Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
a2e9af56
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a2e9af56
编写于
4月 04, 2020
作者:
C
Chengmo
提交者:
GitHub
4月 04, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Tdm child OP in contrib (#23241)
* add tdm child op
上级
4955c97e
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
609 addition
and
49 deletion
+609
-49
paddle/fluid/operators/tdm_child_op.cc
paddle/fluid/operators/tdm_child_op.cc
+116
-0
paddle/fluid/operators/tdm_child_op.h
paddle/fluid/operators/tdm_child_op.h
+179
-0
python/paddle/fluid/contrib/layers/nn.py
python/paddle/fluid/contrib/layers/nn.py
+144
-49
python/paddle/fluid/tests/unittests/test_tdm_child_op.py
python/paddle/fluid/tests/unittests/test_tdm_child_op.py
+170
-0
未找到文件。
paddle/fluid/operators/tdm_child_op.cc
0 → 100644
浏览文件 @
a2e9af56
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/tdm_child_op.h"
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/sampler.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
class
TDMChildOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
"X(Tensor), dtype support int32/int64, X variable is the "
"node id of TDM-Tree"
);
AddInput
(
"TreeInfo"
,
"TreeInfo(Tensor), dtype support int32/int64, it stores the node "
"information in the following format: item_id(shape=1), "
"layer_id(shape=1), parent_id(shape=1), child_id(shape=child_nums)"
);
AddAttr
<
int
>
(
"child_nums"
,
"child_nums(int)"
,
"The child nums of one node, if the node hasn't enough child, "
"it should padding 0 until child nums equal to child_nums"
);
AddOutput
(
"Child"
,
"Return the children's node_id of input node, "
"if input don't have child, return 0"
);
AddOutput
(
"LeafMask"
,
"LeafMask has the same shape with Child"
"If child is leaf node, LeafMask value = 1, else = 0"
);
AddAttr
<
int
>
(
"dtype"
,
"(int, default INT32) "
"Output data type."
)
.
SetDefault
(
2
);
AddComment
(
R"DOC("
**Tdm Child**
According to the input node_id on the given tree, return the corresponding child node_id and
whether child is a leaf node by LeafMask.")DOC"
);
}
};
class
TDMChildOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Inputs(X) of TdmChild should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"TreeInfo"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Inputs(TreeInfo) of TdmChild should not be null."
));
int
child_nums
=
ctx
->
Attrs
().
Get
<
int
>
(
"child_nums"
);
PADDLE_ENFORCE_GT
(
child_nums
,
0
,
platform
::
errors
::
InvalidArgument
(
"ValueError: The value of the 'child_nums' must greater than 0. "
"But received child_nums value = %d, "
,
child_nums
));
auto
info_dims
=
ctx
->
GetInputDim
(
"TreeInfo"
);
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
info_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"ShapeError: The dimensions of the 'tree info' must be 2. "
"But received tree info's dimensions = %d, "
"tree info's shape = [%s]."
,
info_dims
.
size
(),
info_dims
));
auto
output_dims
=
framework
::
vectorize
(
input_dims
);
output_dims
.
push_back
(
child_nums
);
ctx
->
SetOutputDim
(
"Child"
,
framework
::
make_ddim
(
output_dims
));
ctx
->
SetOutputDim
(
"LeafMask"
,
framework
::
make_ddim
(
output_dims
));
if
(
ctx
->
GetOutputsVarType
(
"Child"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Child"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"LeafMask"
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
tdm_child
,
ops
::
TDMChildOp
,
ops
::
TDMChildOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
tdm_child
,
ops
::
TDMChildKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
TDMChildKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
TDMChildKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
TDMChildKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
paddle/fluid/operators/tdm_child_op.h
0 → 100644
浏览文件 @
a2e9af56
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include <cmath>
#include <fstream>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DDim
=
framework
::
DDim
;
using
LoD
=
framework
::
LoD
;
template
<
typename
T
,
typename
InfoT
=
int
,
typename
OutT
=
int
>
void
TDMChildInner
(
const
framework
::
ExecutionContext
&
context
,
const
LoDTensor
&
input
,
const
LoDTensor
&
tree_info
,
LoDTensor
*
child
,
LoDTensor
*
mask
)
{
auto
child_nums
=
context
.
