Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
aaa2a1f8
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
aaa2a1f8
编写于
3月 07, 2017
作者:
H
helinwang
提交者:
GitHub
3月 07, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request
#1501
from reyoung/feature/recommendation_v2_api
Feature/recommendation v2 api
上级
79e95c1f
dda02fe1
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
300 addition
and
28 deletion
+300
-28
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+10
-15
demo/recommendation/api_train_v2.py
demo/recommendation/api_train_v2.py
+125
-0
doc/api/v2/run_logic.rst
doc/api/v2/run_logic.rst
+8
-0
python/paddle/v2/data_feeder.py
python/paddle/v2/data_feeder.py
+3
-0
python/paddle/v2/dataset/movielens.py
python/paddle/v2/dataset/movielens.py
+77
-7
python/paddle/v2/inference.py
python/paddle/v2/inference.py
+77
-6
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
aaa2a1f8
...
@@ -92,12 +92,8 @@ def main():
...
@@ -92,12 +92,8 @@ def main():
def
event_handler
(
event
):
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
1000
==
0
:
if
event
.
batch_id
%
1000
==
0
:
result
=
trainer
.
test
(
reader
=
paddle
.
batch
(
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
256
))
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
print
"Pass %d, Batch %d, Cost %f, %s, Testing metrics %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
,
result
.
metrics
)
with
gzip
.
open
(
'params.tar.gz'
,
'w'
)
as
f
:
with
gzip
.
open
(
'params.tar.gz'
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
parameters
.
to_tar
(
f
)
...
@@ -123,17 +119,16 @@ def main():
...
@@ -123,17 +119,16 @@ def main():
print
'Best pass is %s, testing Avgcost is %s'
%
(
best
[
0
],
best
[
1
])
print
'Best pass is %s, testing Avgcost is %s'
%
(
best
[
0
],
best
[
1
])
print
'The classification accuracy is %.2f%%'
%
(
100
-
float
(
best
[
2
])
*
100
)
print
'The classification accuracy is %.2f%%'
%
(
100
-
float
(
best
[
2
])
*
100
)
test_creator
=
paddle
.
dataset
.
mnist
.
test
()
test_data
=
[]
for
item
in
test_creator
():
test_data
.
append
(
item
[
0
])
if
len
(
test_data
)
==
100
:
break
# output is a softmax layer. It returns probabilities.
# output is a softmax layer. It returns probabilities.
# Shape should be (100, 10)
# Shape should be (100, 10)
probs
=
paddle
.
infer
(
probs
=
paddle
.
infer
(
output
=
predict
,
parameters
=
parameters
,
input
=
test_data
)
output
=
predict
,
parameters
=
parameters
,
reader
=
paddle
.
batch
(
paddle
.
reader
.
firstn
(
paddle
.
reader
.
map_readers
(
lambda
item
:
(
item
[
0
],
),
paddle
.
dataset
.
mnist
.
test
()),
n
=
100
),
batch_size
=
32
))
print
probs
.
shape
print
probs
.
shape
...
...
demo/recommendation/api_train_v2.py
0 → 100644
浏览文件 @
aaa2a1f8
import
paddle.v2
as
paddle
import
cPickle
import
copy
def
main
():
paddle
.
init
(
use_gpu
=
False
)
movie_title_dict
=
paddle
.
dataset
.
movielens
.
get_movie_title_dict
()
uid
=
paddle
.
layer
.
data
(
name
=
'user_id'
,
type
=
paddle
.
data_type
.
integer_value
(
paddle
.
dataset
.
movielens
.
max_user_id
()
+
1
))
usr_emb
=
paddle
.
layer
.
embedding
(
input
=
uid
,
size
=
32
)
usr_gender_id
=
paddle
.
layer
.
data
(
name
=
'gender_id'
,
type
=
paddle
.
data_type
.
integer_value
(
2
))
usr_gender_emb
=
paddle
.
layer
.
