未验证 提交 a268c7ce 编写于 作者: T TTerror 提交者: GitHub

add huber_loss for kunlun (#38589)

* add huber_loss for kunlun

* update xpu.cmake

* update unitests

* update unitests

* update elementwise_add

* update elementwise_add

* update elementwise_add
上级 4ba6d4e4
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/huber_loss_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class HuberLossXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in0 = ctx.Input<Tensor>("X");
auto* in1 = ctx.Input<Tensor>("Y");
auto* residual = ctx.Output<Tensor>("Residual");
auto* out = ctx.Output<Tensor>("Out");
auto delta = ctx.Attr<float>("delta");
auto residual_data = residual->mutable_data<T>(ctx.GetPlace());
auto out_data = out->mutable_data<T>(ctx.GetPlace());
auto in0_data = in0->data<T>();
auto in1_data = in1->data<T>();
auto& dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
int r = xpu::huber_loss<T>(dev_ctx.x_context(), in0_data, in1_data,
residual_data, out_data, in0->numel(), 1, delta);
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(huber_loss) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
}
};
template <typename T>
class HuberLossGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* residual = ctx.Input<Tensor>("Residual");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto delta = ctx.Attr<float>("delta");
T* dx_data = nullptr;
T* dy_data = nullptr;
if (dx) {
dx_data = dx->mutable_data<T>(ctx.GetPlace());
}
if (dy) {
dy_data = dy->mutable_data<T>(ctx.GetPlace());
}
auto dout_data = dout->data<T>();
auto residual_data = residual->data<T>();
auto& dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
int r =
xpu::huber_loss_grad<T>(dev_ctx.x_context(), residual_data, dout_data,
dx_data, dy_data, dout->numel(), 1, delta);
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External("XPU API(huber_loss_grad) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(huber_loss, ops::HuberLossXPUKernel<float>);
REGISTER_OP_XPU_KERNEL(huber_loss_grad, ops::HuberLossGradXPUKernel<float>);
#endif
......@@ -192,6 +192,9 @@ XPUOpMap& get_kl2_ops() {
{"hard_swish_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace()),
pOpKernelType(vartype::FP16, XPUPlace())})},
{"huber_loss_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"huber_loss", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"iou_similarity",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"label_smooth",
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest
from op_test_xpu import XPUOpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
paddle.enable_static()
def huber_loss_forward(val, delta):
abs_val = abs(val)
if abs_val <= delta:
return 0.5 * val * val
else:
return delta * (abs_val - 0.5 * delta)
class TestHuberLossOp(XPUOpTest):
def setUp(self):
self.set_xpu()
self.op_type = 'huber_loss'
self.place = paddle.XPUPlace(0)
self.init_dtype()
self.set_inputs()
self.set_attrs()
self.set_outputs()
def set_inputs(self):
shape = self.set_shape()
x = np.random.uniform(0, 1., shape).astype(self.dtype)
y = np.random.uniform(0, 1., shape).astype(self.dtype)
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(x),
'Y': OpTest.np_dtype_to_fluid_dtype(y)
}
def set_attrs(self):
self.attrs = {'delta': 0.5}
def set_outputs(self):
delta = self.attrs['delta']
shape = self.set_shape()
residual = self.inputs['Y'] - self.inputs['X']
loss = np.vectorize(huber_loss_forward)(residual,
delta).astype(self.dtype)
self.outputs = {'Residual': residual, 'Out': loss.reshape(shape)}
def set_shape(self):
return (100, 1)
def set_xpu(self):
self.__class__.use_xpu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['X', 'Y'], 'Out')
def test_check_grad_ingore_x(self):
self.check_grad_with_place(
self.place, ['Y'], 'Out', no_grad_set=set("residual"))
def test_check_grad_ingore_y(self):
self.check_grad_with_place(
self.place, ['X'], 'Out', no_grad_set=set('residual'))
def TestHuberLossOp1(TestHuberLossOp):
def set_shape(self):
return (64)
def TestHuberLossOp2(TestHuberLossOp):
def set_shape(self):
return (6, 6)
def TestHuberLossOp3(TestHuberLossOp):
def set_shape(self):
return (6, 6, 1)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册