Attr
<
int
>
(
"child_nums"
);
auto
info_dims
=
tree_info
.
dims
();
int
node_nums
=
info_dims
[
0
];
int
length
=
info_dims
[
1
];
int
input_ids_num
=
input
.
numel
();
VLOG
(
4
)
<<
"TDM child op: input numel -> "
<<
input_ids_num
;
std
::
vector
<
OutT
>
child_vec
{};
std
::
vector
<
OutT
>
item_mask_vec
{};
auto
*
input_data
=
input
.
data
<
T
>
();
auto
*
tree_info_data
=
tree_info
.
data
<
InfoT
>
();
// TreeInfo: node_id : item_id; layer_id; ancestor_id; child_id
for
(
int
input_ids
=
0
;
input_ids
<
input_ids_num
;
++
input_ids
)
{
PADDLE_ENFORCE_LT
(
input_data
[
input_ids
],
node_nums
,
platform
::
errors
::
InvalidArgument
(
"input id of OP(fluid.contrib.layers.tdm_child) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
node_nums
,
input_data
[
input_ids
]));
PADDLE_ENFORCE_LE
(
0
,
input_data
[
input_ids
],
platform
::
errors
::
InvalidArgument
(
"input id of OP(fluid.contrib.layers.tdm_child) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
node_nums
,
input_data
[
input_ids
]));
bool
has_child
=
(
input_data
[
input_ids
]
==
0
||
tree_info_data
[
static_cast
<
int
>
(
input_data
[
input_ids
])
*
length
+
3
]
==
0
)
?
false
:
true
;
if
(
has_child
)
{
for
(
int
child_ids
=
0
;
child_ids
<
child_nums
;
++
child_ids
)
{
OutT
child_id
=
static_cast
<
OutT
>
(
tree_info_data
[
static_cast
<
int
>
(
input_data
[
input_ids
])
*
length
+
3
+
child_ids
]);
child_vec
.
push_back
(
child_id
);
OutT
child_is_item
=
static_cast
<
OutT
>
(
tree_info_data
[
static_cast
<
int
>
(
child_id
)
*
length
]
==
0
?
0
:
1
);
item_mask_vec
.
push_back
(
child_is_item
);
}
}
else
{
for
(
int
child_ids
=
0
;
child_ids
<
child_nums
;
++
child_ids
)
{
child_vec
.
push_back
(
0
);
item_mask_vec
.
push_back
(
0
);
}
}
}
int
output_nums
=
child_vec
.
size
();
auto
*
child_data
=
child
->
mutable_data
<
OutT
>
(
context
.
GetPlace
());
auto
*
leaf_mask_data
=
mask
->
mutable_data
<
OutT
>
(
context
.
GetPlace
());
memcpy
(
child_data
,
&
child_vec
[
0
],
sizeof
(
OutT
)
*
output_nums
);
memcpy
(
leaf_mask_data
,
&
item_mask_vec
[
0
],
sizeof
(
OutT
)
*
output_nums
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
TDMChildKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input_var
=
ctx
.
InputVar
(
"X"
);
auto
*
tree_info_var
=
ctx
.
InputVar
(
"TreeInfo"
);
auto
&
input_tensor
=
input_var
->
Get
<
LoDTensor
>
();
const
auto
&
input_type
=
input_tensor
.
type
();
bool
input_type_match
=
input_type
==
framework
::
proto
::
VarType
::
INT32
||
input_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
input_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(X) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
input_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
auto
&
tree_info_tensor
=
tree_info_var
->
Get
<
LoDTensor
>
();
const
auto
&
info_type
=
tree_info_tensor
.
type
();
bool
info_type_match
=
info_type
==
framework
::
proto
::
VarType
::
INT32
||
info_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
info_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(TreeInfo) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
info_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
auto
*
child_var
=
ctx
.
OutputVar
(
"Child"
);
auto
*
leaf_mask_var
=
ctx
.
OutputVar
(
"LeafMask"
);
auto
*
child_tensor
=
child_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
leaf_mask_tensor
=
leaf_mask_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
output_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
ctx
.