embedding
(
input
=
usr_gender_id
,
size
=
16
)
usr_age_id
=
paddle
.
layer
.
data
(
name
=
'age_id'
,
type
=
paddle
.
data_type
.
integer_value
(
len
(
paddle
.
dataset
.
movielens
.
age_table
)))
usr_age_emb
=
paddle
.
layer
.
embedding
(
input
=
usr_age_id
,
size
=
16
)
usr_job_id
=
paddle
.
layer
.
data
(
name
=
'job_id'
,
type
=
paddle
.
data_type
.
integer_value
(
paddle
.
dataset
.
movielens
.
max_job_id
(
)
+
1
))
usr_job_emb
=
paddle
.
layer
.
embedding
(
input
=
usr_job_id
,
size
=
16
)
usr_combined_features
=
paddle
.
layer
.
fc
(
input
=
[
usr_emb
,
usr_gender_emb
,
usr_age_emb
,
usr_job_emb
],
size
=
200
,
act
=
paddle
.
activation
.
Tanh
())
mov_id
=
paddle
.
layer
.
data
(
name
=
'movie_id'
,
type
=
paddle
.
data_type
.
integer_value
(
paddle
.
dataset
.
movielens
.
max_movie_id
()
+
1
))
mov_emb
=
paddle
.
layer
.
embedding
(
input
=
mov_id
,
size
=
32
)
mov_categories
=
paddle
.
layer
.
data
(
name
=
'category_id'
,
type
=
paddle
.
data_type
.
sparse_binary_vector
(
len
(
paddle
.
dataset
.
movielens
.
movie_categories
())))
mov_categories_hidden
=
paddle
.
layer
.
fc
(
input
=
mov_categories
,
size
=
32
)
mov_title_id
=
paddle
.
layer
.
data
(
name
=
'movie_title'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
len
(
movie_title_dict
)))
mov_title_emb
=
paddle
.
layer
.
embedding
(
input
=
mov_title_id
,
size
=
32
)
mov_title_conv
=
paddle
.
networks
.
sequence_conv_pool
(
input
=
mov_title_emb
,
hidden_size
=
32
,
context_len
=
3
)
mov_combined_features
=
paddle
.
layer
.
fc
(
input
=
[
mov_emb
,
mov_categories_hidden
,
mov_title_conv
],
size
=
200
,
act
=
paddle
.
activation
.
Tanh
())
inference
=
paddle
.
layer
.
cos_sim
(
a
=
usr_combined_features
,
b
=
mov_combined_features
,
size
=
1
,
scale
=
5
)
cost
=
paddle
.
layer
.
regression_cost
(
input
=
inference
,
label
=
paddle
.
layer
.
data
(
name
=
'score'
,
type
=
paddle
.
data_type
.
dense_vector
(
1
)))
parameters
=
paddle
.
parameters
.
create
(
cost
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
))
feeding
=
{
'user_id'
:
0
,
'gender_id'
:
1
,
'age_id'
:
2
,
'job_id'
:
3
,
'movie_id'
:
4
,
'category_id'
:
5
,
'movie_title'
:
6
,
'score'
:
7
}
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d Batch %d Cost %.2f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
)
trainer
.
train
(
reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
movielens
.
train
(),
buf_size
=
8192
),
batch_size
=
256
),
event_handler
=
event_handler
,
feeding
=
feeding
,
num_passes
=
1
)
user_id
=
234
movie_id
=
345
user
=
paddle
.
dataset
.
movielens
.
user_info
()[
user_id
]
movie
=
paddle
.
dataset
.
movielens
.
movie_info
()[
movie_id
]
feature
=
user
.
value
()
+
movie
.
value
()
def
reader
():
yield
feature
infer_dict
=
copy
.
copy
(
feeding
)
del
infer_dict
[
'score'
]
prediction
=
paddle
.
infer
(
output
=
inference
,
parameters
=
parameters
,
reader
=
paddle
.
batch
(
reader
,
batch_size
=
32
),
feeding
=
infer_dict
)
print
(
prediction
+
5
)
/
2
if
__name__
==
'__main__'
:
main
()
doc/api/v2/run_logic.rst
浏览文件 @
aaa2a1f8
...
