Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
9f2ccf5b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9f2ccf5b
编写于
9月 06, 2018
作者:
T
tensor-tang
提交者:
GitHub
9月 06, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13237 from tensor-tang/refine/op/peephole
refine fusion lstm/peephole and fusion gru
上级
225ecee5
718033e1
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
254 addition
and
329 deletion
+254
-329
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
+1
-0
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+8
-10
paddle/fluid/operators/fusion_lstm_op.cc
paddle/fluid/operators/fusion_lstm_op.cc
+240
-280
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
+5
-39
未找到文件。
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
浏览文件 @
9f2ccf5b
...
@@ -11,6 +11,7 @@
...
@@ -11,6 +11,7 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h"
#include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h"
#include <string>
#include <string>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor.h"
...
...
paddle/fluid/operators/fusion_gru_op.cc
浏览文件 @
9f2ccf5b
...
@@ -30,14 +30,7 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -30,14 +30,7 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
"Input(WeightX) of GRU should not be null."
);
"Input(WeightX) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightH"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightH"
),
"Input(WeightH) of GRU should not be null."
);
"Input(WeightH) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XX"
),
"Output(XX) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XX"
),
"Output(XX) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ReorderedH0"
),
"Output(ReorderedH0) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedInput"
),
"Output(BatchedInput) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedOut"
),
"Output(BatchedOut) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of GRU should not be null."
);
"Output(Hidden) of GRU should not be null."
);
...
@@ -80,15 +73,20 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -80,15 +73,20 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
}
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedInput"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchedOut"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
int
xx_width
;
int
xx_width
;
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_seq"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_seq"
))
{
xx_width
=
wx_dims
[
1
];
xx_width
=
wx_dims
[
1
];
}
else
{
}
else
{
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ReorderedH0"
),
"Output(ReorderedH0) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedInput"
),
"Output(BatchedInput) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedOut"
),
"Output(BatchedOut) of GRU should not be null."
);
ctx
->
SetOutputDim
(
"BatchedInput"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchedOut"
,
out_dims
);
}
}
ctx
->
SetOutputDim
(
"XX"
,
{
x_dims
[
0
],
xx_width
});
ctx
->
SetOutputDim
(
"XX"
,
{
x_dims
[
0
],
xx_width
});
ctx
->
ShareLoD
(
"X"
,
"XX"
);
ctx
->
ShareLoD
(
"X"
,
"XX"
);
...
...
paddle/fluid/operators/fusion_lstm_op.cc
浏览文件 @
9f2ccf5b
...
@@ -38,16 +38,6 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -38,16 +38,6 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
"Output(Hidden) of LSTM should not be null."
);
"Output(Hidden) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of LSTM should not be null."
);
"Output(Cell) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedInput"
),
"Output(BatchedInput) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedHidden"
),
"Output(BatchedHidden) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedCell"
),
"Output(BatchedCell) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ReorderedH0"
),
"Output(ReorderedH0) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ReorderedC0"
),
"Output(ReorderedC0) of LSTM should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
...
@@ -88,9 +78,8 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -88,9 +78,8 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"The rank of Input(Bias) should be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"The rank of Input(Bias) should be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"The first dimension of Input(Bias) should be 1."
);
"The first dimension of Input(Bias) should be 1."
);
PADDLE_ENFORCE_EQ
(
auto
use_peepholes
=
ctx
->
Attrs
().
Get
<
bool
>
(
"use_peepholes"
);
b_dims
[
1
],
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_peepholes"
)
?
7
:
4
)
*
frame_size
,
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
(
use_peepholes
?
7
:
4
)
*
frame_size
,
"The second dimension of Input(Bias) should be "
"The second dimension of Input(Bias) should be "
"7 * %d if enable peepholes connection or"
"7 * %d if enable peepholes connection or"
"4 * %d if disable peepholes"
,
"4 * %d if disable peepholes"
,
...
