未验证 提交 a77a6f6b 编写于 作者: Z zhoutianzi666 提交者: GitHub

remove trt_reshape2_matmul_fuse_pass (#46363)

上级 5dab0b0d
...@@ -110,7 +110,6 @@ const std::vector<std::string> kTRTSubgraphPasses({ ...@@ -110,7 +110,6 @@ const std::vector<std::string> kTRTSubgraphPasses({
"conv_bn_fuse_pass", // "conv_bn_fuse_pass", //
"unsqueeze2_eltwise_fuse_pass", // "unsqueeze2_eltwise_fuse_pass", //
"trt_squeeze2_matmul_fuse_pass", // "trt_squeeze2_matmul_fuse_pass", //
"trt_reshape2_matmul_fuse_pass", //
"trt_flatten2_matmul_fuse_pass", // "trt_flatten2_matmul_fuse_pass", //
"trt_map_matmul_v2_to_mul_pass", // "trt_map_matmul_v2_to_mul_pass", //
"trt_map_matmul_v2_to_matmul_pass", // "trt_map_matmul_v2_to_matmul_pass", //
......
...@@ -171,8 +171,6 @@ if(WITH_GPU AND TENSORRT_FOUND) ...@@ -171,8 +171,6 @@ if(WITH_GPU AND TENSORRT_FOUND)
240) 240)
set_tests_properties(test_trt_squeeze2_matmul_fuse_pass PROPERTIES TIMEOUT set_tests_properties(test_trt_squeeze2_matmul_fuse_pass PROPERTIES TIMEOUT
240) 240)
set_tests_properties(test_trt_reshape2_matmul_fuse_pass PROPERTIES TIMEOUT
240)
set_tests_properties(test_shuffle_channel_detect_pass PROPERTIES TIMEOUT set_tests_properties(test_shuffle_channel_detect_pass PROPERTIES TIMEOUT
120) 120)
if(WIN32) if(WIN32)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume, reproduce_failure
import hypothesis.strategies as st
class TestReshape2MatmulFusePass(PassAutoScanTest):
"""
x_var
|
reshape2
\
reshape2_out_var y_var
\ /
matmul bias_var
\ /
elementwise_add
"""
def sample_predictor_configs(self, program_config):
# TRT
config = self.create_trt_inference_config()
config.enable_tensorrt_engine(
max_batch_size=10,
workspace_size=102400,
min_subgraph_size=0,
precision_mode=paddle_infer.PrecisionType.Float32,
use_static=False,
use_calib_mode=False)
yield config, ['mul', 'elementwise_add'], (1e-4, 1e-1)
def add_ignore_pass_case(self):
# Here we put some skip rules to avoid known bugs
def teller1(program_config, predictor_config):
y_shape = list(program_config.weights["matmul_y"].shape)
bias_shape = program_config.weights["bias"].shape
axis = program_config.ops[2].attrs["axis"]
# bias should be [mul_y_shape[-1]]
if axis == 0 or bias_shape[0] != y_shape[1] or len(bias_shape) != 1:
return True
return False
self.add_ignore_check_case(
teller1,
IgnoreReasons.PASS_ACCURACY_ERROR,
"The pass error on TRT while shape of bias is not [out_size].",
)
def sample_program_config(self, draw):
# 1. Generate shape and attr of reshape2
reshape = draw(
st.lists(st.integers(min_value=1, max_value=10),
min_size=2,
max_size=2))
x_shape = reshape + [1, 1]
# 2. Generate attr:transpose_X/transpose_Y/alpha of matmul
alpha = 1.0
transpose_X = False
transpose_Y = False
# 3. Generate legal shape of input:Y of matmul
y_shape = draw(
st.lists(st.integers(min_value=1, max_value=8),
min_size=2,
max_size=2))
y_shape[0] = x_shape[1]
# 4. Generate legal attr:axis of elementwise_add
axis = draw(st.integers(min_value=-1, max_value=1))
if axis == 0:
axis = -1
bias_shape = [
y_shape[1],
]
# if axis == -1:
# if draw(st.booleans()):
# bias_shape = [y_shape[1], ]
# else:
# bias_shape = [x_shape[0], y_shape[1]]
reshape2_op = OpConfig(
"reshape2",
inputs={
"X": ["reshape2_x"],
},
shape=reshape,
outputs={
"Out": ["reshape2_out"],
"XShape": ["xshape"]
},
)
matmul_op = OpConfig(
"matmul",
inputs={
"X": ["reshape2_out"],
"Y": ["matmul_y"]
},
outputs={"Out": ["matmul_out"]},
alpha=alpha,
transpose_X=transpose_X,
transpose_Y=transpose_Y,
fused_reshape_X=[],
fused_reshape_Y=[],
fused_transpose_X=[],
fused_transpose_Y=[],
fused_reshape_Out=[],
fused_transpose_Out=[],
)
add_op = OpConfig(
"elementwise_add",
inputs={
"X": ["matmul_out"],
"Y": ["bias"]
},
outputs={"Out": ["add_out"]},
axis=axis,
)
ops = [reshape2_op, matmul_op, add_op]
program_config = ProgramConfig(
ops=ops,
weights={
"matmul_y": TensorConfig(shape=y_shape),
"bias": TensorConfig(shape=bias_shape),
},
inputs={
"reshape2_x": TensorConfig(shape=x_shape),
},
outputs=ops[-1].outputs["Out"],
)
return program_config
def test(self):
self.run_and_statis(quant=False,
max_examples=50,
passes=["trt_reshape2_matmul_fuse_pass"])
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册