@@ -2,6 +2,7 @@
...
@@ -2,6 +2,7 @@
Trainer API
Trainer API
###########
###########
==========
==========
Parameters
Parameters
==========
==========
...
@@ -24,3 +25,10 @@ Event
...
@@ -24,3 +25,10 @@ Event
.. automodule:: paddle.v2.event
.. automodule:: paddle.v2.event
:members:
:members:
=========
Inference
=========
.. autofunction:: paddle.v2.infer
\ No newline at end of file
python/paddle/v2/data_feeder.py
浏览文件 @
aaa2a1f8
...
@@ -85,6 +85,9 @@ class DataFeeder(DataProviderConverter):
...
@@ -85,6 +85,9 @@ class DataFeeder(DataProviderConverter):
input_types
.
append
(
each
[
1
])
input_types
.
append
(
each
[
1
])
DataProviderConverter
.
__init__
(
self
,
input_types
)
DataProviderConverter
.
__init__
(
self
,
input_types
)
def
__len__
(
self
):
return
len
(
self
.
input_names
)
def
convert
(
self
,
dat
,
argument
=
None
):
def
convert
(
self
,
dat
,
argument
=
None
):
"""
"""
:param dat: A list of mini-batch data. Each sample is a list or tuple
:param dat: A list of mini-batch data. Each sample is a list or tuple
...
...
python/paddle/v2/dataset/movielens.py
浏览文件 @
aaa2a1f8
...
@@ -23,7 +23,12 @@ import re
...
@@ -23,7 +23,12 @@ import re
import
random
import
random
import
functools
import
functools
__all__
=
[
'train_creator'
,
'test_creator'
]
__all__
=
[
'train'
,
'test'
,
'get_movie_title_dict'
,
'max_movie_id'
,
'max_user_id'
,
'age_table'
,
'movie_categories'
,
'max_job_id'
,
'user_info'
,
'movie_info'
]
age_table
=
[
1
,
18
,
25
,
35
,
45
,
50
,
56
]
class
MovieInfo
(
object
):
class
MovieInfo
(
object
):
...
@@ -38,17 +43,32 @@ class MovieInfo(object):
...
@@ -38,17 +43,32 @@ class MovieInfo(object):
[
MOVIE_TITLE_DICT
[
w
.
lower
()]
for
w
in
self
.
title
.
split
()]
[
MOVIE_TITLE_DICT
[
w
.
lower
()]
for
w
in
self
.
title
.
split
()]
]
]
def
__str__
(
self
):
return
"<MovieInfo id(%d), title(%s), categories(%s)>"
%
(
self
.
index
,
self
.
title
,
self
.
categories
)
def
__repr__
(
self
):
return
self
.
__str__
()
class
UserInfo
(
object
):
class
UserInfo
(
object
):
def
__init__
(
self
,
index
,
gender
,
age
,
job_id
):
def
__init__
(
self
,
index
,
gender
,
age
,
job_id
):
self
.
index
=
int
(
index
)
self
.
index
=
int
(
index
)
self
.
is_male
=
gender
==
'M'
self
.
is_male
=
gender
==
'M'
self
.
age
=
[
1
,
18
,
25
,
35
,
45
,
50
,
56
]
.
index
(
int
(
age
))
self
.
age
=
age_table
.
index
(
int
(
age
))
self
.
job_id
=
int
(
job_id
)
self
.
job_id
=
int
(
job_id
)
def
value
(
self
):
def
value
(
self
):
return
[
self
.
index
,
0
if
self
.
is_male
else
1
,
self
.
age
,
self
.
job_id
]
return
[
self
.
index
,
0
if
self
.
is_male
else
1
,
self
.
age
,
self
.
job_id
]
def
__str__
(
self
):
return
"<UserInfo id(%d), gender(%s), age(%d), job(%d)>"
%
(
self
.
index
,
"M"
if
self
.
is_male
else
"F"
,
age_table
[
self
.
age
],
self
.
job_id
)
def
__repr__
(
self
):
return
str
(
self
)
MOVIE_INFO
=
None
MOVIE_INFO
=
None
MOVIE_TITLE_DICT
=
None
MOVIE_TITLE_DICT
=
None
...