@@ -99,17 +88,26 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -99,17 +88,26 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedInput"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchedHidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedCell"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Cell"
);
ctx
->
ShareLoD
(
"X"
,
"Cell"
);
int
xx_width
;
int
xx_width
;
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_seq"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_seq"
))
{
xx_width
=
wx_dims
[
1
];
xx_width
=
wx_dims
[
1
];
}
else
{
}
else
{
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedInput"
),
"Output(BatchedInput) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedHidden"
),
"Output(BatchedHidden) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedCell"
),
"Output(BatchedCell) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ReorderedH0"
),
"Output(ReorderedH0) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ReorderedC0"
),
"Output(ReorderedC0) of LSTM should not be null."
);
ctx
->
SetOutputDim
(
"BatchedInput"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchedHidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedCell"
,
out_dims
);
}
}
ctx
->
SetOutputDim
(
"XX"
,
{
x_dims
[
0
],
xx_width
});
ctx
->
SetOutputDim
(
"XX"
,
{
x_dims
[
0
],
xx_width
});
ctx
->
ShareLoD
(
"X"
,
"XX"
);
ctx
->
ShareLoD
(
"X"
,
"XX"
);
...
@@ -242,8 +240,8 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
...
@@ -242,8 +240,8 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
auto* cell_out = ctx.Output<LoDTensor>("Cell"); \
auto* cell_out = ctx.Output<LoDTensor>("Cell"); \
bool
use_peepholes = ctx.Attr<bool>("use_peepholes");
\
bool
is_reverse = ctx.Attr<bool>("is_reverse");
\
bool
is_reverse = ctx.Attr<bool>("is_reverse
");
bool
use_peepholes = ctx.Attr<bool>("use_peepholes
");
#define INIT_BASE_SIZES \
#define INIT_BASE_SIZES \
auto x_dims = x->dims();
/* T x M*/
\
auto x_dims = x->dims();
/* T x M*/
\
...
@@ -254,172 +252,183 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
...
@@ -254,172 +252,183 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
const int D3 = D * 3; \
const int D3 = D * 3; \
const int D4 = wh_dims[1];
const int D4 = wh_dims[1];
#define INIT_BASE_INPUT_DATAS \
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
const T* wh_data = wh->data<T>(); \
/* diagonal weight*/
\
const T* wc_data = bias->data<T>() + D4; \
/* for peephole only*/
\
Tensor checked_cell; \
T* checked_cell_data = nullptr; \
auto place = ctx.GetPlace(); \
if (use_peepholes) { \
/* w_ic * Ct-1, w_fc * Ct-1 ; w_oc * Ct => ih*/
\
checked_cell_data = checked_cell.mutable_data<T>({2, D}, place); \
}
/// Compute LSTM
#define GEMM_WH_ADDON(bs, prev, out) \
blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
wh_data, D4, static_cast<T>(1), out, D4)
// gates: W_ch, W_ih, W_fh, W_oh
#define GET_Ct(ct_1, gates, ct) \
/* C_t = C_t-1 * fgated + cand_gated * igated*/
\
act_cand(D, gates, gates); \
blas.VMUL(D, gates, gates + D, gates + D); \
blas.VMUL(D, ct_1, gates + D2, gates + D2); \
blas.VADD(D, gates + D, gates + D2, ct)
#define GET_Ht(ct, gates, ht) \
/* H_t = act_cell(C_t) * ogated */
\
act_cell(D, ct, gates + D2); \
blas.VMUL(D, gates + D2, gates + D3, ht)
#define GET_Ct_NOH0C0(gates, ct) \
/* C_t = igated * cgated*/
\
act_gate(D, gates + D, gates + D); \
act_cand(D, gates, gates); \
blas.VMUL(D, gates, gates + D, ct)
