From a7cd61fdd1c960e0da2d9818d9c10be00aee29fd Mon Sep 17 00:00:00 2001 From: Chen Weihang Date: Wed, 19 Aug 2020 20:48:13 +0800 Subject: [PATCH] fix DataParallel code samples, test=document_fix (#26423) --- python/paddle/fluid/dygraph/parallel.py | 106 +++++++++++++----------- 1 file changed, 57 insertions(+), 49 deletions(-) diff --git a/python/paddle/fluid/dygraph/parallel.py b/python/paddle/fluid/dygraph/parallel.py index 24e7f64cebf..54d2cda4ca6 100644 --- a/python/paddle/fluid/dygraph/parallel.py +++ b/python/paddle/fluid/dygraph/parallel.py @@ -242,41 +242,38 @@ class DataParallel(layers.Layer): Examples: .. code-block:: python - import numpy as np - import paddle.fluid as fluid - import paddle.fluid.dygraph as dygraph - from paddle.fluid.optimizer import AdamOptimizer - from paddle.fluid.dygraph.nn import Linear - from paddle.fluid.dygraph.base import to_variable + import numpy as np + import paddle.fluid as fluid - place = place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id) - with fluid.dygraph.guard(place=place): + place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id) + with fluid.dygraph.guard(place): - # prepare the data parallel context - strategy=dygraph.prepare_context() + # prepare the data parallel context + strategy = fluid.dygraph.prepare_context() - linear = Linear(1, 10, act="softmax") - adam = fluid.optimizer.AdamOptimizer() + linear = fluid.dygraph.Linear(1, 10, act="softmax") + adam = fluid.optimizer.AdamOptimizer( + learning_rate=0.001, parameter_list=linear.parameters()) - # make the module become the data parallelism module - linear = dygraph.DataParallel(linear, strategy) + # make the module become the data parallelism module + linear = fluid.dygraph.DataParallel(linear, strategy) - x_data = np.random.random(size=[10, 1]).astype(np.float32) - data = to_variable(x_data) + x_data = np.random.random(size=[10, 1]).astype(np.float32) + data = fluid.dygraph.to_variable(x_data) - hidden = linear(data) - avg_loss = fluid.layers.mean(hidden) + hidden = linear(data) + avg_loss = fluid.layers.mean(hidden) - # scale the loss according to the number of trainers. - avg_loss = linear.scale_loss(avg_loss) + # scale the loss according to the number of trainers. + avg_loss = linear.scale_loss(avg_loss) - avg_loss.backward() + avg_loss.backward() - # collect the gradients of trainers. - linear.apply_collective_grads() + # collect the gradients of trainers. + linear.apply_collective_grads() - adam.minimize(avg_loss) - linear.clear_gradients() + adam.minimize(avg_loss) + linear.clear_gradients() """ def __init__(self, layers, strategy): @@ -306,20 +303,23 @@ class DataParallel(layers.Layer): import numpy as np import paddle.fluid as fluid - import paddle.fluid.dygraph as dygraph - from paddle.fluid.optimizer import AdamOptimizer - from paddle.fluid.dygraph.nn import Linear - from paddle.fluid.dygraph.base import to_variable - - place = place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id) - with fluid.dygraph.guard(place=place): - strategy=dygraph.prepare_context() - linear = Linear(1, 10, act="softmax") - adam = fluid.optimizer.AdamOptimizer() - linear = dygraph.DataParallel(linear, strategy) + + place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id) + with fluid.dygraph.guard(place): + + # prepare the data parallel context + strategy = fluid.dygraph.prepare_context() + + linear = fluid.dygraph.Linear(1, 10, act="softmax") + adam = fluid.optimizer.AdamOptimizer( + learning_rate=0.001, parameter_list=linear.parameters()) + + # make the module become the data parallelism module + linear = fluid.dygraph.DataParallel(linear, strategy) x_data = np.random.random(size=[10, 1]).astype(np.float32) - data = to_variable(x_data) + data = fluid.dygraph.to_variable(x_data) + hidden = linear(data) avg_loss = fluid.layers.mean(hidden) @@ -327,6 +327,8 @@ class DataParallel(layers.Layer): avg_loss = linear.scale_loss(avg_loss) avg_loss.backward() + + # collect the gradients of trainers. linear.apply_collective_grads() adam.minimize(avg_loss) @@ -390,23 +392,29 @@ class DataParallel(layers.Layer): import numpy as np import paddle.fluid as fluid - import paddle.fluid.dygraph as dygraph - from paddle.fluid.optimizer import AdamOptimizer - from paddle.fluid.dygraph.nn import Linear - from paddle.fluid.dygraph.base import to_variable - - place = place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id) - with fluid.dygraph.guard(place=place): - strategy=dygraph.prepare_context() - linear = Linear(1, 10, act="softmax") - adam = fluid.optimizer.AdamOptimizer() - linear = dygraph.DataParallel(linear, strategy) + + place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id) + with fluid.dygraph.guard(place): + + # prepare the data parallel context + strategy = fluid.dygraph.prepare_context() + + linear = fluid.dygraph.Linear(1, 10, act="softmax") + adam = fluid.optimizer.AdamOptimizer( + learning_rate=0.001, parameter_list=linear.parameters()) + + # make the module become the data parallelism module + linear = fluid.dygraph.DataParallel(linear, strategy) x_data = np.random.random(size=[10, 1]).astype(np.float32) - data = to_variable(x_data) + data = fluid.dygraph.to_variable(x_data) + hidden = linear(data) avg_loss = fluid.layers.mean(hidden) + + # scale the loss according to the number of trainers. avg_loss = linear.scale_loss(avg_loss) + avg_loss.backward() # collect the gradients of trainers. -- GitLab