@@ -59,7 +79,8 @@ USER_INFO = None
...
@@ -59,7 +79,8 @@ USER_INFO = None
def
__initialize_meta_info__
():
def
__initialize_meta_info__
():
fn
=
download
(
fn
=
download
(
url
=
'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
,
url
=
'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
,
md5
=
'c4d9eecfca2ab87c1945afe126590906'
)
module_name
=
'movielens'
,
md5sum
=
'c4d9eecfca2ab87c1945afe126590906'
)
global
MOVIE_INFO
global
MOVIE_INFO
if
MOVIE_INFO
is
None
:
if
MOVIE_INFO
is
None
:
pattern
=
re
.
compile
(
r
'^(.*)\((\d+)\)$'
)
pattern
=
re
.
compile
(
r
'^(.*)\((\d+)\)$'
)
...
@@ -122,14 +143,63 @@ def __reader_creator__(**kwargs):
...
@@ -122,14 +143,63 @@ def __reader_creator__(**kwargs):
return
lambda
:
__reader__
(
**
kwargs
)
return
lambda
:
__reader__
(
**
kwargs
)
train_creator
=
functools
.
partial
(
__reader_creator__
,
is_test
=
False
)
train
=
functools
.
partial
(
__reader_creator__
,
is_test
=
False
)
test_creator
=
functools
.
partial
(
__reader_creator__
,
is_test
=
True
)
test
=
functools
.
partial
(
__reader_creator__
,
is_test
=
True
)
def
get_movie_title_dict
():
__initialize_meta_info__
()
return
MOVIE_TITLE_DICT
def
__max_index_info__
(
a
,
b
):
if
a
.
index
>
b
.
index
:
return
a
else
:
return
b
def
max_movie_id
():
__initialize_meta_info__
()
return
reduce
(
__max_index_info__
,
MOVIE_INFO
.
viewvalues
()).
index
def
max_user_id
():
__initialize_meta_info__
()
return
reduce
(
__max_index_info__
,
USER_INFO
.
viewvalues
()).
index
def
__max_job_id_impl__
(
a
,
b
):
if
a
.
job_id
>
b
.
job_id
:
return
a
else
:
return
b
def
max_job_id
():
__initialize_meta_info__
()
return
reduce
(
__max_job_id_impl__
,
USER_INFO
.
viewvalues
()).
job_id
def
movie_categories
():
__initialize_meta_info__
()
return
CATEGORIES_DICT
def
user_info
():
__initialize_meta_info__
()
return
USER_INFO
def
movie_info
():
__initialize_meta_info__
()
return
MOVIE_INFO
def
unittest
():
def
unittest
():
for
train_count
,
_
in
enumerate
(
train
_creator
()()):
for
train_count
,
_
in
enumerate
(
train
()()):
pass
pass
for
test_count
,
_
in
enumerate
(
test
_creator
()()):
for
test_count
,
_
in
enumerate
(
test
()()):
pass
pass
print
train_count
,
test_count
print
train_count
,
test_count
...
...
python/paddle/v2/inference.py
浏览文件 @
aaa2a1f8
import
numpy
import
py_paddle.swig_paddle
as
api
import
py_paddle.swig_paddle
as
api
import
collections
import
topology
import
topology
import
minibatch
from
data_feeder
import
DataFeeder
from
data_feeder
import
DataFeeder
import
itertools
import
numpy
__all__
=
[
'infer'
]
__all__
=
[
'infer'
]
...
