
math_library(concat) math_library(concat_and_split)
math_library(context_project DEPS im2col math_function) math_library(context_project DEPS im2col math_function)
math_library(cross_entropy) math_library(cross_entropy)
math_library(cos_sim_functor) math_library(cos_sim_functor)
...@@ -43,8 +43,8 @@ math_library(depthwise_conv) ...@@ -43,8 +43,8 @@ math_library(depthwise_conv)
math_library(im2col) math_library(im2col)
if (NOT WIN32) # windows do not support avx functions yet. if (NOT WIN32) # windows do not support avx functions yet.
math_library(gru_compute DEPS activation_functions math_function) math_library(gru_compute DEPS activation_functions math_function)
math_library(lstm_compute DEPS activation_functions) math_library(lstm_compute DEPS activation_functions)
endif (NOT WIN32) endif (NOT WIN32)
cc_library(blas SRCS blas.cc DEPS cblas framework_proto device_context) cc_library(blas SRCS blas.cc DEPS cblas framework_proto device_context)
...@@ -58,7 +58,7 @@ math_library(sequence_pooling DEPS math_function) ...@@ -58,7 +58,7 @@ math_library(sequence_pooling DEPS math_function)
math_library(sequence_scale) math_library(sequence_scale)
math_library(softmax DEPS math_function) math_library(softmax DEPS math_function)
if (NOT WIN32) if (NOT WIN32)
math_library(matrix_bit_code) math_library(matrix_bit_code)
endif (NOT WIN32) endif (NOT WIN32)
math_library(unpooling) math_library(unpooling)
math_library(vol2col) math_library(vol2col)
...@@ -72,7 +72,7 @@ if(WITH_GPU) ...@@ -72,7 +72,7 @@ if(WITH_GPU)
nv_test(math_function_gpu_test SRCS math_function_test.cu DEPS math_function) nv_test(math_function_gpu_test SRCS math_function_test.cu DEPS math_function)
nv_test(selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function) nv_test(selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function)
endif() endif()
cc_test(concat_test SRCS concat_test.cc DEPS concat) cc_test(concat_test SRCS concat_test.cc DEPS concat_and_split)
cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info) cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
cc_library(jit_kernel cc_library(jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_lstm.cc SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_lstm.cc
......
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/math/concat.h" #include "paddle/fluid/operators/math/concat_and_split.h"
#include <vector> #include <vector>
namespace paddle { namespace paddle {
...@@ -67,7 +67,7 @@ class ConcatFunctor<platform::CPUDeviceContext, T> { ...@@ -67,7 +67,7 @@ class ConcatFunctor<platform::CPUDeviceContext, T> {
* each dimension must be the same, except the axis dimension. * each dimension must be the same, except the axis dimension.
*/ */
template <typename T> template <typename T>
class ConcatGradFunctor<platform::CPUDeviceContext, T> { class SplitFunctor<platform::CPUDeviceContext, T> {
public: public:
void operator()(const platform::CPUDeviceContext& context, void operator()(const platform::CPUDeviceContext& context,
const framework::Tensor& input, const framework::Tensor& input,
...@@ -111,7 +111,7 @@ class ConcatGradFunctor<platform::CPUDeviceContext, T> { ...@@ -111,7 +111,7 @@ class ConcatGradFunctor<platform::CPUDeviceContext, T> {
}; };
#define DEFINE_FUNCTOR(type) \ #define DEFINE_FUNCTOR(type) \
template class ConcatFunctor<platform::CPUDeviceContext, type>; \ template class ConcatFunctor<platform::CPUDeviceContext, type>; \
template class ConcatGradFunctor<platform::CPUDeviceContext, type>; template class SplitFunctor<platform::CPUDeviceContext, type>;
FOR_ALL_TYPES(DEFINE_FUNCTOR); FOR_ALL_TYPES(DEFINE_FUNCTOR);
......
...@@ -15,7 +15,7 @@ limitations under the License. */ ...@@ -15,7 +15,7 @@ limitations under the License. */
#include <algorithm> #include <algorithm>
#include <vector> #include <vector>
#include "paddle/fluid/framework/mixed_vector.h" #include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/operators/math/concat.h" #include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/platform/cuda_primitives.h" #include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h" #include "paddle/fluid/platform/float16.h"
...@@ -24,7 +24,7 @@ namespace operators { ...@@ -24,7 +24,7 @@ namespace operators {
namespace math { namespace math {
template <typename T> template <typename T>
__global__ void KernelConcat(T** inputs, const int* input_cols, int col_size, __global__ void ConcatKernel(T** inputs, const int* input_cols, int col_size,
const int output_rows, const int output_cols, const int output_rows, const int output_cols,
T* output) { T* output) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x; int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
...@@ -50,7 +50,7 @@ __global__ void KernelConcat(T** inputs, const int* input_cols, int col_size, ...@@ -50,7 +50,7 @@ __global__ void KernelConcat(T** inputs, const int* input_cols, int col_size,
} }
template <typename T> template <typename T>
__global__ void KernelConcat(T** inputs_data, const int fixed_in_col, __global__ void ConcatKernel(T** inputs_data, const int fixed_in_col,
const int out_rows, const int out_cols, const int out_rows, const int out_cols,
T* output_data) { T* output_data) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x; int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
...@@ -67,7 +67,7 @@ __global__ void KernelConcat(T** inputs_data, const int fixed_in_col, ...@@ -67,7 +67,7 @@ __global__ void KernelConcat(T** inputs_data, const int fixed_in_col,
} }
template <typename T> template <typename T>
