Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
a0b53376
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a0b53376
编写于
12月 31, 2019
作者:
A
Aurelius84
提交者:
Tao Luo
12月 31, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
increase data shape in topk_avg_pooling unittest (#22010)
上级
86c40e20
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
35 addition
and
9 deletion
+35
-9
python/paddle/fluid/tests/unittests/sequence/test_sequence_topk_avg_pooling.py
...ests/unittests/sequence/test_sequence_topk_avg_pooling.py
+35
-9
未找到文件。
python/paddle/fluid/tests/unittests/sequence/test_sequence_topk_avg_pooling.py
浏览文件 @
a0b53376
...
@@ -32,18 +32,19 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -32,18 +32,19 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
self
.
op_type
=
"sequence_topk_avg_pooling"
self
.
op_type
=
"sequence_topk_avg_pooling"
def
set_data
(
self
):
def
set_data
(
self
):
topks
=
[
2
]
topks
=
[
1
,
3
,
5
]
channel_num
=
3
channel_num
=
3
dim
=
10
dim
=
10
row
=
[
2
,
4
]
row
=
[
30
,
45
]
col
=
[
3
,
2
]
col
=
[
25
,
36
]
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
def
init_data
(
self
,
topks
,
channel_num
,
row
,
col
,
dim
=
10
):
def
init_data
(
self
,
topks
,
channel_num
,
row
,
col
,
dim
=
10
):
self
.
attrs
=
{
"topks"
:
topks
,
"channel_num"
:
channel_num
}
self
.
attrs
=
{
"topks"
:
topks
,
"channel_num"
:
channel_num
}
feature
=
[
row
[
i
]
*
col
[
i
]
for
i
in
range
(
len
(
row
))]
feature
=
[
row
[
i
]
*
col
[
i
]
for
i
in
range
(
len
(
row
))]
numel
=
sum
(
feature
)
*
channel_num
numel
=
sum
(
feature
)
*
channel_num
x_data
=
np
.
random
.
random
((
numel
,
)
).
astype
(
'float32'
)
x_data
=
np
.
arange
(
numel
).
astype
(
'float32'
)
x_lod
=
[[
x
*
channel_num
for
x
in
feature
]]
x_lod
=
[[
x
*
channel_num
for
x
in
feature
]]
row_data
=
np
.
random
.
random
((
sum
(
row
),
dim
)).
astype
(
'float32'
)
row_data
=
np
.
random
.
random
((
sum
(
row
),
dim
)).
astype
(
'float32'
)
col_data
=
np
.
random
.
random
((
sum
(
col
),
dim
)).
astype
(
'float32'
)
col_data
=
np
.
random
.
random
((
sum
(
col
),
dim
)).
astype
(
'float32'
)
...
@@ -53,6 +54,30 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -53,6 +54,30 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
'COLUMN'
:
(
col_data
,
[
col
])
'COLUMN'
:
(
col_data
,
[
col
])
}
}
def
calc_gradient
(
self
,
pos_data
,
topks
,
channel_num
,
row
,
col
):
max_k
=
topks
[
-
1
]
pos_data
=
pos_data
.
flatten
()
in_numel
=
sum
([
row
[
i
]
*
col
[
i
]
for
i
in
range
(
len
(
row
))])
*
channel_num
out_numel
=
sum
(
row
)
*
len
(
topks
)
*
channel_num
gradient
=
np
.
zeros
(
shape
=
(
in_numel
),
dtype
=
"float32"
)
dout_val
=
1.
/
out_numel
pos_offset
,
in_offset
=
0
,
0
for
bs_idx
in
range
(
len
(
row
)):
# batch
row_size
=
row
[
bs_idx
]
col_size
=
col
[
bs_idx
]
for
ch
in
range
(
channel_num
):
# channel
for
row_idx
in
range
(
row_size
):
# row
in_idx
=
in_offset
+
row_idx
*
col_size
pos_idx
=
pos_offset
+
row_idx
*
max_k
for
k_idx
in
range
(
len
(
topks
)):
for
k
in
range
(
topks
[
k_idx
]):
if
pos_data
[
pos_idx
+
k
]
!=
-
1
:
gradient
[
in_idx
+
pos_data
[
pos_idx
+
k
]]
+=
dout_val
/
topks
[
k_idx
]
in_offset
+=
row_size
*
col_size
pos_offset
+=
row_size
*
max_k
return
gradient
def
compute
(
self
):
def
compute
(
self
):
topks
=
self
.
attrs
[
'topks'
]
topks
=
self
.
attrs
[
'topks'
]
max_k
=
topks
[
-
1
]
max_k
=
topks
[
-
1
]
...
@@ -70,7 +95,6 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -70,7 +95,6 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
self
.
assertTrue
(
self
.
assertTrue
(
x_len
==
channel_num
*
row_lod
[
0
][
idx
]
*
col_lod
[
0
][
idx
],
x_len
==
channel_num
*
row_lod
[
0
][
idx
]
*
col_lod
[
0
][
idx
],
"x_len: %s can't mod channel_num: %s"
%
(
x_len
,
channel_num
))
"x_len: %s can't mod channel_num: %s"
%
(
x_len
,
channel_num
))
# feature = x_len / channel_num
out_tmp
=
np
.
zeros
((
0
,
),
dtype
=
x_data
.
dtype
)
out_tmp
=
np
.
zeros
((
0
,
),
dtype
=
x_data
.
dtype
)
pos_tmp
=
np
.
zeros
((
0
,
),
dtype
=
'int32'
)
pos_tmp
=
np
.
zeros
((
0
,
),
dtype
=
'int32'
)
for
ch
in
range
(
channel_num
):
for
ch
in
range
(
channel_num
):
...
@@ -94,6 +118,8 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -94,6 +118,8 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
pos
=
np
.
hstack
((
pos
,
pos_tmp
.
flatten
()))
pos
=
np
.
hstack
((
pos
,
pos_tmp
.
flatten
()))
self
.
outputs
=
{
'Out'
:
(
out
.
astype
(
'float32'
),
out_lod
),
'pos'
:
pos
}
self
.
outputs
=
{
'Out'
:
(
out
.
astype
(
'float32'
),
out_lod
),
'pos'
:
pos
}
self
.
gradient
=
self
.
calc_gradient
(
pos
,
topks
,
channel_num
,
row_lod
[
0
],
col_lod
[
0
])
def
get_topk
(
self
,
x
,
topk
):
def
get_topk
(
self
,
x
,
topk
):
real_topk
=
topk
if
topk
<
len
(
x
)
else
len
(
x
)
real_topk
=
topk
if
topk
<
len
(
x
)
else
len
(
x
)
...
@@ -118,16 +144,16 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -118,16 +144,16 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
self
.
check_output
()
self
.
check_output
()
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
[
self
.
gradient
]
)
class
TestSequenceTopkAvgPoolingOpCase1
(
TestSequenceTopkAvgPoolingOp
):
class
TestSequenceTopkAvgPoolingOpCase1
(
TestSequenceTopkAvgPoolingOp
):
def
set_data
(
self
):
def
set_data
(
self
):
topks
=
[
2
,
3
]
topks
=
[
2
,
3
]
channel_num
=
3
channel_num
=
5
dim
=
10
dim
=
10
row
=
[
3
]
row
=
[
3
6
]
col
=
[
4
]
col
=
[
4
8
]
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
def
test_api
(
self
):
def
test_api
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录