@@ -21,8 +21,33 @@ class Inference(object):
...
@@ -21,8 +21,33 @@ class Inference(object):
self
.
__gradient_machine__
=
gm
self
.
__gradient_machine__
=
gm
self
.
__data_types__
=
topo
.
data_type
()
self
.
__data_types__
=
topo
.
data_type
()
def
iter_infer
(
self
,
reader
,
feeding
=
None
):
def
iter_infer
(
self
,
input
=
None
,
batch_size
=
None
,
reader
=
None
,
feeding
=
None
):
feeder
=
DataFeeder
(
self
.
__data_types__
,
feeding
)
feeder
=
DataFeeder
(
self
.
__data_types__
,
feeding
)
if
reader
is
None
:
assert
input
is
not
None
and
isinstance
(
input
,
collections
.
Iterable
)
if
not
isinstance
(
input
,
collections
.
Iterable
):
raise
TypeError
(
"When reader is None, input should be whole "
"inference data and should be iterable"
)
if
batch_size
is
None
:
if
not
hasattr
(
input
,
'__len__'
):
raise
ValueError
(
"Should set batch size when input data "
"don't contain length."
)
batch_size
=
len
(
input
)
def
__reader_impl__
():
for
each_sample
in
input
:
if
len
(
feeder
)
==
1
:
yield
[
each_sample
]
else
:
yield
each_sample
reader
=
minibatch
.
batch
(
__reader_impl__
,
batch_size
=
batch_size
)
else
:
if
input
is
not
None
:
raise
ValueError
(
"User should set either input or reader, "
"should not set them both."
)
self
.
__gradient_machine__
.
start
()
self
.
__gradient_machine__
.
start
()
for
data_batch
in
reader
():
for
data_batch
in
reader
():
yield
self
.
__gradient_machine__
.
forwardTest
(
feeder
(
data_batch
))
yield
self
.
__gradient_machine__
.
forwardTest
(
feeder
(
data_batch
))
...
@@ -46,6 +71,52 @@ class Inference(object):
...
@@ -46,6 +71,52 @@ class Inference(object):
return
retv
return
retv
def
infer
(
output
,
parameters
,
reader
,
feeding
=
None
,
field
=
'value'
):
def
infer
(
output
,
parameters
,
input
=
None
,
batch_size
=
None
,
reader
=
None
,
feeding
=
None
,
field
=
'value'
):
"""
Infer a neural network by given neural network output and parameters. The
user should pass either a batch of input data or reader method.
Example usages:
.. code-block:: python
result = paddle.infer(prediction, parameters, input=SomeData,
batch_size=32)
print result
:param output: output of the neural network that would be inferred
:type output: paddle.v2.config_base.Layer
:param parameters: parameters of the neural network.
:type parameters: paddle.v2.parameters.Parameters
:param input: input data batch. Should be a python iterable object, and each
element is the data batch.
:type input: collections.Iterable
:param batch_size: the batch size when perform inference. Default is the
length of input.
:type batch_size: int
:param reader: input data reader creator in batch. If this field is set, the
`input` and `batch_size` will be ignored.
:type reader: callable
:param feeding: Reader dictionary. Default could generate from input
value.
:param field: The prediction field. It should in [`value`, `ids`]. `value`
means return the prediction probabilities, `ids` means return
the prediction labels. Default is `value`
:type field: str
:return: a numpy array
:rtype: numpy.ndarray
"""
inferer
=
Inference
(
output
=
output
,
parameters
=
parameters
)
inferer
=
Inference
(
output
=
output
,
parameters
=
parameters
)
return
inferer
.
infer
(
field
=
field
,
reader
=
reader
,
feeding
=
feeding
)
return
inferer
.
infer
(
field
=
field
,
input
=
input
,
batch_size
=
batch_size
,
reader
=
reader
,
feeding
=
feeding
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录