__global__ void KernelConcatGrad(const T* input_data, const int in_row, __global__ void SplitKernel(const T* input_data, const int in_row,
const int in_col, const int* out_cols, const int in_col, const int* out_cols,
int out_cols_size, T** outputs_data) { int out_cols_size, T** outputs_data) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x; int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
...@@ -94,7 +94,7 @@ __global__ void KernelConcatGrad(const T* input_data, const int in_row, ...@@ -94,7 +94,7 @@ __global__ void KernelConcatGrad(const T* input_data, const int in_row,
} }
template <typename T> template <typename T>
__global__ void KernelConcatGrad(const T* input_data, const int in_row, __global__ void SplitKernel(const T* input_data, const int in_row,
const int in_col, const int fixed_out_col, const int in_col, const int fixed_out_col,
T** outputs_data) { T** outputs_data) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x; int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
...@@ -170,11 +170,11 @@ class ConcatFunctor<platform::CUDADeviceContext, T> { ...@@ -170,11 +170,11 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
dim3 grid_size = dim3(grid_cols, grid_rows, 1); dim3 grid_size = dim3(grid_cols, grid_rows, 1);
if (sameShape) { if (sameShape) {
KernelConcat<<<grid_size, block_size, 0, context.stream()>>>( ConcatKernel<<<grid_size, block_size, 0, context.stream()>>>(
dev_ins_data, in_col, out_row, out_col, output->data<T>()); dev_ins_data, in_col, out_row, out_col, output->data<T>());
} else { } else {
const int* dev_ins_col_data = inputs_col.CUDAData(context.GetPlace()); const int* dev_ins_col_data = inputs_col.CUDAData(context.GetPlace());
KernelConcat<<<grid_size, block_size, 0, context.stream()>>>( ConcatKernel<<<grid_size, block_size, 0, context.stream()>>>(
dev_ins_data, dev_ins_col_data, static_cast<int>(inputs_col.size()), dev_ins_data, dev_ins_col_data, static_cast<int>(inputs_col.size()),
out_row, out_col, output->data<T>()); out_row, out_col, output->data<T>());
} }
...@@ -189,7 +189,7 @@ class ConcatFunctor<platform::CUDADeviceContext, T> { ...@@ -189,7 +189,7 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
* each dimension must be the same, except the axis dimension. * each dimension must be the same, except the axis dimension.
*/ */
template <typename T> template <typename T>
class ConcatGradFunctor<platform::CUDADeviceContext, T> { class SplitFunctor<platform::CUDADeviceContext, T> {
public: public:
void operator()(const platform::CUDADeviceContext& context, void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input, const framework::Tensor& input,
...@@ -248,11 +248,11 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> { ...@@ -248,11 +248,11 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
dim3 grid_size = dim3(grid_cols, grid_rows, 1); dim3 grid_size = dim3(grid_cols, grid_rows, 1);
if (sameShape) { if (sameShape) {
KernelConcatGrad<<<grid_size, block_size, 0, context.stream()>>>( SplitKernel<<<grid_size, block_size, 0, context.stream()>>>(
input.data<T>(), in_row, in_col, out0_col, dev_out_gpu_data); input.data<T>(), in_row, in_col, out0_col, dev_out_gpu_data);
} else { } else {
const int* dev_outs_col_data = outputs_cols.CUDAData(context.GetPlace()); const int* dev_outs_col_data = outputs_cols.CUDAData(context.GetPlace());
KernelConcatGrad<<<grid_size, block_size, 0, context.stream()>>>( SplitKernel<<<grid_size, block_size, 0, context.stream()>>>(
input.data<T>(), in_row, in_col, dev_outs_col_data, input.data<T>(), in_row, in_col, dev_outs_col_data,
static_cast<int>(outputs_cols.size()), dev_out_gpu_data); static_cast<int>(outputs_cols.size()), dev_out_gpu_data);
} }
...@@ -264,7 +264,7 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> { ...@@ -264,7 +264,7 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
#define DEFINE_FUNCTOR(type) \ #define DEFINE_FUNCTOR(type) \
template class ConcatFunctor<platform::CUDADeviceContext, type>; \ template class ConcatFunctor<platform::CUDADeviceContext, type>; \
template class ConcatGradFunctor<platform::CUDADeviceContext, type> template class SplitFunctor<platform::CUDADeviceContext, type>
FOR_ALL_TYPES(DEFINE_FUNCTOR); FOR_ALL_TYPES(DEFINE_FUNCTOR);
......
...@@ -54,7 +54,7 @@ class ConcatFunctor { ...@@ -54,7 +54,7 @@ class ConcatFunctor {
* Output[1] = [[5,6]] * Output[1] = [[5,6]]
*/ */
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class ConcatGradFunctor { class SplitFunctor {
public: public:
void operator()(const DeviceContext& context, const framework::Tensor& input, void operator()(const DeviceContext& context, const framework::Tensor& input,
const std::vector<const framework::Tensor*>& ref_inputs, const std::vector<const framework::Tensor*>& ref_inputs,
......
...@@ -12,10 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,10 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/math/concat.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <vector> #include <vector>
#include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
template <typename DeviceContext, typename Place> template <typename DeviceContext, typename Place>
void testConcat() { void testConcat() {
......
...@@ -34,7 +34,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -34,7 +34,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
AddInput("X", "(Tensor) The input of mean op"); AddInput("X", "(Tensor) The input of mean op");
AddOutput("Out", "(Tensor) The output of mean op").Reuse("X"); AddOutput("Out", "(Tensor) The output of mean op");
AddComment(R"DOC( AddComment(R"DOC(
Mean Operator calculates the mean of all elements in X. Mean Operator calculates the mean of all elements in X.
......