#define COMPUTE_CtHt_NOH0C0(gates, ct, ht) \
GET_Ct_NOH0C0(gates, ct); \
act_gate(D, gates + D3, gates + D3); \
GET_Ht(ct, gates, ht)
#define COMPUTE_CtHt_PEEPHOLE_NOH0C0(gates, ct, ht) \
GET_Ct_NOH0C0(gates, ct); \
/* get outgated, put W_oc * C_t on igated */
\
blas.VMUL(D, wc_data + D2, ct, gates + D); \
blas.VADD(D, gates + D, gates + D3, gates + D3); \
act_gate(D, gates + D3, gates + D3); \
GET_Ht(ct, gates, ht)
#define COMPUTE_CtHt(gates, ct_1, ct, ht) \
act_gate(D3, gates + D, gates + D); \
GET_Ct(ct_1, gates, ct); \
GET_Ht(ct, gates, ht)
#define COMPUTE_CtHt_PEEPHOLE(gates, ct_1, ct, ht) \
/* get fgated and igated*/
\
blas.VMUL(D, wc_data, ct_1, checked_cell_data); \
blas.VMUL(D, wc_data + D, ct_1, checked_cell_data + D); \
blas.VADD(D2, checked_cell_data, gates + D, gates + D); \
act_gate(D2, gates + D, gates + D); \
GET_Ct(ct_1, gates, ct); \
/* get ogated*/
\
blas.VMUL(D, wc_data + D2, ct, gates + D); \
blas.VADD(D, gates + D, gates + D3, gates + D3); \
act_gate(D, gates + D3, gates + D3); \
GET_Ht(ct, gates, ht)
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
INIT_BASE_INPUT_OUTPUT
INIT_BASE_INPUT_OUTPUT
INIT_BASE_SIZES
INIT_BASE_SIZES
INIT_VEC_FUNC
INIT_VEC_FUNC
INIT_BASE_INPUT_DATAS
auto
x_lod
=
x
->
lod
();
auto
x_lod
=
x
->
lod
();
const
int
total_T
=
x_dims
[
0
];
const
int
total_T
=
x_dims
[
0
];
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
// batch size
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
c0_data
=
c0
?
c0
->
data
<
T
>
()
:
nullptr
;
const
T
*
c0_data
=
c0
?
c0
->
data
<
T
>
()
:
nullptr
;
const
T
*
bias_data
=
bias
->
data
<
T
>
();
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
place
);
const
T
*
wc_data
=
bias_data
+
D4
;
// w_ic, w_fc, w_oc
T
*
h_out_data
=
hidden_out
->
mutable_data
<
T
>
(
place
);
const
T
*
wx_data
=
wx
->
data
<
T
>
();
T
*
c_out_data
=
cell_out
->
mutable_data
<
T
>
(
place
);
const
T
*
wh_data
=
wh
->
data
<
T
>
();
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
cell_out_data
=
cell_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// use local variable
framework
::
DDim
check_dims
({
3
,
D
});
Tensor
checked_cell
;
// w_ic * Ct-1, w_fc * Ct-1, w_oc * Ct
auto
checked_cell_data
=
checked_cell
.
mutable_data
<
T
>
(
check_dims
,
ctx
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D4
,
M
,
x_data
,
wx_data
,
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D4
,
M
,
x_data
,
wx_data
,
xx_data
,
bias
->
data
<
T
>
());
xx_data
,
bias
->
data
<
T
>
());
int
xx_offset
=
D4
;
int
xx_offset
=
D4
;
int
gate_offset
=
D
;
int
gate_offset
=
D
;
if
(
is_reverse
)
{
if
(
is_reverse
)
{
const
int
offset
=
(
total_T
-
1
)
*
D
;
const
int
offset
=
(
total_T
-
1
)
*
D
;
xx_data
=
xx_data
+
offset
*
4
;
xx_data
=
xx_data
+
offset
*
4
;
h
idden_out_data
=
hidden
_out_data
+
offset
;
h
_out_data
=
h
_out_data
+
offset
;
c
ell_out_data
=
cell
_out_data
+
offset
;
c
_out_data
=
c
_out_data
+
offset
;
xx_offset
=
-
D4
;
xx_offset
=
-
D4
;
gate_offset
=
-
D
;
gate_offset
=
-
D
;
}
}
auto
move_step
=
[
&
]()
{
#define MOVE_ONE_STEP \
xx_data
=
xx_data
+
xx_offset
;
prev_h_data = h_out_data; \
hidden_out_data
=
hidden_out_data
+
gate_offset
;
prev_c_data = c_out_data; \
cell_out_data
=
cell_out_data
+
gate_offset
;
xx_data = xx_data + xx_offset; \
};
h_out_data = h_out_data + gate_offset; \
c_out_data = c_out_data + gate_offset
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
int
bid
=
is_reverse
?
