diff --git a/python/paddle/__init__.py b/python/paddle/__init__.py index 2ac061116f72579ef6d92d63453d6faf1fa13b2b..144b1920fd8a5cd66be2d8a07e49fd8598ef10c7 100755 --- a/python/paddle/__init__.py +++ b/python/paddle/__init__.py @@ -32,7 +32,6 @@ monkey_patch_variable() monkey_patch_math_varbase() import paddle.framework from .framework import VarBase as Tensor -from .framework import ComplexVariable as ComplexTensor import paddle.compat import paddle.distributed import paddle.sysconfig @@ -43,7 +42,6 @@ import paddle.distributed.fleet import paddle.optimizer import paddle.metric import paddle.device -import paddle.incubate.complex as complex import paddle.regularizer # TODO: define alias in tensor and framework directory diff --git a/python/paddle/fluid/dygraph/base.py b/python/paddle/fluid/dygraph/base.py index 78cc9afde071687548ab74db601739aef226e218..b63941206ecd592f55a4ff865c70be625e0e379a 100644 --- a/python/paddle/fluid/dygraph/base.py +++ b/python/paddle/fluid/dygraph/base.py @@ -593,12 +593,12 @@ def to_variable(value, name=None, zero_copy=None, dtype=None): r""" :api_attr: imperative - The API will create a ``Variable`` or ``ComplexVariable`` object from - tuple, list, numpy\.ndarray, Variable or ComplexVariable object. + The API will create a ``Variable`` object from + tuple, list, numpy\.ndarray or Variable object. Parameters: - value(tuple|list|ndarray|Variable|Tensor|ComplexVariable): Initial data. - Can be a list, tuple, NumPy ndarray, Variable, Tensor, ComplexVariable. + value(tuple|list|ndarray|Variable|Tensor): Initial data. + Can be a list, tuple, NumPy ndarray, Variable, Tensor. The shape can be multi-dimensional. The data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16, complex64, complex128}. @@ -613,10 +613,9 @@ def to_variable(value, name=None, zero_copy=None, dtype=None): 'int32' , 'int64' , 'uint8' . Default: None. Returns: - Variable or ComplexVariable: If ``value`` is a tuple/list/numpy\.ndarray object, + Variable : If ``value`` is a tuple/list/numpy\.ndarray object, return ``Tensor`` created from the corresponding numpy\.ndarray object, which has - same data type and shape with ``value``. If ``value`` is a Variable or ComplexVariable - object, just return ``value``. + same data type and shape with ``value``. Examples: @@ -647,13 +646,12 @@ def to_variable(value, name=None, zero_copy=None, dtype=None): """ support_type = (list, tuple, np.ndarray, core.VarBase, framework.Variable, - framework.ComplexVariable, core.Tensor, core.LoDTensor) + core.Tensor, core.LoDTensor) if not isinstance(value, support_type): raise TypeError( "The type of 'value' in fluid.dygraph.to_variable must be %s, but received %s." % (support_type, type(value))) - if isinstance(value, (core.VarBase, framework.Variable, - framework.ComplexVariable)): + if isinstance(value, (core.VarBase, framework.Variable)): return value elif isinstance(value, (core.Tensor, core.LoDTensor)): return core.VarBase(value) @@ -682,27 +680,10 @@ def to_variable(value, name=None, zero_copy=None, dtype=None): if value.dtype != dtype: value = value.astype(dtype) - if np.iscomplexobj(value): - if not name: - name = framework.unique_name.generate('_generated_var') - real_var = core.VarBase( - value=value.real, - place=framework._current_expected_place(), - persistable=False, - zero_copy=zero_copy, - name=name + ".real") - imag_var = core.VarBase( - value=value.imag, - place=framework._current_expected_place(), - persistable=False, - zero_copy=zero_copy, - name=name + ".imag") - return framework.ComplexVariable(real_var, imag_var) - else: - py_var = core.VarBase( - value=value, - place=framework._current_expected_place(), - persistable=False, - zero_copy=zero_copy, - name=name if name else '') - return py_var + py_var = core.VarBase( + value=value, + place=framework._current_expected_place(), + persistable=False, + zero_copy=zero_copy, + name=name if name else '') + return py_var diff --git a/python/paddle/fluid/dygraph/math_op_patch.py b/python/paddle/fluid/dygraph/math_op_patch.py index 4208d9a259fbf09106b366ddc1cb4f2e7c7f0710..5e26ba2b1092533301a1635e57c83c304d4677e0 100644 --- a/python/paddle/fluid/dygraph/math_op_patch.py +++ b/python/paddle/fluid/dygraph/math_op_patch.py @@ -15,7 +15,7 @@ from __future__ import print_function from .. import core -from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator, ComplexVariable +from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator from ..layers.layer_function_generator import OpProtoHolder from . import no_grad @@ -170,13 +170,6 @@ def monkey_patch_math_varbase(): reverse=False, scalar_method=None): def __impl__(self, other_var): - # 0. check tensor and