...@@ -151,8 +151,7 @@ void Pool2dOpMaker::Make() { ...@@ -151,8 +151,7 @@ void Pool2dOpMaker::Make() {
"The format of output tensor is also NCHW, " "The format of output tensor is also NCHW, "
"where N is batch size, C is the number of channels, " "where N is batch size, C is the number of channels, "
"H is the height of the feature, " "H is the height of the feature, "
"and W is the width of the feature.") "and W is the width of the feature.");
.Reuse("X");
AddAttr<std::string>("pooling_type", AddAttr<std::string>("pooling_type",
"(string), pooling type, can be \"max\" for max-pooling " "(string), pooling type, can be \"max\" for max-pooling "
...@@ -252,8 +251,7 @@ void Pool3dOpMaker::Make() { ...@@ -252,8 +251,7 @@ void Pool3dOpMaker::Make() {
"The format of output tensor is also NCDHW, " "The format of output tensor is also NCDHW, "
"where N is batch size, C is " "where N is batch size, C is "
"the number of channels, and D, H and W is the depth, height and " "the number of channels, and D, H and W is the depth, height and "
"width of the feature, respectively.") "width of the feature, respectively.");
.Reuse("X");
AddAttr<std::string>("pooling_type", AddAttr<std::string>("pooling_type",
"(string) Pooling type, can be \"max\" for max-pooling " "(string) Pooling type, can be \"max\" for max-pooling "
......
...@@ -237,7 +237,7 @@ TEST(BlockingQueue, speed_test_mode) { ...@@ -237,7 +237,7 @@ TEST(BlockingQueue, speed_test_mode) {
} }
for (size_t i = 0; i < queue_size; ++i) { for (size_t i = 0; i < queue_size; ++i) {
q2.Receive(&b); q2.Receive(&b);
EXPECT_EQ(b, 0); EXPECT_EQ(b, 0UL);
} }
EXPECT_EQ(q2.Size(), queue_size); EXPECT_EQ(q2.Size(), queue_size);
} }
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h" #include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/concat.h" #include "paddle/fluid/operators/math/concat_and_split.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -106,7 +106,7 @@ class SeqConcatGradKernel : public framework::OpKernel<T> { ...@@ -106,7 +106,7 @@ class SeqConcatGradKernel : public framework::OpKernel<T> {
} }
} }
math::ConcatGradFunctor<DeviceContext, T> functor; math::SplitFunctor<DeviceContext, T> functor;
std::vector<const framework::Tensor *> sliced_x_ptr; std::vector<const framework::Tensor *> sliced_x_ptr;
std::vector<framework::Tensor *> sliced_dx_ptr; std::vector<framework::Tensor *> sliced_dx_ptr;
for (auto &x : sliced_x) { for (auto &x : sliced_x) {
......
...@@ -77,8 +77,7 @@ class SGDOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -77,8 +77,7 @@ class SGDOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Grad", "(Tensor or SelectedRows) Input gradient"); AddInput("Grad", "(Tensor or SelectedRows) Input gradient");
AddOutput("ParamOut", AddOutput("ParamOut",
"(Tensor or SelectedRows, same with Param) " "(Tensor or SelectedRows, same with Param) "
"Output parameter, should share the same memory with Param") "Output parameter, should share the same memory with Param");
.Reuse("Param");
AddComment(R"DOC( AddComment(R"DOC(
SGD operator SGD operator
......
...@@ -80,8 +80,7 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -80,8 +80,7 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", AddInput("X",
"The input tensor of softmax, " "The input tensor of softmax, "
"whose last dimension is the input_feature_dimensions."); "whose last dimension is the input_feature_dimensions.");
AddOutput("Out", "The normalized values with the same shape as X.") AddOutput("Out", "The normalized values with the same shape as X.");
.Reuse("X");
AddAttr<bool>( AddAttr<bool>(
"use_cudnn", "use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn") "(bool, default false) Only used in cudnn kernel, need install cudnn")
......
...@@ -111,11 +111,10 @@ Example: ...@@ -111,11 +111,10 @@ Example:
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
USE_CPU_ONLY_OP(concat);
REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker, ops::SplitGradMaker); REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker, ops::SplitGradMaker);
REGISTER_OP_CPU_KERNEL(split, REGISTER_OP_CPU_KERNEL(
ops::SplitOpKernel<paddle::platform::CPUPlace, double>, split, ops::SplitOpKernel<paddle::platform::CPUDeviceContext, double>,
ops::SplitOpKernel<paddle::platform::CPUPlace, float>, ops::SplitOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::SplitOpKernel<paddle::platform::CPUPlace, int64_t>, ops::SplitOpKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::SplitOpKernel<paddle::platform::CPUPlace, int>); ops::SplitOpKernel<paddle::platform::CPUDeviceContext, int>);
...@@ -17,6 +17,7 @@ limitations under the License. */ ...@@ -17,6 +17,7 @@ limitations under the License. */
#include <chrono> // NOLINT #include <chrono> // NOLINT
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h" #include "paddle/fluid/operators/strided_memcpy.h"
namespace paddle { namespace paddle {
...@@ -28,18 +29,22 @@ class SplitOpKernel : public framework::OpKernel<T> { ...@@ -28,18 +29,22 @@ class SplitOpKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<framework::Tensor>("X"); auto* in = ctx.Input<framework::Tensor>("X");
auto outs = ctx.MultiOutput<framework::Tensor>("Out"); auto outs = ctx.MultiOutput<framework::Tensor>("Out");
auto in_stride = framework::stride_numel(in->dims()); int axis = ctx.Attr<int>("axis");
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
auto place = ctx.GetPlace(); auto place = ctx.GetPlace();
size_t input_offset = 0; std::vector<const framework::Tensor*> shape_refer;
for (auto& out : outs) { for (size_t j = 0; j < outs.size(); ++j) {
out->mutable_data<T>(ctx.GetPlace()); outs[j]->mutable_data<T>(ctx.GetPlace());
auto out_stride = framework::stride_numel(out->dims()); shape_refer.emplace_back(outs[j]);
StridedNumelCopyWithAxis<T>(ctx.device_context(), axis, out->data<T>(), }
out_stride, in->data<T>() + input_offset,
in_stride, out_stride[axis]); auto& dev_ctx = ctx.template device_context<DeviceContext>();
input_offset += out_stride[axis]; // Sometimes direct copies will be faster, this maybe need deeply analysis.
if (axis == 0 && outs.size() < 10) {
StridedMemcpyWithAxis0<T>(dev_ctx, *in, shape_refer, &outs);
} else {
math::SplitFunctor<DeviceContext, T> functor;
functor(dev_ctx, *in, shape_refer, axis, &outs);
} }
} }
}; };
......