N
-
1
-
i
:
i
;
#define PROCESS_H0C0_DEFINES \
int
seq_len
=
x_lod
[
0
][
bid
+
1
]
-
x_lod
[
0
][
bid
];
int bid = is_reverse ? N - 1 - i : i; \
const
T
*
prev_c_data
=
nullptr
;
int seq_len = x_lod[0][bid + 1] - x_lod[0][bid]; \
const
T
*
prev_h_data
=
nullptr
;
const T* prev_c_data = nullptr; \
const T* prev_h_data = nullptr; \
int
tstart
=
0
;
int tstart = 0
if
(
h0_data
)
{
prev_h_data
=
h0_data
+
bid
*
D
;
#define PROCESS_H0C0_PEEPHOLE \
prev_c_data
=
c0_data
+
bid
*
D
;
PROCESS_H0C0_DEFINES; \
}
else
{
if (h0_data) { \
// If step == 0 and there is no initialized hidden state, that is to say
prev_h_data = h0_data + bid * D; \
// the H0 is zeros. Then W_h * H_t-1 can be skipped
prev_c_data = c0_data + bid * D; \
} else { \
COMPUTE_CtHt_PEEPHOLE_NOH0C0(xx_data, c_out_data, h_out_data); \
MOVE_ONE_STEP; \
tstart = 1; \
}
// ~C_t
#define PROCESS_H0C0 \
act_cand
(
D
,
xx_data
,
xx_data
);
PROCESS_H0C0_DEFINES; \
if
(
use_peepholes
)
{
if (h0_data) { \
// I_t, F_t
prev_h_data = h0_data + bid * D; \
act_gate
(
D2
,
xx_data
+
D
,
xx_data
+
D
);
prev_c_data = c0_data + bid * D; \
}
else
{
} else { \
// I_t, F_t, O_t
COMPUTE_CtHt_NOH0C0(xx_data, c_out_data, h_out_data); \
act_gate
(
D3
,
xx_data
+
D
,
xx_data
+
D
);
MOVE_ONE_STEP; \
tstart = 1; \
}
}
// C_t = I_t * ~C_t
blas
.
VMUL
(
D
,
xx_data
,
xx_data
+
D
,
cell_out_data
);
if
(
use_peepholes
)
{
if
(
use_peepholes
)
{
// + W_oc * C_t for peephole connection
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
blas
.
VMUL
(
D
,
wc_data
+
D2
,
cell_out_data
,
checked_cell_data
+
D2
);
PROCESS_H0C0_PEEPHOLE
blas
.
VADD
(
D
,
xx_data
+
D3
,
checked_cell_data
+
D2
,
xx_data
+
D3
);
for
(
int
step
=
tstart
;
step
<
seq_len
;
++
step
)
{
// O_t
GEMM_WH_ADDON
(
1
,
prev_h_data
,
xx_data
);
act_gate
(
D
,
xx_data
+
D3
,
xx_data
+
D3
);
COMPUTE_CtHt_PEEPHOLE
(
xx_data
,
prev_c_data
,
c_out_data
,
h_out_data
);
MOVE_ONE_STEP
;
}
}
// hidden out= act_state(cellout) * outgate
act_cell
(
D
,
cell_out_data
,
xx_data
+
D2
);
// H_t = O_t * act_state(C_t)
blas
.
VMUL
(
D
,
xx_data
+
D2
,
xx_data
+
D3
,
hidden_out_data
);
// prev
prev_h_data
=
hidden_out_data
;
prev_c_data
=
cell_out_data
;
tstart
=
1
;
move_step
();
}
}
for
(
int
step
=
tstart
;
step
<
seq_len
;
++
step
)
{
// + W_h * H_t-1
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D4
,
D
,
static_cast
<
T
>
(
1
),
prev_h_data
,
D
,
wh_data
,
D4
,
static_cast
<
T
>
(
1
),
xx_data
,
D4
);
// ~C_t
act_cand
(
D
,
xx_data
,
xx_data
);
if
(
use_peepholes
)
{
// + W_ic|W_fc * C_t-1 for peephole connection
blas
.
VMUL
(
D
,
wc_data
,
prev_c_data
,
checked_cell_data
);
blas
.
VMUL
(
D
,
wc_data
+
D
,
prev_c_data
,
checked_cell_data
+
D
);
blas
.