ComplexVariable opetator - if isinstance(other_var, ComplexVariable): - # need import paddle in closure - import paddle - math_op = getattr(paddle.incubate.complex.tensor, op_type) - return math_op(self, other_var) - # 1. scalar exists cases # we need combine the tensor.dtype and scalar.dtype, cast correct object if isinstance(other_var, float): diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 5e4f6394e1282d63653394e77b012734b6239e67..26252f808bc3f5c013df0ce3c1b05caa5e09699e 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -51,7 +51,6 @@ __all__ = [ 'is_compiled_with_cuda', 'is_compiled_with_xpu', 'Variable', - 'ComplexVariable', 'load_op_library', 'require_version', 'device_guard', @@ -1783,97 +1782,6 @@ def get_all_op_protos(): return ret_values -class ComplexVariable(object): - """ - The ComplexTensor defined on the complex number domain. It contains two common - real number Tensor as its members, :attr:`real` and :attr:`imag` - holding the real part and imaginary part of complex numbers respectively. - - **Notes**: - **The constructor of ComplexTensor should not be invoked directly.** - - Args: - real (Tensor): The Tensor holding real-part data. - imag (Tensor): The Tensor holding imaginery-part data. - - Examples: - .. code-block:: python - - import paddle - x = paddle.to_tensor([1.0+2.0j, 0.2]) - print(x.name, x.dtype, x.shape) - # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, complex64, [2]) - print(x) - # ComplexTensor[real](shape=[2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, - # [ 1., 0.20000000]) - # ComplexTensor[imag](shape=[2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, - # [2., 0.]) - print(type(x)) - # - """ - - def __new__(cls, *arg, **kwargs): - cls.__module__ = "paddle" - cls.__name__ = "ComplexTensor" - return super(ComplexVariable, cls).__new__(cls) - - def __init__(self, real, imag): - assert real.shape == imag.shape, "The real part and imaginary part " \ - "of a ComplexVariable should have the same shape!" - assert real.dtype == imag.dtype, "The real part and imaginary part " \ - "of a ComplexVariable should have the same data type!" - - self.real = real - self.imag = imag - if self.real.dtype in [ - core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32 - ]: - self._dtype = "complex64" - else: - self._dtype = "complex128" - self._shape = self.real.shape - - def __getitem__(self, idx): - return ComplexVariable(self.real[idx], self.imag[idx]) - - @property - def dtype(self): - return self._dtype - - @property - def shape(self): - return self._shape - - @property - def name(self): - return {"real": self.real.name, "imag": self.imag.name} - - @name.setter - def name(self, name): - # rename - if isinstance(name, str): - self.real.name = name + ".real" - self.imag.name = name + ".imag" - elif (isinstance(name, tuple) or isinstance(name, - list)) and len(name) == 2: - self.real.name, self.imag.name = name[0], name[1] - else: - raise ValueError( - "An invalid name assigned to the ComplexVariable, " - "which must be a string, or a tuple or a list with length 2!") - - def numpy(self): - return self.real.numpy() + 1j * self.imag.numpy() - - def __str__(self): - from paddle.tensor.to_string import to_string - return "ComplexTensor containing:\n{real}\n{imag}".format( - real=to_string(self.real, "[real part]Tensor"), - imag=to_string(self.imag, "[imag part]Tensor")) - - __repr__ = __str__ - - class OpProtoHolder(object): """ A global variable to hold all OpProtos from C++ as a map diff --git a/python/paddle/fluid/tests/unittests/test_complex_elementwise_layers.py b/python/paddle/fluid/tests/unittests/test_complex_elementwise_layers.py index 1b63ae2f681e53c4ec917d57ca4215eeb0461e6d..156567430df5cc161939da7ef84e091bc8c771a3 100644 --- a/python/paddle/fluid/tests/unittests/test_complex_elementwise_layers.py +++ b/python/paddle/fluid/tests/unittests/test_complex_elementwise_layers.py @@ -19,14 +19,6 @@ from numpy.random import random as rand import paddle import paddle.fluid as fluid import paddle.fluid.dygraph as dg -from paddle import complex as cpx - -layers = { - "add": cpx.elementwise_add, - "sub": cpx.elementwise_sub, - "mul": cpx.elementwise_mul, - "div": cpx.elementwise_div, -} paddle_apis = { "add": paddle.add, @@ -43,26 +35,10 @@ class TestComplexElementwiseLayers(unittest.TestCase): if fluid.core.is_compiled_with_cuda(): self._places.append(paddle.CUDAPlace(0)) - def calc(self, x, y, op, place): - with dg.guard(place): - var_x = dg.to_variable(x) - var_y = dg.to_variable(y) - return layers[op](var_x, var_y).numpy() - def paddle_calc(self, x, y, op, place): with dg.guard(place): - x_t = paddle.Tensor( - value=x, - place=place, - persistable=False, - zero_copy=False, - stop_gradient=True) - y_t = paddle.Tensor( - value=y, - place=place, - persistable=False, - zero_copy=False, - stop_gradient=True) + x_t = dg.to_variable(x) + y_t = dg.to_variable(y) return paddle_apis[op](x_t, y_t).numpy() def assert_check(self, pd_result, np_result, place): @@ -72,13 +48,6 @@ class TestComplexElementwiseLayers(unittest.TestCase): format(place, pd_result[~np.isclose(pd_result, np_result)], np_result[~np.isclose(pd_result, np_result)])) - def compare_by_complex_api(self, x, y): - for place in self._places: - self.assert_check(self.calc(x, y, "add", place), x + y, place) - self.assert_check(self.calc(x, y, "sub", place), x - y, place) - self.assert_check(self.calc(x, y, "mul", place), x * y, place) - self.assert_check(self.calc(x, y, "div", place), x / y, place) - def compare_by_basic_api(self, x, y): for place in self._places: self.assert_check( @@ -90,7 +59,7 @@ class TestComplexElementwiseLayers(unittest.TestCase): self.assert_check( self.paddle_calc(x, y, "div", place), x / y, place) - def compare_op_by_complex_api(self, x, y): + def compare_op_by_basic_api(self, x, y): for place in self._places: with dg.guard(place): var_x = dg.to_variable(x) @@ -100,26 +69,6 @@ class TestComplexElementwiseLayers(unittest.TestCase): self.assert_check((var_x * var_y).numpy(), x * y, place) self.assert_check((var_x / var_y).numpy(), x / y, place) - def compare_op_by_basic_api(self, x, y): - for place in self._places: - with dg.guard(place): - x_t = paddle.Tensor( - value=x, - place=place, - persistable=False, - zero_copy=False, - stop_gradient=True) - y_t = paddle.Tensor( - value=y, - place=place, - persistable=False, - zero_copy=False, - stop_gradient=True) - self.assert_check((x_t + y_t).numpy(), x + y, place) - self.assert_check((x_t - y_t).numpy(), x - y, place) - self.assert_check((x_t * y_t).numpy(), x * y, place) - self.assert_check((x_t / y_t).numpy(), x / y, place) - def test_complex_xy(self): for dtype in self._dtypes: x = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand( @@ -127,10 +76,7 @@ class TestComplexElementwiseLayers(unittest.TestCase): y = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand( [2, 3, 4, 5]).astype(dtype) - self.compare_by_complex_api(x, y) - self.compare_op_by_complex_api(x, y) - - self.compare_op_by_complex_api(x, y) + self.compare_by_basic_api(x, y) self.compare_op_by_basic_api(x, y) def test_complex_x_real_y(self): @@ -139,9 +85,6 @@ class TestComplexElementwiseLayers(unittest.TestCase): [2, 3, 4, 5]).astype(dtype) y = rand([4, 5]).astype(dtype) - self.compare_by_complex_api(x, y) - self.compare_op_by_complex_api(x, y) - # promote types cases self.compare_by_basic_api(x, y) self.compare_op_by_basic_api(x, y) @@ -151,9 +94,6 @@ class TestComplexElementwiseLayers(unittest.TestCase): x = rand([2, 3, 4, 5]).astype(dtype) y = rand([5]).astype(dtype) + 1j * rand([5]).astype(dtype) - self.compare_by_complex_api(x, y) - self.compare_op_by_complex_api(x, y) - # promote types cases self.compare_by_basic_api(x, y) self.compare_op_by_basic_api(x, y) diff --git a/python/paddle/fluid/tests/unittests/test_complex_getitem.py b/python/paddle/fluid/tests/unittests/test_complex_getitem.py index 239624480812ec4c5bbc6ab879dc4579b5abeabb..ad1d2ff9b26b972ebad6d9dd5b259c648f231b54 100644 --- a/python/paddle/fluid/tests/unittests/test_complex_getitem.py +++ b/python/paddle/fluid/tests/unittests/test_complex_getitem.py @@ -36,18 +36,6 @@ class TestComplexGetitemLayer(unittest.TestCase): np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - for place in self._places: - with dg.guard(place): - x_var = fluid.core.VarBase( - value=x_np, - place=fluid.framework._current_expected_place(), - persistable=False, - zero_copy=None, - name='') - x_var_slice = x_var[0] - - np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - def test_case2(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0][1] @@ -59,18 +47,6 @@ class TestComplexGetitemLayer(unittest.TestCase): np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - for place in self._places: - with dg.guard(place): - x_var = fluid.core.VarBase( - value=x_np, - place=fluid.framework._current_expected_place(), - persistable=False, - zero_copy=None, - name='') - x_var_slice = x_var[0][1] - - np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - def test_case3(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0][1][2] @@ -82,18 +58,6 @@ class TestComplexGetitemLayer(unittest.TestCase): np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - for place in self._places: - with dg.guard(place): - x_var = fluid.core.VarBase( - value=x_np, - place=fluid.framework._current_expected_place(), - persistable=False, - zero_copy=None, - name='') - x_var_slice = x_var[0][1][2] - - np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - def test_case4(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0][1][0:3] @@ -105,18 +69,6 @@ class TestComplexGetitemLayer(unittest.TestCase): np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - for place in self._places: - with dg.guard(place): - x_var = fluid.core.VarBase( - value=x_np, - place=fluid.framework._current_expected_place(), - persistable=False, - zero_copy=None, - name='') - x_var_slice = x_var[0][1][0:3] - - np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - def test_case5(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0][1][0:4:2] @@ -128,16 +80,6 @@ class TestComplexGetitemLayer(unittest.TestCase): np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - for place in self._places: - with dg.guard(place): - x_var = fluid.core.VarBase( - value=x_np, - place=fluid.framework._current_expected_place(), - persistable=False, - zero_copy=None, - name='') - x_var_slice = x_var[0][1][0:4:2] - np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) def test_case6(self): @@ -150,17 +92,6 @@ class TestComplexGetitemLayer(unittest.TestCase): x_var_slice = x_var[0][1:3][0:4:2] np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) - for place in self._places: - with dg.guard(place): - x_var = fluid.core.VarBase( - value=x_np, - place=fluid.framework._current_expected_place(), - persistable=False, - zero_copy=None, - name='') - x_var_slice = x_var[0][1:3][0:4:2] - - np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_complex_kron.py b/python/paddle/fluid/tests/unittests/test_complex_kron.py index 0edcb2be19a4faf05eb995f7c59c99e5d1b6f0a3..eb84d81ca8fd1b6653fa15721a5ca1566553d1bc 100644 --- a/python/paddle/fluid/tests/unittests/test_complex_kron.py +++ b/python/paddle/fluid/tests/unittests/test_complex_kron.py @@ -33,33 +33,13 @@ class ComplexKronTestCase(unittest.TestCase): def runTest(self): for place in self._places: - self.test_complex_api(place) - self.test_basic_api(place) + self.test_kron_api(place) - def test_complex_api(self, place): + def test_kron_api(self, place): with dg.guard(place): x_var = dg.to_variable(self.x) y_var = dg.to_variable(self.y) - out_var = paddle.complex.kron(x_var, y_var) - self.assertTrue(np.allclose(out_var.numpy(), self.ref_result)) - - def test_basic_api(self, place): - with dg.guard(place): - x_var = paddle.Tensor( - value=self.x, - place=place, - persistable=False, - zero_copy=None, - stop_gradient=True) - - y_var = paddle.Tensor( - value=self.y, - place=place, - persistable=False, - zero_copy=None, - stop_gradient=True) - - out_var = tensor.math.kron(x_var, y_var) + out_var = paddle.kron(x_var, y_var) self.assertTrue(np.allclose(out_var.numpy(), self.ref_result)) diff --git a/python/paddle/fluid/tests/unittests/test_complex_matmul.py b/python/paddle/fluid/tests/unittests/test_complex_matmul.py index 9f5a1d5fdd79f1acb4c34f61350a64a32ea8deef..9fed5a9f2b1a8501098fe9200b1bfba83564e0a8 100644 --- a/python/paddle/fluid/tests/unittests/test_complex_matmul.py +++ b/python/paddle/fluid/tests/unittests/test_complex_matmul.py @@ -26,34 +26,11 @@ class TestComplexMatMulLayer(unittest.TestCase): if fluid.core.is_compiled_with_cuda(): self._places.append(fluid.CUDAPlace(0)) - def compare_by_complex_api(self, x, y, np_result): + def compare_by_basic_api(self, x, y, np_result): for place in self._places: with dg.guard(place): x_var = dg.to_variable(x) y_var = dg.to_variable(y) - result = paddle.complex.matmul(x_var, y_var) - pd_result = result.numpy() - self.assertTrue( - np.allclose(pd_result, np_result), - "\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n". - format(place, pd_result[~np.isclose(pd_result, np_result)], - np_result[~np.isclose(pd_result, np_result)])) - - def compare_by_basic_api(self, x, y, np_result): - for place in self._places: - with dg.guard(place): - x_var = fluid.core.VarBase( - value=x, - place=place, - persistable=False, - zero_copy=None, - name='') - y_var = fluid.core.VarBase( - value=y, - place=place, - persistable=False, - zero_copy=None, - name='') result = paddle.matmul(x_var, y_var) pd_result = result.numpy() self.assertTrue( @@ -62,7 +39,7 @@ class TestComplexMatMulLayer(unittest.TestCase): format(place, pd_result[~np.isclose(pd_result, np_result)], np_result[~np.isclose(pd_result, np_result)])) - def compare_op_by_complex_api(self, x, y, np_result): + def compare_op_by_basic_api(self, x, y, np_result): for place in self._places: with dg.guard(place): x_var = dg.to_variable(x) @@ -75,29 +52,6 @@ class