...@@ -13,8 +13,9 @@ See the License for the specific language governing permissions and ...@@ -13,8 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/detail/strided_memcpy.h" #include "paddle/fluid/operators/detail/strided_memcpy.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -98,5 +99,26 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx, ...@@ -98,5 +99,26 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
} }
} }
template <typename T>
inline void StridedMemcpyWithAxis0(
const platform::DeviceContext& dev_ctx, const framework::Tensor& input,
const std::vector<const framework::Tensor*>& shape_refer,
std::vector<framework::Tensor*>* outputs) {
const framework::DDim in_stride = stride_numel(input.dims());
const int axis = 0;
size_t input_offset = 0;
for (size_t i = 0; i < outputs->size(); ++i) {
auto out_stride = stride_numel(shape_refer[i]->dims());
auto out = outputs->at(i);
if (out != nullptr) {
StridedNumelCopyWithAxis<T>(dev_ctx, axis, out->data<T>(), out_stride,
input.data<T>() + input_offset, in_stride,
out_stride[axis]);
}
input_offset += out_stride[axis];
}
}
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -132,7 +132,7 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -132,7 +132,7 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker {
void Make() override { void Make() override {
AddInput("X", "(vector<Tensor>) The input tensors of sum operator.") AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
.AsDuplicable(); .AsDuplicable();
AddOutput("Out", "(Tensor) The output tensor of sum operator.").Reuse("X"); AddOutput("Out", "(Tensor) The output tensor of sum operator.");
AddAttr<bool>("use_mkldnn", AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel") "(bool, default false) Only used in mkldnn kernel")
.SetDefault(false); .SetDefault(false);
......
...@@ -50,7 +50,7 @@ class TopkOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -50,7 +50,7 @@ class TopkOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
AddInput("X", "(Tensor) The input of Topk op"); AddInput("X", "(Tensor) The input of Topk op");
AddOutput("Out", "(Tensor) The output tensor of Topk op").Reuse("X"); AddOutput("Out", "(Tensor) The output tensor of Topk op");
AddOutput("Indices", "(Tensor) The indices of Topk elements of input"); AddOutput("Indices", "(Tensor) The indices of Topk elements of input");
AddComment(R"DOC( AddComment(R"DOC(
Top K operator Top K operator
......
...@@ -262,31 +262,31 @@ __global__ void KeMatrixTopK(T* output, int output_stride, int64_t* indices, ...@@ -262,31 +262,31 @@ __global__ void KeMatrixTopK(T* output, int output_stride, int64_t* indices,
const T* src, int lds, int dim, int k, const T* src, int lds, int dim, int k,
int grid_dim, int num) { int grid_dim, int num) {
__shared__ Pair<T> sh_topk[BlockSize]; __shared__ Pair<T> sh_topk[BlockSize];
__shared__ int maxid[BlockSize / 2];
const int tid = threadIdx.x; const int tid = threadIdx.x;
const int warp = threadIdx.x / 32; const int warp = threadIdx.x / 32;
const int bid = blockIdx.x; const int bid = blockIdx.x;
for (int i = bid; i < num; i += grid_dim) { for (int i = bid; i < num; i += grid_dim) {
output += i * output_stride; int top_num = k;
indices += i * k; __shared__ int maxid[BlockSize / 2];
T* out = output + i * output_stride;
int64_t* inds = indices + i * k;
Pair<T> topk[MaxLength]; Pair<T> topk[MaxLength];
int beam = MaxLength; int beam = MaxLength;
Pair<T> max; Pair<T> max;
bool is_empty = false; bool is_empty = false;
bool firststep = true; bool firststep = true;
for (int k = 0; k < MaxLength; k++) { for (int j = 0; j < MaxLength; j++) {
topk[k].set(-INFINITY, -1); topk[j].set(-INFINITY, -1);
} }
while (k) { while (top_num) {
ThreadGetTopK<T, MaxLength, BlockSize>( ThreadGetTopK<T, MaxLength, BlockSize>(
topk, &beam, k, src + i * lds, &firststep, &is_empty, &max, dim, tid); topk, &beam, k, src + i * lds, &firststep, &is_empty, &max, dim, tid);
sh_topk[tid] = topk[0]; sh_topk[tid] = topk[0];
BlockReduce<T, MaxLength, BlockSize>(sh_topk, maxid, topk, &output, BlockReduce<T, MaxLength, BlockSize>(sh_topk, maxid, topk, &out, &inds,
&indices, &beam, &k, tid, warp); &beam, &top_num, tid, warp);
} }
} }
} }
...@@ -327,13 +327,15 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> { ...@@ -327,13 +327,15 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
size_t k = static_cast<int>(ctx.Attr<int>("k")); size_t k = static_cast<int>(ctx.Attr<int>("k"));
const T* input_data = input->data<T>(); const T* input_data = input->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace()); T* output_data = output->mutable_data<T>(ctx.GetPlace());
// FIXME(typhoonzero): data is always converted to type T? // FIXME(typhoonzero): data is always converted to type T?
int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace()); int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
size_t input_height = input->dims()[0]; framework::DDim inputdims = input->dims();
size_t input_width = input->dims()[1]; const size_t input_height = framework::product(
framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
const size_t input_width = inputdims[inputdims.size() - 1];
if (k > input_width) k = input_width; if (k > input_width) k = input_width;
// NOTE: pass lds and dim same to input width. // NOTE: pass lds and dim same to input width.