Attr
<
int
>
(
"dtype"
));
bool
out_type_match
=
output_type
==
framework
::
proto
::
VarType
::
INT32
||
output_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
out_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Ouput(Child) & Output(LeafMask) holds the wrong "
"type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
output_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
if
(
info_type
==
framework
::
proto
::
VarType
::
INT32
&&
output_type
==
framework
::
proto
::
VarType
::
INT32
)
{
TDMChildInner
<
T
,
int
,
int
>
(
ctx
,
input_tensor
,
tree_info_tensor
,
child_tensor
,
leaf_mask_tensor
);
}
else
if
(
info_type
==
framework
::
proto
::
VarType
::
INT64
&&
output_type
==
framework
::
proto
::
VarType
::
INT32
)
{
TDMChildInner
<
T
,
int64_t
,
int
>
(
ctx
,
input_tensor
,
tree_info_tensor
,
child_tensor
,
leaf_mask_tensor
);
}
else
if
(
info_type
==
framework
::
proto
::
VarType
::
INT32
&&
output_type
==
framework
::
proto
::
VarType
::
INT64
)
{
TDMChildInner
<
T
,
int
,
int64_t
>
(
ctx
,
input_tensor
,
tree_info_tensor
,
child_tensor
,
leaf_mask_tensor
);
}
else
if
(
info_type
==
framework
::
proto
::
VarType
::
INT64
&&
output_type
==
framework
::
proto
::
VarType
::
INT64
)
{
TDMChildInner
<
T
,
int64_t
,
int64_t
>
(
ctx
,
input_tensor
,
tree_info_tensor
,
child_tensor
,
leaf_mask_tensor
);
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/contrib/layers/nn.py
浏览文件 @
a2e9af56
...
...
@@ -24,15 +24,16 @@ import inspect
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layers
import
utils
from
...
import
unique_name
from
paddle.fluid.initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.framework
import
Variable
,
convert_np_dtype_to_dtype_
import
warnings
__all__
=
[
'fused_elemwise_activation'
,
'sequence_topk_avg_pooling'
,
'var_conv_2d'
,
'match_matrix_tensor'
,
'tree_conv'
,
'fused_embedding_seq_pool'
,
'multiclass_nms2'
,
'search_pyramid_hash'
,
'shuffle_batch'
,
'partial_concat'
,
'partial_sum'
'partial_sum'
,
'tdm_child'
]
...
...
@@ -127,7 +128,8 @@ def var_conv_2d(input,
input.dims = [116, 1] # where 116 = 60 + 56
If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
# where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
output.lod = [[90, 84]]
output.dims = [174, 1] # where 174 = 90 + 84
Args:
...
...
@@ -237,15 +239,18 @@ def match_matrix_tensor(x,
.. code-block:: text
Given a 1-level LoDTensor x:
x.lod = [[2, 3, ]]
x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
x.lod = [
[2, 3, ]]
x.data = [[0.3, 0.1], [0.2, 0.3], [
0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
x.dims = [5, 2]
y is a Tensor:
y.lod = [[3, 1, ]]
y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
y.dims = [4, 2]
set channel_num 2, then we get a 1-level LoDTensor:
out.lod = [[12, 6]] # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
# where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
out.lod = [[12, 6]]
out.dims = [18, 1] # where 18 = 12 + 6
Args:
...
...
@@ -270,7 +275,8 @@ def match_matrix_tensor(x,
x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
out, out_tmp = contrib.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
out, out_tmp = contrib.match_matrix_tensor(
x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
"""
helper
=
LayerHelper
(
'match_matrix_tensor'
,
**
locals
())
...
...
@@ -398,10 +404,12 @@ def tree_conv(nodes_vector,
import paddle.fluid as fluid
# 10 for max_node_size of dataset, 5 for vector width
nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
nodes_vector = fluid.layers.data(
name='vectors', shape=[10, 5], dtype='float32')
# 10 for max_node_size of dataset, 2 for every edge has two nodes
# edges must be directional
edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
edge_set = fluid.layers.data(name='edge_set', shape=[
10, 2], dtype='float32')
# the shape of output will be [10, 6, 1],
# 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
...
...
@@ -470,7 +478,8 @@ def fused_embedding_seq_pool(input,
import paddle.fluid as fluid
dict_size = 20
data_t = fluid.layers.data(name='word', shape=[1], dtype='int64', lod_level=1)
data_t = fluid.layers.data(
name='word', shape=[1], dtype='int64', lod_level=1)
padding_idx = np.random.randint(1, 10)
out = fluid.contrib.fused_embedding_seq_pool(
input=data_t,
...
...
@@ -844,7 +853,8 @@ def partial_concat(input, start_index=0, length=-1):
import paddle.fluid as fluid
x = fluid.data(name="x", shape=[None,3], dtype="float32")
y = fluid.data(name="y", shape=[None,3], dtype="float32")
concat = fluid.contrib.layers.partial_concat([x, y], start_index=0, length=2)
concat = fluid.contrib.layers.partial_concat(
[x, y], start_index=0, length=2)
"""
if
not
isinstance
(
input
,
list
):
warnings
.
warn
(
...