VADD
(
D2
,
xx_data
+
D
,
checked_cell_data
,
xx_data
+
D
);
// I_t, F_t
act_gate
(
D2
,
xx_data
+
D
,
xx_data
+
D
);
}
else
{
}
else
{
// I_t, F_t, O_t
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
act_gate
(
D3
,
xx_data
+
D
,
xx_data
+
D
);
PROCESS_H0C0
for
(
int
step
=
tstart
;
step
<
seq_len
;
++
step
)
{
GEMM_WH_ADDON
(
1
,
prev_h_data
,
xx_data
);
COMPUTE_CtHt
(
xx_data
,
prev_c_data
,
c_out_data
,
h_out_data
);
MOVE_ONE_STEP
;
}
}
// F_t * C_t-1
blas
.
VMUL
(
D
,
xx_data
+
D2
,
prev_c_data
,
xx_data
+
D2
);
// I_t * ~C_t
blas
.
VMUL
(
D
,
xx_data
,
xx_data
+
D
,
xx_data
+
D
);
// C_t = F_t * C_t-1 + I_t * ~C_t
blas
.
VADD
(
D
,
xx_data
+
D
,
xx_data
+
D2
,
cell_out_data
);
if
(
use_peepholes
)
{
// + W_oc * C_t for peephole connection
blas
.
VMUL
(
D
,
wc_data
+
D2
,
cell_out_data
,
checked_cell_data
+
D2
);
blas
.
VADD
(
D
,
xx_data
+
D3
,
checked_cell_data
+
D2
,
xx_data
+
D3
);
// O_t
act_gate
(
D
,
xx_data
+
D3
,
xx_data
+
D3
);
}
}
}
// hidden out= act_state(cellout) * outgate
#undef PROCESS_H0C0_DEFINES
act_cell
(
D
,
cell_out_data
,
xx_data
+
D2
);
#undef PROCESS_H0C0_PEEPHOLE
// H_t = O_t * act_state(C_t)
#undef PROCESS_H0C0
blas
.
VMUL
(
D
,
xx_data
+
D2
,
xx_data
+
D3
,
hidden_out_data
);
#undef MOVE_ONE_STEP
// prev
prev_h_data
=
hidden_out_data
;
prev_c_data
=
cell_out_data
;
move_step
();
}
// for each step in batch
}
// for each batch
}
}
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
platform
::
CPUDeviceContext
;
using
DeviceContext
=
platform
::
CPUDeviceContext
;
INIT_BASE_INPUT_OUTPUT
INIT_BASE_INPUT_OUTPUT
if
(
x
->
lod
()[
0
].
size
()
==
2
)
{
// batch size == 1
if
(
x
->
lod
()[
0
].
size
()
==
2
)
{
SeqCompute
(
ctx
);
SeqCompute
(
ctx
);
return
;
return
;
}
}
INIT_BASE_SIZES
INIT_BASE_SIZES
INIT_VEC_FUNC
INIT_VEC_FUNC
INIT_BASE_INPUT_DATAS
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
reordered_c0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedC0"
);
auto
*
reordered_c0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedC0"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_c_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedCell"
);
auto
*
batched_c_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedCell"
);
auto
*
batched_h_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedHidden"
);
auto
*
batched_h_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedHidden"
);
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
const
T
*
bias_data
=
bias
->
data
<
T
>
();
const
T
*
wc_data
=
bias_data
+
D4
;
// w_ic, w_fc, w_oc
auto
place
=
ctx
.
GetPlace
();
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
place
);
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
place
);
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
place
);
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
place
);
T
*
batched_c_out_data
=
batched_c_out
->
mutable_data
<
T
>
(
place
);
T
*
batched_c_out_data
=
batched_c_out
->
mutable_data
<
T
>
(
place
);
...
@@ -427,12 +436,6 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
...
@@ -427,12 +436,6 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
hidden_out
->
mutable_data
<
T
>
(
place
);
hidden_out
->
mutable_data
<
T
>
(
place
);
cell_out
->
mutable_data
<
T
>
(
place
);
cell_out
->
mutable_data
<
T
>
(
place
);
// use local variable
framework
::
DDim
check_dims
({
3
,
D
});
Tensor
checked_cell
;
// w_ic * Ct-1, w_fc * Ct-1, w_oc * Ct
auto
checked_cell_data
=
checked_cell
.
mutable_data
<
T
>
(
check_dims
,
ctx
.