...@@ -342,14 +344,12 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> { ...@@ -342,14 +344,12 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
const int kMaxHeight = 2048; const int kMaxHeight = 2048;
int gridx = input_height < kMaxHeight ? input_height : kMaxHeight; int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
auto& dev_ctx = ctx.cuda_device_context(); auto& dev_ctx = ctx.cuda_device_context();
switch (GetDesiredBlockDim(input_width)) { switch (GetDesiredBlockDim(input_width)) {
FIXED_BLOCK_DIM( FIXED_BLOCK_DIM(
KeMatrixTopK<T, 5, KeMatrixTopK<T, 5,
kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>( kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
output_data, output->dims()[1], indices_data, input_data, output_data, k, indices_data, input_data, input_width,
input_width, input_width, static_cast<int>(k), gridx, input_width, static_cast<int>(k), gridx, input_height));
input_height));
default: default:
PADDLE_THROW("Error"); PADDLE_THROW("Error");
} }
......
...@@ -34,7 +34,6 @@ class TopkKernel : public framework::OpKernel<T> { ...@@ -34,7 +34,6 @@ class TopkKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
// Get the top k elements of each row of input tensor // Get the top k elements of each row of input tensor
// FIXME: only deal with matrix(2d tensor).
auto* input = ctx.Input<Tensor>("X"); auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out"); auto* output = ctx.Output<Tensor>("Out");
auto* indices = ctx.Output<Tensor>("Indices"); auto* indices = ctx.Output<Tensor>("Indices");
...@@ -44,8 +43,6 @@ class TopkKernel : public framework::OpKernel<T> { ...@@ -44,8 +43,6 @@ class TopkKernel : public framework::OpKernel<T> {
T* output_data = output->mutable_data<T>(ctx.GetPlace()); T* output_data = output->mutable_data<T>(ctx.GetPlace());
int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace()); int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
auto eg_input = EigenMatrix<T>::From(*input);
// reshape input to a flattern matrix(like flat_inner_dims) // reshape input to a flattern matrix(like flat_inner_dims)
framework::DDim inputdims = input->dims(); framework::DDim inputdims = input->dims();
const size_t row = framework::product( const size_t row = framework::product(
...@@ -53,7 +50,7 @@ class TopkKernel : public framework::OpKernel<T> { ...@@ -53,7 +50,7 @@ class TopkKernel : public framework::OpKernel<T> {
const size_t col = inputdims[inputdims.size() - 1]; const size_t col = inputdims[inputdims.size() - 1];
Eigen::DSizes<int, 2> flat2dims(row, col); Eigen::DSizes<int, 2> flat2dims(row, col);
// NOTE: eigen shape doesn't affect paddle tensor. // NOTE: eigen shape doesn't affect paddle tensor.
eg_input.reshape(flat2dims); auto eg_input = EigenMatrix<T>::Reshape(*input, inputdims.size() - 1);
#ifdef PADDLE_WITH_MKLML #ifdef PADDLE_WITH_MKLML
#pragma omp parallel for #pragma omp parallel for
......
...@@ -116,8 +116,8 @@ def rpn_target_assign(bbox_pred, ...@@ -116,8 +116,8 @@ def rpn_target_assign(bbox_pred,
Returns: Returns:
tuple: tuple:
A tuple(predicted_scores, predicted_location, target_label, A tuple(predicted_scores, predicted_location, target_label,
target_bbox) is returned. The predicted_scores and target_bbox, bbox_inside_weight) is returned. The predicted_scores
predicted_location is the predicted result of the RPN. and predicted_location is the predicted result of the RPN.
The target_label and target_bbox is the ground truth, The target_label and target_bbox is the ground truth,
respectively. The predicted_location is a 2D Tensor with shape respectively. The predicted_location is a 2D Tensor with shape
[F, 4], and the shape of target_bbox is same as the shape of [F, 4], and the shape of target_bbox is same as the shape of
...@@ -126,6 +126,8 @@ def rpn_target_assign(bbox_pred, ...@@ -126,6 +126,8 @@ def rpn_target_assign(bbox_pred,
[F + B, 1], and the shape of target_label is same as the shape [F + B, 1], and the shape of target_label is same as the shape
of the predicted_scores, B is the number of the background of the predicted_scores, B is the number of the background
anchors, the F and B is depends on the input of this operator. anchors, the F and B is depends on the input of this operator.
Bbox_inside_weight represents whether the predicted loc is fake_fg
or not and the shape is [F, 4].
