diff --git a/python/paddle/v2/framework/tests/test_conv2d_op.py b/python/paddle/v2/framework/tests/test_conv2d_op.py index 118a5fc1cde5f4a908b065d581956e0855d50a52..478579cca34144a54fbeee3d589b4e156f82e6ab 100644 --- a/python/paddle/v2/framework/tests/test_conv2d_op.py +++ b/python/paddle/v2/framework/tests/test_conv2d_op.py @@ -3,30 +3,50 @@ import numpy as np from op_test import OpTest +def conv2d_forward_naive(input, filter, group, conv_param): + in_n, in_c, in_h, in_w = input.shape + out_c, f_c, f_h, f_w = filter.shape + assert f_c * group == in_c + assert np.mod(out_c, group) == 0 + sub_out_c = out_c / group + + stride, pad = conv_param['stride'], conv_param['pad'] + out_h = 1 + (in_h + 2 * pad - f_h) / stride + out_w = 1 + (in_w + 2 * pad - f_w) / stride + out = np.zeros((in_n, out_c, out_h, out_w)) + + input_pad = np.pad(input, ((0, ), (0, ), (pad, ), (pad, )), + mode='constant', + constant_values=0) + for i in range(out_h): + for j in range(out_w): + for g in range(group): + input_pad_masked = input_pad[:, g * f_c:( + g + 1) * f_c, i * stride:i * stride + f_h, j * stride:j * + stride + f_w] + f_sub = filter[g * sub_out_c:(g + 1) * sub_out_c, :, :, :] + for k in range(sub_out_c): + out[:, g * sub_out_c + k, i, j] = np.sum(input_pad_masked * + f_sub[k, :, :, :], + axis=(1, 2, 3)) + + return out + + class TestConv2dOp(OpTest): def setUp(self): self.init_groups() self.op_type = "conv2d" - batch_size = 2 - input_channels = 3 - input_height = 5 - input_width = 5 - output_channels = 6 - filter_height = 3 - filter_width = 3 - stride = 1 - padding = 0 - output_height = (input_height - filter_height + 2 * padding - ) / stride + 1 - output_width = (input_width - filter_width + 2 * padding) / stride + 1 - input = np.random.random((batch_size, input_channels, input_height, - input_width)).astype("float32") - - filter = np.random.random( - (output_channels, input_channels / self.groups, filter_height, - filter_width)).astype("float32") - output = np.ndarray( - (batch_size, output_channels, output_height, output_width)) + input_size = [2, 3, 5, 5] # NCHW + assert np.mod(input_size[1], self.groups) == 0 + f_c = input_size[1] / self.groups + filter_size = [6, f_c, 3, 3] + conv2d_param = {'stride': 1, 'pad': 0} + + input = np.random.random(input_size).astype("float32") + filter = np.random.random(filter_size).astype("float32") + + output = conv2d_forward_naive(input, filter, self.groups, conv2d_param) self.inputs = {'Input': input, 'Filter': filter} self.attrs = { @@ -34,39 +54,6 @@ class TestConv2dOp(OpTest): 'paddings': [0, 0], 'groups': self.groups } - - output_group_channels = output_channels / self.groups - input_group_channels = input_channels / self.groups - for batchid in xrange(batch_size): - for group in xrange(self.groups): - for outchannelid in range(group * output_group_channels, - (group + 1) * output_group_channels): - for rowid in xrange(output_height): - for colid in xrange(output_width): - start_h = (rowid * stride) - padding - start_w = (colid * stride) - padding - output_value = 0.0 - for inchannelid in range( - group * input_group_channels, - (group + 1) * input_group_channels): - for frowid in xrange(filter_height): - for fcolid in xrange(filter_width): - input_value = 0.0 - inrowid = start_h + frowid - incolid = start_w + fcolid - if ((inrowid >= 0 and - inrowid < input_height) and - (incolid >= 0 and - incolid < input_width)): - input_value = input[batchid][ - inchannelid][inrowid][incolid] - filter_value = filter[outchannelid][ - inchannelid % input_group_channels][ - frowid][fcolid] - output_value += input_value * filter_value - output[batchid][outchannelid][rowid][ - colid] = output_value - self.outputs = {'Output': output} def test_check_output(self):