TestComplexMatMulLayer(unittest.TestCase): format(place, pd_result[~np.isclose(pd_result, np_result)], np_result[~np.isclose(pd_result, np_result)])) - def compare_op_by_basic_api(self, x, y, np_result): - for place in self._places: - with dg.guard(place): - x_var = fluid.core.VarBase( - value=x, - place=place, - persistable=False, - zero_copy=None, - name='') - y_var = fluid.core.VarBase( - value=y, - place=place, - persistable=False, - zero_copy=None, - name='') - result = x_var.matmul(y_var) - pd_result = result.numpy() - self.assertTrue( - np.allclose(pd_result, np_result), - "\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n". - format(place, pd_result[~np.isclose(pd_result, np_result)], - np_result[~np.isclose(pd_result, np_result)])) - def test_complex_xy(self): for dtype in self._dtypes: x = np.random.random( @@ -109,9 +63,6 @@ class TestComplexMatMulLayer(unittest.TestCase): np_result = np.matmul(x, y) - self.compare_by_complex_api(x, y, np_result) - self.compare_op_by_complex_api(x, y, np_result) - self.compare_by_basic_api(x, y, np_result) self.compare_op_by_basic_api(x, y, np_result) @@ -124,9 +75,6 @@ class TestComplexMatMulLayer(unittest.TestCase): np_result = np.matmul(x, y) - self.compare_by_complex_api(x, y, np_result) - self.compare_op_by_complex_api(x, y, np_result) - # float -> complex type promotion self.compare_by_basic_api(x, y, np_result) self.compare_op_by_basic_api(x, y, np_result) @@ -140,8 +88,6 @@ class TestComplexMatMulLayer(unittest.TestCase): np_result = np.matmul(x, y) - self.compare_by_complex_api(x, y, np_result) - # float -> complex type promotion self.compare_by_basic_api(x, y, np_result) self.compare_op_by_basic_api(x, y, np_result) diff --git a/python/paddle/fluid/tests/unittests/test_complex_reshape.py b/python/paddle/fluid/tests/unittests/test_complex_reshape.py index 2d0413547974c62dae24b1e9f5cb9204993cea63..7dfa168209f210be044e8b4617c273e81b5b458f 100644 --- a/python/paddle/fluid/tests/unittests/test_complex_reshape.py +++ b/python/paddle/fluid/tests/unittests/test_complex_reshape.py @@ -14,7 +14,6 @@ import paddle.fluid as fluid import paddle -from paddle import complex as cpx import paddle.fluid.dygraph as dg import numpy as np import unittest @@ -27,7 +26,7 @@ class TestComplexReshape(unittest.TestCase): if fluid.core.is_compiled_with_cuda(): self._places.append(paddle.CUDAPlace(0)) - def test_case1(self): + def test_shape_norm_dims(self): for dtype in self._dtypes: x_np = np.random.randn( 2, 3, 4).astype(dtype) + 1j * np.random.randn(2, 3, @@ -36,11 +35,11 @@ class TestComplexReshape(unittest.TestCase): for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) - y_var = cpx.reshape(x_var, shape) + y_var = paddle.reshape(x_var, shape) y_np = y_var.numpy() - np.testing.assert_allclose(np.reshape(x_np, shape), y_np) + self.assertTrue(np.allclose(np.reshape(x_np, shape), y_np)) - def test_case2(self): + def test_shape_omit_dims(self): for dtype in self._dtypes: x_np = np.random.randn( 2, 3, 4).astype(dtype) + 1j * np.random.randn(2, 3, @@ -50,43 +49,9 @@ class TestComplexReshape(unittest.TestCase): for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) - y_var = cpx.reshape(x_var, shape, inplace=True) + y_var = paddle.reshape(x_var, shape) y_np = y_var.numpy() - np.testing.assert_allclose(np.reshape(x_np, shape_), y_np) - - def test_case3(self): - for dtype in self._dtypes: - x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) - shape = (2, -1) - for place in self._places: - with dg.guard(place): - x_var = paddle.Tensor( - value=x_np, - place=fluid.framework._current_expected_place(), - persistable=False, - zero_copy=None, - stop_gradient=True) - y_var = fluid.layers.reshape(x_var, shape) - y_np = y_var.numpy() - np.testing.assert_allclose(np.reshape(x_np, shape), y_np) - - def test_case4(self): - for dtype in self._dtypes: - x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) - shape = (0, -1) - shape_ = (2, 12) - - for place in self._places: - with dg.guard(place): - x_var = paddle.Tensor( - value=x_np, - place=fluid.framework._current_expected_place(), - persistable=False, - zero_copy=None, - stop_gradient=True) - y_var = fluid.layers.reshape(x_var, shape) - y_np = y_var.numpy() - np.testing.assert_allclose(np.reshape(x_np, shape_), y_np) + self.assertTrue(np.allclose(np.reshape(x_np, shape_), y_np)) if __name__ == "__main__": diff --git a/python/paddle/fluid/tests/unittests/test_complex_sum_layer.py b/python/paddle/fluid/tests/unittests/test_complex_sum_layer.py index f2a9049c02a752d12ab9d4d7c6e9d68d0d9e6764..39891ec5491c62a92f9b2b971fafc3e7d7845610 100644 --- a/python/paddle/fluid/tests/unittests/test_complex_sum_layer.py +++ b/python/paddle/fluid/tests/unittests/test_complex_sum_layer.py @@ -16,7 +16,6 @@ import unittest import numpy as np import paddle from numpy.random import random as rand -from paddle import complex as cpx from paddle import tensor import paddle.fluid as fluid import paddle.fluid.dygraph as dg @@ -29,29 +28,13 @@ class TestComplexSumLayer(unittest.TestCase): if fluid.core.is_compiled_with_cuda(): self._places.append(paddle.CUDAPlace(0)) - def test_complex_x(self): - for dtype in self._dtypes: - input = rand([2, 10, 10]).astype(dtype) + 1j * rand( - [2, 10, 10]).astype(dtype) - for place in self._places: - with dg.guard(place): - var_x = dg.to_variable(input) - result = cpx.sum(var_x, dim=[1, 2]).numpy() - target = np.sum(input, axis=(1, 2)) - self.assertTrue(np.allclose(result, target)) - def test_complex_basic_api(self): for dtype in self._dtypes: input = rand([2, 10, 10]).astype(dtype) + 1j * rand( [2, 10, 10]).astype(dtype) for place in self._places: with dg.guard(place): - var_x = paddle.Tensor( - value=input, - place=place, - persistable=False, - zero_copy=None, - stop_gradient=True) + var_x = dg.to_variable(input) result = tensor.sum(var_x, axis=[1, 2]).numpy() target = np.sum(input, axis=(1, 2)) self.assertTrue(np.allclose(result, target)) diff --git a/python/paddle/fluid/tests/unittests/test_complex_trace_layer.py b/python/paddle/fluid/tests/unittests/test_complex_trace_layer.py index 9912b78251399e3c48e85744c817218dff5e3299..081d5a5e43b25ea4bcc356d4ce0066ec6a524f02 100644 --- a/python/paddle/fluid/tests/unittests/test_complex_trace_layer.py +++ b/python/paddle/fluid/tests/unittests/test_complex_trace_layer.py @@ -16,7 +16,6 @@ import unittest import numpy as np import paddle from numpy.random import random as rand -from paddle import complex as cpx from paddle import tensor import paddle.fluid as fluid import paddle.fluid.dygraph as dg @@ -29,30 +28,13 @@ class TestComplexTraceLayer(unittest.TestCase): if fluid.core.is_compiled_with_cuda(): self._places.append(fluid.CUDAPlace(0)) - def test_complex_api(self): - for dtype in self._dtypes: - input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand( - [2, 20, 2, 3]).astype(dtype) - for place in self._places: - with dg.guard(place): - var_x = dg.to_variable(input) - result = cpx.trace( - var_x, offset=1, axis1=0, axis2=2).numpy() - target = np.trace(input, offset=1, axis1=0, axis2=2) - self.assertTrue(np.allclose(result, target)) - def test_basic_api(self): for dtype in self._dtypes: input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand( [2, 20, 2, 3]).astype(dtype) for place in self._places: with dg.guard(place): - var_x = paddle.Tensor( - value=input, - place=place, - persistable=False, - zero_copy=None, - stop_gradient=True) + var_x = dg.to_variable(input) result = tensor.trace( var_x, offset=1, axis1=0, axis2=2).numpy() target = np.trace(input, offset=1, axis1=0, axis2=2) diff --git a/python/paddle/fluid/tests/unittests/test_complex_transpose.py b/python/paddle/fluid/tests/unittests/test_complex_transpose.py index a8fa2524d44305ee0c2b9507f316df3a9be7e60d..6521f95be1e7f6b350b243e8a9282edad20a42bc 100644 --- a/python/paddle/fluid/tests/unittests/test_complex_transpose.py +++ b/python/paddle/fluid/tests/unittests/test_complex_transpose.py @@ -36,24 +36,6 @@ class TestComplexTransposeLayer(unittest.TestCase): for place in self._places: with dg.guard(place): var = dg.to_variable(data) - trans = paddle.complex.transpose(var, perm=perm) - self.assertTrue(np.allclose(trans.numpy(), np_trans)) - - def test_transpose_by_basic_api(self): - for dtype in self._dtypes: - data = np.random.random( - (2, 3, 4, 5)).astype(dtype) + 1J * np.random.random( - (2, 3, 4, 5)).astype(dtype) - perm = [3, 2, 0, 1] - np_trans = np.transpose(data, perm) - for place in self._places: - with dg.guard(place): - var = paddle.Tensor( - value=data, - place=place, - persistable=False, - zero_copy=None, - stop_gradient=True) trans = paddle.transpose(var, perm=perm) self.assertTrue(np.allclose(trans.numpy(), np_trans)) diff --git a/python/paddle/fluid/tests/unittests/test_complex_variable.py b/python/paddle/fluid/tests/unittests/test_complex_variable.py index f29cb463daf706173497abc73ef606820cfd7c6a..392ab07dbf239d2338376e9d0b648267a9a8ba4f 100644 --- a/python/paddle/fluid/tests/unittests/test_complex_variable.py +++ b/python/paddle/fluid/tests/unittests/test_complex_variable.py @@ -30,14 +30,11 @@ class TestComplexVariable(unittest.TestCase): with dg.guard(): x = dg.to_variable(a, "x") y = dg.to_variable(b) - out = paddle.complex.elementwise_add(x, y) + out = paddle.fluid.layers.elementwise_add(x, y) self.assertIsNotNone("{}".format(out)) self.assertTrue(np.allclose(out.numpy(), a + b)) - self.assertEqual(x.name, {'real': 'x.real', 