...
@@ -922,3 +932,88 @@ def partial_sum(input, start_index=0, length=-1):
helper
.
append_op
(
type
=
'partial_sum'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
out
]},
attrs
=
attrs
)
return
out
def
tdm_child
(
x
,
node_nums
,
child_nums
,
param_attr
=
None
,
dtype
=
'int32'
):
"""
**Tdm Child**
According to the input node_id on the given tree, return the corresponding child node_id and
whether child is a leaf node by leaf_mask value.
.. code-block:: text
Given:
tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
x = [[2], [3]]
node_nums = 7
child_nums = 2
we get:
child = [[5, 6],
[0, 0]]
leaf_mask = [[1, 1],
[0, 0]]
Args:
x(Variable): Variable contained the node_id information, dtype support int32/int64.
node_nums(int): Number of total nodes.
child_nums(int): Maximum number of child nodes per node.
param_attr(ParamAttr): To specify the tdm-tree-info parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in: ref: `api_fluid_ParamAttr`, should
has shape(node_nums, 3 + child_nums), dtype support int32/int64.
The dimension[1] of tdm-tree-info contains the following:
1. Item_id(int, shape(1)), if node is a leaf node, give its item_id corresponding to node_id, else give 0.
2. Layer_id(int, shape(1)), indicates which layer the node is on.
3. Parent_id(int, shape(1)), node's parent node.
4. Child_id(int, shape(child_nums)), all child node's node_id of this node should be given.
If the number of child nodes is insufficient, padding 0 until child nums equal to child_nums
dtype(str): The data type of output child and leaf_mask, support int32/int64.
Returns:
tuple: A tuple including input node's child(Variable) and leaf_mask(Variable).
If child is a leaf node, leaf_mask equal ot 1, otherwise equal to 0.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
tree_info = [[0,0,0,1,2],
[0,1,0,3,4],[0,1,0,5,6],
[0,2,1,0,0],[1,2,1,0,0],[2,2,2,0,0],[3,2,2,0,0]]
tree_info_np = np.array(tree_info)
tree_info_np = np.reshape(tree_info_np, (7,5))
node_nums = 7
child_nums = 2
child, leaf_mask = fluid.contrib.layers.tdm_child(x, node_nums, child_nums,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
tree_info_np)))
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
xx = np.array([[2],[3]]).reshape((2,1)).astype("int32")
child_res, leaf_mask_res = exe.run(feed={"x":xx}, fetch_list=[child, leaf_mask])
"""
helper
=
LayerHelper
(
"tdm_child"
,
**
locals
())
check_dtype
(
dtype
,
'dtype'
,
[
'int32'
,
'int64'
],
'fluid.contrib.layers.tdm_child'
)
c_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
tree_info
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
node_nums
,
3
+
child_nums
],
dtype
=
dtype
,
default_initializer
=
Constant
(
0
))
tree_info
.
stop_gradient
=
True
child
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
leaf_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'tdm_child'
,
inputs
=
{
'X'
:
x
,
'TreeInfo'
:
tree_info
},
outputs
=
{
'Child'
:
child
,
'LeafMask'
:
leaf_mask
},
attrs
=
{
'child_nums'
:
child_nums
,
'dtype'
:
c_dtype
},
stop_gradient
=
True
)
return
(
child
,
leaf_mask
)
python/paddle/fluid/tests/unittests/test_tdm_child_op.py
0 → 100644
浏览文件 @
a2e9af56
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid.layers
as
layers
import
paddle.fluid
as
fluid
import
random
import
six
def
create_tdm_tree
():
"""Create tdm tree info"""
tree_info
=
[
[
0
,
0
,
0
,
1
,
2
],
[
0
,
1
,
0
,
3
,
4
],
[
0
,
1
,
0
,
5
,
6
],
[
0
,
2
,
1
,
7
,
8
],
[
0
,
2
,
1
,
9
,
10
],
[
0
,
2
,
2
,
11
,
12
],
[
0
,
2
,
2
,
13
,
0
],
[
0
,
3
,
3
,
14
,
15
],
[
0
,
3
,
3
,
16
,
17
],
[
0
,
3
,
4
,
18
,
19
],
[
0
,
3
,
4
,
20
,
21
],
[
0
,
3
,
5
,
22
,
23
],
[
0
,
3
,
5
,
24
,
25
],
[
12
,
3
,
6
,
0
,
0
],
[
0
,
4
,
7
,
0
,
0
],
[
1
,
4
,
7
,
0
,
0
],
[
2
,
4
,
8
,
0
,
0
],
[
3
,
4
,
8
,
0
,
0
],
[
4
,
4
,
9
,
0
,
0
],
[
5
,
4
,
9
,
0
,
0
],
[
6
,
4
,
10
,
0
,
0
],
[
7
,
4
,
10
,
0
,
0
],
[
8
,
4
,
11
,
0
,
0
],
[
9
,
4
,
11
,
0
,
0
],
[
10
,
4
,
12
,
0
,
0
],
[
11
,
4
,
12
,
0
,
0
],
]
return
tree_info
class
TestTDMChildOp
(
OpTest
):
def
setUp
(
self
):
self
.