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -138,7 +140,7 @@ def rpn_target_assign(bbox_pred, ...@@ -138,7 +140,7 @@ def rpn_target_assign(bbox_pred,
append_batch_size=False, dtype='float32') append_batch_size=False, dtype='float32')
gt_boxes = layers.data(name='gt_boxes', shape=[10, 4], gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
append_batch_size=False, dtype='float32') append_batch_size=False, dtype='float32')
loc_pred, score_pred, loc_target, score_target = loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
fluid.layers.rpn_target_assign(bbox_pred=bbox_pred, fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
cls_logits=cls_logits, cls_logits=cls_logits,
anchor_box=anchor_box, anchor_box=anchor_box,
...@@ -152,6 +154,8 @@ def rpn_target_assign(bbox_pred, ...@@ -152,6 +154,8 @@ def rpn_target_assign(bbox_pred,
target_label = helper.create_variable_for_type_inference(dtype='int32') target_label = helper.create_variable_for_type_inference(dtype='int32')
target_bbox = helper.create_variable_for_type_inference( target_bbox = helper.create_variable_for_type_inference(
dtype=anchor_box.dtype) dtype=anchor_box.dtype)
bbox_inside_weight = helper.create_variable_for_type_inference(
dtype=anchor_box.dtype)
helper.append_op( helper.append_op(
type="rpn_target_assign", type="rpn_target_assign",
inputs={ inputs={
...@@ -164,7 +168,8 @@ def rpn_target_assign(bbox_pred, ...@@ -164,7 +168,8 @@ def rpn_target_assign(bbox_pred,
'LocationIndex': loc_index, 'LocationIndex': loc_index,
'ScoreIndex': score_index, 'ScoreIndex': score_index,
'TargetLabel': target_label, 'TargetLabel': target_label,
'TargetBBox': target_bbox 'TargetBBox': target_bbox,
'BBoxInsideWeight': bbox_inside_weight
}, },
attrs={ attrs={
'rpn_batch_size_per_im': rpn_batch_size_per_im, 'rpn_batch_size_per_im': rpn_batch_size_per_im,
...@@ -179,13 +184,14 @@ def rpn_target_assign(bbox_pred, ...@@ -179,13 +184,14 @@ def rpn_target_assign(bbox_pred,
score_index.stop_gradient = True score_index.stop_gradient = True
target_label.stop_gradient = True target_label.stop_gradient = True
target_bbox.stop_gradient = True target_bbox.stop_gradient = True
bbox_inside_weight.stop_gradient = True
cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1)) cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4)) bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
predicted_cls_logits = nn.gather(cls_logits, score_index) predicted_cls_logits = nn.gather(cls_logits, score_index)
predicted_bbox_pred = nn.gather(bbox_pred, loc_index) predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
def detection_output(loc, def detection_output(loc,
......
if(NOT APPLE) set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests CACHE INTERNAL "python tests directory")
set(PYTHON_TESTS_DIR ${CMAKE_CURRENT_BINARY_DIR} CACHE PATH "python tests directory")
else()
set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
endif(NOT APPLE)
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
......
...@@ -301,7 +301,7 @@ class TestRpnTargetAssign(unittest.TestCase): ...@@ -301,7 +301,7 @@ class TestRpnTargetAssign(unittest.TestCase):
dtype='float32', dtype='float32',
lod_level=1, lod_level=1,
append_batch_size=False) append_batch_size=False)
pred_scores, pred_loc, tgt_lbl, tgt_bbox = layers.rpn_target_assign( pred_scores, pred_loc, tgt_lbl, tgt_bbox, bbox_inside_weight = layers.rpn_target_assign(
bbox_pred=bbox_pred, bbox_pred=bbox_pred,
cls_logits=cls_logits, cls_logits=cls_logits,
anchor_box=anchor_box, anchor_box=anchor_box,
...@@ -313,15 +313,18 @@ class TestRpnTargetAssign(unittest.TestCase): ...@@ -313,15 +313,18 @@ class TestRpnTargetAssign(unittest.TestCase):
rpn_straddle_thresh=0.0, rpn_straddle_thresh=0.0,
rpn_fg_fraction=0.5, rpn_fg_fraction=0.5,
rpn_positive_overlap=0.7, rpn_positive_overlap=0.7,
rpn_negative_overlap=0.3) rpn_negative_overlap=0.3,
use_random=False)
self.assertIsNotNone(pred_scores) self.assertIsNotNone(pred_scores)
self.assertIsNotNone(pred_loc) self.assertIsNotNone(pred_loc)
self.assertIsNotNone(tgt_lbl) self.assertIsNotNone(tgt_lbl)
self.assertIsNotNone(tgt_bbox) self.assertIsNotNone(tgt_bbox)
self.assertIsNotNone(bbox_inside_weight)
assert pred_scores.shape[1] == 1 assert pred_scores.shape[1] == 1
assert pred_loc.shape[1] == 4 assert pred_loc.shape[1] == 4
assert pred_loc.shape[1] == tgt_bbox.shape[1] assert pred_loc.shape[1] == tgt_bbox.shape[1]
print(str(program))
class TestGenerateProposals(unittest.TestCase): class TestGenerateProposals(unittest.TestCase):
......
...@@ -40,7 +40,8 @@ class TestDistMnistAsync(TestDistBase): ...@@ -40,7 +40,8 @@ class TestDistMnistAsync(TestDistBase):
self._sync_mode = False self._sync_mode = False
self._use_reduce = False self._use_reduce = False
def test_dist_train(self): # FIXME(typhoonzero): fix async mode test later
def no_test_dist_train(self):
self.check_with_place("dist_mnist.py", delta=200) self.check_with_place("dist_mnist.py", delta=200)
......
...@@ -40,7 +40,8 @@ class TestDistSeResneXt2x2Async(TestDistBase): ...@@ -40,7 +40,8 @@ class TestDistSeResneXt2x2Async(TestDistBase):
self._sync_mode = False self._sync_mode = False
self._use_reader_alloc = False self._use_reader_alloc = False
def test_dist_train(self): #FIXME(typhoonzero): fix async mode later
def no_test_dist_train(self):
self.check_with_place("dist_se_resnext.py", delta=100) self.check_with_place("dist_se_resnext.py", delta=100)
......