'imag': 'x.imag'}) - x.name = "new_x" - self.assertEqual(x.name, {'real': 'new_x.real', 'imag': 'new_x.imag'}) - self.assertEqual(out.dtype, self._dtype) + self.assertEqual(out.dtype, convert_np_dtype_to_dtype_(self._dtype)) self.assertEqual(out.shape, x.shape) def test_attrs(self): diff --git a/python/paddle/fluid/tests/unittests/test_is_tensor.py b/python/paddle/fluid/tests/unittests/test_is_tensor.py index 97d6c60d631d3d4a0da343d10f8d05dea625aaf5..616aaa019ba33c1e5f21889e396c307630f10903 100644 --- a/python/paddle/fluid/tests/unittests/test_is_tensor.py +++ b/python/paddle/fluid/tests/unittests/test_is_tensor.py @@ -28,15 +28,6 @@ class TestIsTensorApi(unittest.TestCase): x = paddle.rand([3, 2, 4], dtype=dtype) self.assertTrue(paddle.is_tensor(x)) - def test_is_tensor_complex(self, dtype="float32"): - """Test is_tensor api with a complex tensor - """ - paddle.disable_static() - r = paddle.to_tensor(1) - i = paddle.to_tensor(2) - x = paddle.ComplexTensor(r, i) - self.assertTrue(paddle.is_tensor(x)) - def test_is_tensor_list(self, dtype="float32"): """Test is_tensor api with a list """ diff --git a/python/paddle/fluid/tests/unittests/test_var_base.py b/python/paddle/fluid/tests/unittests/test_var_base.py index e374e607fec58571ea71c29988b0ef259afb658e..6d74505bc1fdda46ed9d2e128448e1846a3757ba 100644 --- a/python/paddle/fluid/tests/unittests/test_var_base.py +++ b/python/paddle/fluid/tests/unittests/test_var_base.py @@ -78,7 +78,7 @@ class TestVarBase(unittest.TestCase): # set_default_dtype take effect on complex x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False) self.assertTrue(np.array_equal(x.numpy(), [1 + 2j])) - self.assertEqual(x.dtype, 'complex64') + self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64) paddle.set_default_dtype('float64') x = paddle.to_tensor(1.2, place=place, stop_gradient=False) @@ -87,7 +87,7 @@ class TestVarBase(unittest.TestCase): x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False) self.assertTrue(np.array_equal(x.numpy(), [1 + 2j])) - self.assertEqual(x.dtype, 'complex128') + self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128) x = paddle.to_tensor( 1, dtype='float32', place=place, stop_gradient=False) @@ -133,10 +133,8 @@ class TestVarBase(unittest.TestCase): [1 + 2j, 1 - 2j], dtype='complex64', place=place) y = paddle.to_tensor(x) self.assertTrue(np.array_equal(x.numpy(), [1 + 2j, 1 - 2j])) - self.assertEqual(y.dtype, 'complex64') + self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64) self.assertEqual(y.shape, [2]) - self.assertEqual(y.real.stop_gradient, True) - self.assertEqual(y.real.type, core.VarDesc.VarType.LOD_TENSOR) with self.assertRaises(TypeError): paddle.to_tensor('test') diff --git a/python/paddle/framework/__init__.py b/python/paddle/framework/__init__.py index 8c1742664fd0f9814fe889b2c15de58c430ce862..f2b6888d7a753d0e0bda7a0c01139e0f222a89cb 100644 --- a/python/paddle/framework/__init__.py +++ b/python/paddle/framework/__init__.py @@ -25,7 +25,6 @@ from .random import seed from .framework import get_default_dtype from .framework import set_default_dtype -from ..fluid.framework import ComplexVariable #DEFINE_ALIAS from ..fluid.param_attr import ParamAttr #DEFINE_ALIAS # from ..fluid.layers.tensor import create_global_var #DEFINE_ALIAS from ..fluid.layers.tensor import create_parameter #DEFINE_ALIAS diff --git a/python/paddle/tensor/creation.py b/python/paddle/tensor/creation.py index 7e93ee01fa933476581a9f601fc270700c7c70c3..58641009d9dd350953f20bc7e7dc258696551ca8 100644 --- a/python/paddle/tensor/creation.py +++ b/python/paddle/tensor/creation.py @@ -55,32 +55,29 @@ __all__ = [ @dygraph_only def to_tensor(data, dtype=None, place=None, stop_gradient=True): r""" - Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , - which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor. + Constructs a ``paddle.Tensor`` from ``data`` , + which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor. If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy will be performed and return origin tensor, otherwise a new tensor will be constructed and returned. - The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then - ``x.real`` is the real part, and ``x.imag`` is the imaginary part. - Args: - data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor. - Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor. + data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor. + Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor. dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , - 'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And - 'complex64' , 'complex128' only for ComplexTensor. Default: None, infers