__class__
.
op_type
=
"tdm_child"
self
.
config
()
tree_info
=
create_tdm_tree
()
tree_info_np
=
np
.
array
(
tree_info
).
astype
(
self
.
info_type
)
x_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
26
,
size
=
self
.
x_shape
).
astype
(
self
.
x_type
)
children_res
=
[]
leaf_mask_res
=
[]
for
batch
in
x_np
:
for
node
in
batch
:
children
=
[]
if
node
!=
0
:
children
.
append
(
tree_info
[
node
][
3
])
children
.
append
(
tree_info
[
node
][
4
])
else
:
children
.
append
(
0
)
children
.
append
(
0
)
mask
=
[]
for
child
in
children
:
m
=
int
(
tree_info
[
child
][
0
]
!=
0
)
mask
.
append
(
m
)
children_res
+=
children
leaf_mask_res
+=
mask
children_res_np
=
np
.
array
(
children_res
).
astype
(
self
.
info_type
)
leaf_mask_res_np
=
np
.
array
(
leaf_mask_res
).
astype
(
self
.
info_type
)
child
=
np
.
reshape
(
children_res_np
,
self
.
child_shape
)
leaf_mask
=
np
.
reshape
(
leaf_mask_res_np
,
self
.
child_shape
)
self
.
attrs
=
{
'child_nums'
:
2
}
self
.
inputs
=
{
'X'
:
x_np
,
'TreeInfo'
:
tree_info_np
}
self
.
outputs
=
{
'Child'
:
child
,
'LeafMask'
:
leaf_mask
}
def
config
(
self
):
"""set test shape & type"""
self
.
x_shape
=
(
10
,
20
)
self
.
child_shape
=
(
10
,
20
,
2
)
self
.
x_type
=
'int32'
self
.
info_type
=
'int32'
def
test_check_output
(
self
):
self
.
check_output
()
class
TestCase1
(
TestTDMChildOp
):
def
config
(
self
):
"""check int int64_t """
self
.
x_shape
=
(
10
,
20
)
self
.
child_shape
=
(
10
,
20
,
2
)
self
.
x_type
=
'int32'
self
.
info_type
=
'int64'
class
TestCase2
(
TestTDMChildOp
):
def
config
(
self
):
"""check int64_t int64_t """
self
.
x_shape
=
(
10
,
20
)
self
.
child_shape
=
(
10
,
20
,
2
)
self
.
x_type
=
'int64'
self
.
info_type
=
'int64'
class
TestCase3
(
TestTDMChildOp
):
def
config
(
self
):
"""check int64 int32 """
self
.
x_shape
=
(
10
,
20
)
self
.
child_shape
=
(
10
,
20
,
2
)
self
.
x_type
=
'int64'
self
.
info_type
=
'int32'
class
TestCase4
(
TestTDMChildOp
):
def
config
(
self
):
"""check large shape """
self
.
x_shape
=
(
100
,
20
)
self
.
child_shape
=
(
100
,
20
,
2
)
self
.
x_type
=
'int32'
self
.
info_type
=
'int32'
class
TestTDMChildShape
(
unittest
.
TestCase
):
def
test_shape
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
tdm_tree_info
=
create_tdm_tree
()
tree_info_np
=
np
.
array
(
tdm_tree_info
).
astype
(
'int32'
)
child
,
leaf_mask
=
fluid
.
contrib
.
layers
.
tdm_child
(
x
=
x
,
node_nums
=
26
,
child_nums
=
2
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
tree_info_np
)))
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
feed
=
{
'x'
:
np
.
array
([[
1
],
[
2
],
[
3
],
[
4
],
[
5
],
[
6
],
[
7
],
[
8
],
[
9
],
[
10
],
[
11
],
[
12
]]).
astype
(
'int32'
)
}
exe
.
run
(
feed
=
feed
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录