...@@ -42,7 +42,8 @@ class TestDistSimnetBow2x2DenseAsync(TestDistBase): ...@@ -42,7 +42,8 @@ class TestDistSimnetBow2x2DenseAsync(TestDistBase):
self._sync_mode = False self._sync_mode = False
self._enforce_place = "CPU" self._enforce_place = "CPU"
def test_simnet_bow(self): #FIXME(typhoonzero): fix async tests later
def no_test_simnet_bow(self):
need_envs = { need_envs = {
"IS_DISTRIBUTED": '0', "IS_DISTRIBUTED": '0',
"IS_SPARSE": '0', "IS_SPARSE": '0',
...@@ -78,7 +79,8 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase): ...@@ -78,7 +79,8 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase):
self._sync_mode = False self._sync_mode = False
self._enforce_place = "CPU" self._enforce_place = "CPU"
def test_simnet_bow(self): #FIXME(typhoonzero): fix async tests later
def no_test_simnet_bow(self):
need_envs = { need_envs = {
"IS_DISTRIBUTED": '0', "IS_DISTRIBUTED": '0',
"IS_SPARSE": '1', "IS_SPARSE": '1',
......
...@@ -50,8 +50,10 @@ def rpn_target_assign(anchor_by_gt_overlap, ...@@ -50,8 +50,10 @@ def rpn_target_assign(anchor_by_gt_overlap,
fg_inds, size=(len(fg_inds) - num_fg), replace=False) fg_inds, size=(len(fg_inds) - num_fg), replace=False)
else: else:
disable_inds = fg_inds[num_fg:] disable_inds = fg_inds[num_fg:]
labels[disable_inds] = -1 labels[disable_inds] = -1
fg_inds = np.where(labels == 1)[0] fg_inds = np.where(labels == 1)[0]
bbox_inside_weight = np.zeros((len(fg_inds), 4), dtype=np.float32)
num_bg = rpn_batch_size_per_im - np.sum(labels == 1) num_bg = rpn_batch_size_per_im - np.sum(labels == 1)
bg_inds = np.where(anchor_to_gt_max < rpn_negative_overlap)[0] bg_inds = np.where(anchor_to_gt_max < rpn_negative_overlap)[0]
...@@ -59,18 +61,27 @@ def rpn_target_assign(anchor_by_gt_overlap, ...@@ -59,18 +61,27 @@ def rpn_target_assign(anchor_by_gt_overlap,
enable_inds = bg_inds[np.random.randint(len(bg_inds), size=num_bg)] enable_inds = bg_inds[np.random.randint(len(bg_inds), size=num_bg)]
else: else:
enable_inds = bg_inds[:num_bg] enable_inds = bg_inds[:num_bg]
fg_fake_inds = np.array([], np.int32)
fg_value = np.array([fg_inds[0]], np.int32)
fake_num = 0
for bg_id in enable_inds:
if bg_id in fg_inds:
fake_num += 1
fg_fake_inds = np.hstack([fg_fake_inds, fg_value])
labels[enable_inds] = 0 labels[enable_inds] = 0
bbox_inside_weight[fake_num:, :] = 1
fg_inds = np.where(labels == 1)[0] fg_inds = np.where(labels == 1)[0]
bg_inds = np.where(labels == 0)[0] bg_inds = np.where(labels == 0)[0]
loc_index = np.hstack([fg_fake_inds, fg_inds])
loc_index = fg_inds score_index = np.hstack([fg_inds, bg_inds])
score_index = np.hstack((fg_inds, bg_inds))
labels = labels[score_index] labels = labels[score_index]
assert not np.any(labels == -1), "Wrong labels with -1" assert not np.any(labels == -1), "Wrong labels with -1"
gt_inds = anchor_to_gt_argmax[fg_inds] gt_inds = anchor_to_gt_argmax[loc_index]
return loc_index, score_index, labels, gt_inds return loc_index, score_index, labels, gt_inds, bbox_inside_weight
def get_anchor(n, c, h, w): def get_anchor(n, c, h, w):
...@@ -123,9 +134,12 @@ def rpn_target_assign_in_python(all_anchors, ...@@ -123,9 +134,12 @@ def rpn_target_assign_in_python(all_anchors,
gt_boxes_slice = gt_boxes_slice[not_crowd_inds] gt_boxes_slice = gt_boxes_slice[not_crowd_inds]
iou = _bbox_overlaps(inside_anchors, gt_boxes_slice) iou = _bbox_overlaps(inside_anchors, gt_boxes_slice)
loc_inds, score_inds, labels, gt_inds = rpn_target_assign( loc_inds, score_inds, labels, gt_inds, bbox_inside_weight = \
iou, rpn_batch_size_per_im, rpn_positive_overlap, rpn_target_assign(iou, rpn_batch_size_per_im,
rpn_negative_overlap, rpn_fg_fraction, use_random) rpn_positive_overlap,
rpn_negative_overlap,
rpn_fg_fraction,
use_random)
# unmap to all anchor # unmap to all anchor
loc_inds = inds_inside[loc_inds] loc_inds = inds_inside[loc_inds]
score_inds = inds_inside[score_inds] score_inds = inds_inside[score_inds]
...@@ -139,6 +153,7 @@ def rpn_target_assign_in_python(all_anchors, ...@@ -139,6 +153,7 @@ def rpn_target_assign_in_python(all_anchors,
score_indexes = score_inds score_indexes = score_inds
tgt_labels = labels tgt_labels = labels
tgt_bboxes = box_deltas tgt_bboxes = box_deltas
bbox_inside_weights = bbox_inside_weight
else: else:
loc_indexes = np.concatenate( loc_indexes = np.concatenate(
[loc_indexes, loc_inds + i * anchor_num]) [loc_indexes, loc_inds + i * anchor_num])
...@@ -146,8 +161,10 @@ def rpn_target_assign_in_python(all_anchors, ...@@ -146,8 +161,10 @@ def rpn_target_assign_in_python(all_anchors,
[score_indexes, score_inds + i * anchor_num]) [score_indexes, score_inds + i * anchor_num])