dtype from ``data`` + 'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8', + 'complex64' , 'complex128'. Default: None, infers dtype from ``data`` except for python float number which gets dtype from ``get_default_type`` . place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True. Returns: - Tensor: A Tensor or ComplexTensor constructed from ``data`` . + Tensor: A Tensor constructed from ``data`` . Raises: - TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor + TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]] TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128 ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace @@ -112,16 +109,13 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True): # [[0.10000000, 0.20000000], # [0.30000001, 0.40000001]]) - type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), dtype='complex64') - # + type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')) + # paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64') - # ComplexTensor[real](shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, - # [[1., 2.], - # [3., 4.]]) - # ComplexTensor[imag](shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, - # [[1., 0.], - # [2., 0.]]) + # Tensor(shape=[2, 2], dtype=complex64, place=CUDAPlace(0), stop_gradient=True, + # [[(1+1j), (2+0j)], + # [(3+2j), (4+0j)]]) """ if place is None: @@ -156,11 +150,9 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True): if convert_dtype(dtype) != convert_dtype(data.dtype): return data.astype(convert_dtype(dtype)) return data - elif isinstance(data, paddle.ComplexTensor): - return data else: raise TypeError( - "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor". + "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor". format(type(data))) if not dtype and data.dtype in [ 'float16', 'float32', 'float64', 'complex64', 'complex128' @@ -175,30 +167,12 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True): if dtype and convert_dtype(dtype) != data.dtype: data = data.astype(dtype) - if not np.iscomplexobj(data): - if dtype and convert_dtype(dtype) != data.dtype: - data = data.astype(dtype) - return paddle.Tensor( - value=data, - place=place, - persistable=False, - zero_copy=False, - stop_gradient=stop_gradient) - else: - name = unique_name.generate('generated_tensor') - real_tensor = paddle.Tensor( - value=data.real, - place=place, - zero_copy=False, - name=name + ".real", - stop_gradient=stop_gradient) - imag_tensor = paddle.Tensor( - value=data.imag, - place=place, - zero_copy=False, - name=name + ".imag", - stop_gradient=stop_gradient) - return paddle.ComplexTensor(real_tensor, imag_tensor) + return paddle.Tensor( + value=data, + place=place, + persistable=False, + zero_copy=False, + stop_gradient=stop_gradient) def full_like(x, fill_value, dtype=None, name=None): diff --git a/python/paddle/tensor/logic.py b/python/paddle/tensor/logic.py index 075abce10915c79456044be021f25803a2785b05..56734730db53ea7ed4a4af0bc9739d59b8ecd27a 100644 --- a/python/paddle/tensor/logic.py +++ b/python/paddle/tensor/logic.py @@ -20,7 +20,6 @@ from .. import fluid from ..fluid.framework import in_dygraph_mode from paddle.common_ops_import import * from ..framework import VarBase as Tensor -from ..framework import ComplexVariable as ComplexTensor # TODO: define logic functions of a tensor from ..fluid.layers import is_empty #DEFINE_ALIAS @@ -445,13 +444,13 @@ def not_equal(x, y, name=None): def is_tensor(x): """ - This function tests whether input object is a paddle.Tensor or a paddle.ComplexTensor. + This function tests whether input object is a paddle.Tensor. Args: x (object): Object to test. Returns: - A boolean value. True if 'x' is a paddle.Tensor or a paddle.ComplexTensor, otherwise False. + A boolean value. True if 'x' is a paddle.Tensor, otherwise False. Examples: .. code-block:: python @@ -462,13 +461,9 @@ def is_tensor(x): check = paddle.is_tensor(input1) print(check) #True - input2 = paddle.ComplexTensor(input1, input1) - check = paddle.is_tensor(input2) - print(check) #True - input3 = [1, 4] check = paddle.is_tensor(input3) print(check) #False """ - return isinstance(x, Tensor) or isinstance(x, ComplexTensor) + return isinstance(x, Tensor) diff --git a/python/setup.py.in b/python/setup.py.in index df43e4a3171179a95afd446dd1f99f45be737786..34faff6bea524e7ccd59322881b14e574606620f 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -143,8 +143,6 @@ packages=['paddle', 'paddle.reader', 'paddle.distributed', 'paddle.incubate', - 'paddle.incubate.complex', - 'paddle.incubate.complex.tensor', 'paddle.distributed.fleet', 'paddle.distributed.fleet.base', 'paddle.distributed.fleet.meta_optimizers',