tgt_labels = np.concatenate([tgt_labels, labels]) tgt_labels = np.concatenate([tgt_labels, labels])
tgt_bboxes = np.vstack([tgt_bboxes, box_deltas]) tgt_bboxes = np.vstack([tgt_bboxes, box_deltas])
bbox_inside_weights = np.vstack([bbox_inside_weights, \
bbox_inside_weight])
return loc_indexes, score_indexes, tgt_bboxes, tgt_labels return loc_indexes, score_indexes, tgt_bboxes, tgt_labels, bbox_inside_weights
class TestRpnTargetAssignOp(OpTest): class TestRpnTargetAssignOp(OpTest):
...@@ -182,9 +199,11 @@ class TestRpnTargetAssignOp(OpTest): ...@@ -182,9 +199,11 @@ class TestRpnTargetAssignOp(OpTest):
rpn_fg_fraction = 0.5 rpn_fg_fraction = 0.5
use_random = False use_random = False
loc_index, score_index, tgt_bbox, labels = rpn_target_assign_in_python( loc_index, score_index, tgt_bbox, labels, bbox_inside_weights = \
all_anchors, gt_boxes, is_crowd, im_info, lod, rpn_straddle_thresh, rpn_target_assign_in_python(all_anchors, gt_boxes, is_crowd,
rpn_batch_size_per_im, rpn_positive_overlap, rpn_negative_overlap, im_info, lod, rpn_straddle_thresh,
rpn_batch_size_per_im, rpn_positive_overlap,
rpn_negative_overlap,
rpn_fg_fraction, use_random) rpn_fg_fraction, use_random)
labels = labels[:, np.newaxis] labels = labels[:, np.newaxis]
...@@ -207,7 +226,8 @@ class TestRpnTargetAssignOp(OpTest): ...@@ -207,7 +226,8 @@ class TestRpnTargetAssignOp(OpTest):
'LocationIndex': loc_index.astype('int32'), 'LocationIndex': loc_index.astype('int32'),
'ScoreIndex': score_index.astype('int32'), 'ScoreIndex': score_index.astype('int32'),
'TargetBBox': tgt_bbox.astype('float32'), 'TargetBBox': tgt_bbox.astype('float32'),
'TargetLabel': labels.astype('int32') 'TargetLabel': labels.astype('int32'),
'BBoxInsideWeight': bbox_inside_weights.astype('float32')
} }
def test_check_output(self): def test_check_output(self):
......
...@@ -21,22 +21,27 @@ from op_test import OpTest ...@@ -21,22 +21,27 @@ from op_test import OpTest
class TestTopkOp(OpTest): class TestTopkOp(OpTest):
def setUp(self): def setUp(self):
self.set_args()
self.op_type = "top_k" self.op_type = "top_k"
k = 1 k = self.top_k
input = np.random.random((32, 84)).astype("float32") input = np.random.random((self.row, k)).astype("float32")
output = np.ndarray((32, k)) output = np.ndarray((self.row, k))
indices = np.ndarray((32, k)).astype("int64") indices = np.ndarray((self.row, k)).astype("int64")
self.inputs = {'X': input} self.inputs = {'X': input}
self.attrs = {'k': k} self.attrs = {'k': k}
for rowid in range(32): for rowid in range(self.row):
row = input[rowid] row = input[rowid]
output[rowid] = np.sort(row)[-k:] output[rowid] = np.sort(row)[::-1][:k]
indices[rowid] = row.argsort()[-k:] indices[rowid] = row.argsort()[::-1][:k]
self.outputs = {'Out': output, 'Indices': indices} self.outputs = {'Out': output, 'Indices': indices}
def set_args(self):
self.row = 32
self.top_k = 1
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
...@@ -50,14 +55,39 @@ class TestTopkOp3d(OpTest): ...@@ -50,14 +55,39 @@ class TestTopkOp3d(OpTest):
output = np.ndarray((64, k)) output = np.ndarray((64, k))
indices = np.ndarray((64, k)).astype("int64") indices = np.ndarray((64, k)).astype("int64")
# FIXME: should use 'X': input for a 3d input self.inputs = {'X': input}
self.inputs = {'X': input_flat_2d}
self.attrs = {'k': k} self.attrs = {'k': k}
for rowid in range(64): for rowid in range(64):
row = input_flat_2d[rowid] row = input_flat_2d[rowid]
output[rowid] = np.sort(row)[-k:] output[rowid] = np.sort(row)[::-1][:k]
indices[rowid] = row.argsort()[-k:] indices[rowid] = row.argsort()[::-1][:k]
self.outputs = {
'Out': output.reshape((32, 2, k)),
'Indices': indices.reshape((32, 2, k))
}
def test_check_output(self):
self.check_output()
class TestTopkOp2(OpTest):
def setUp(self):
self.op_type = "top_k"
k = 1
m = 2056
input = np.random.random((m, 84)).astype("float32")
output = np.ndarray((m, k))
indices = np.ndarray((m, k)).astype("int64")
self.inputs = {'X': input}
self.attrs = {'k': k}
for rowid in range(m):
row = input[rowid]
output[rowid] = -np.sort(-row)[:k]
indices[rowid] = (-row).argsort()[:k]
self.outputs = {'Out': output, 'Indices': indices} self.outputs = {'Out': output, 'Indices': indices}
...@@ -65,5 +95,17 @@ class TestTopkOp3d(OpTest): ...@@ -65,5 +95,17 @@ class TestTopkOp3d(OpTest):
self.check_output() self.check_output()
class TestTopkOp3(TestTopkOp):
def set_args(self):
self.row = 2056
self.top_k = 3
class TestTopkOp4(TestTopkOp):
def set_args(self):
self.row = 40000
self.top_k = 1
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册