GetPlace
());
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
...
@@ -454,27 +457,17 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
...
@@ -454,27 +457,17 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
reordered_h0
->
Resize
({
max_bs
,
D
});
reordered_h0
->
Resize
({
max_bs
,
D
});
reordered_c0
->
Resize
({
max_bs
,
D
});
reordered_c0
->
Resize
({
max_bs
,
D
});
T
*
prev_batch_h_data
=
nullptr
;
T
*
prev_batch_c_data
=
nullptr
;
T
*
cur_batch_in_data
=
batched_input_data
;
T
*
cur_batch_h_out_data
=
batched_h_out_data
;
T
*
cur_batch_c_out_data
=
batched_c_out_data
;
auto
move_step
=
[
&
](
int
bs
)
{
cur_batch_in_data
+=
bs
*
D4
;
cur_batch_c_out_data
+=
bs
*
D
;
cur_batch_h_out_data
+=
bs
*
D
;
};
int
tstart
=
0
;
int
tstart
=
0
;
T
*
prev_h_data
=
nullptr
;
T
*
prev_c_data
=
nullptr
;
if
(
h0
)
{
if
(
h0
)
{
// reorder h0, c0
// reorder h0, c0
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
place
);
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
place
);
T
*
reordered_c0_data
=
reordered_c0
->
mutable_data
<
T
>
(
place
);
T
*
reordered_c0_data
=
reordered_c0
->
mutable_data
<
T
>
(
place
);
const
T
*
h0_data
=
h0
->
data
<
T
>
();
const
T
*
h0_data
=
h0
->
data
<
T
>
();
const
T
*
c0_data
=
c0
->
data
<
T
>
();
const
T
*
c0_data
=
c0
->
data
<
T
>
();
prev_
batch_
h_data
=
reordered_h0_data
;
prev_h_data
=
reordered_h0_data
;
prev_
batch_
c_data
=
reordered_c0_data
;
prev_c_data
=
reordered_c0_data
;
size_t
sz
=
sizeof
(
T
)
*
D
;
size_t
sz
=
sizeof
(
T
)
*
D
;
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
std
::
memcpy
(
reordered_h0_data
,
h0_data
+
seq_order
[
i
]
*
D
,
sz
);
std
::
memcpy
(
reordered_h0_data
,
h0_data
+
seq_order
[
i
]
*
D
,
sz
);
...
@@ -483,123 +476,80 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
...
@@ -483,123 +476,80 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
reordered_c0_data
+=
D
;
reordered_c0_data
+=
D
;
}
}
}
else
{
}
else
{
// Compute with no H0/C0
// compute without h0, c0
T
*
cur_in_data
=
cur_batch_in_data
;
T
*
cur_in_data
=
batched_input_data
;
T
*
cur_c_out_data
=
cur_batch_c_out_data
;
T
*
cur_h_out_data
=
batched_h_out_data
;
T
*
cur_h_out_data
=
cur_batch_h_out_data
;
T
*
cur_c_out_data
=
batched_c_out_data
;
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
// If step == 0 and there is no initialized hidden state, that is to say
GET_Ct_NOH0C0
(
cur_in_data
,
cur_c_out_data
);
// the H0 is zeros. Then W_h * H_t-1 can be skiped
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
// iterate each data in 1st batch
// ~C_t
act_cand
(
D
,
cur_in_data
,
cur_in_data
);
if
(
use_peepholes
)
{
if
(
use_peepholes
)
{
// I_t, F_t
blas
.
VMUL
(
D
,
wc_data
+
D2
,
cur_c_out_data
,
cur_in_data
+
D
);
act_gate
(
D2
,
cur_in_data
+
D
,
cur_in_data
+
D
);
blas
.
VADD
(
D
,
cur_in_data
+
D
,
cur_in_data
+
D3
,
cur_in_data
+
D3
);
}
else
{
// I_t, F_t, O_t
act_gate
(
D3
,
cur_in_data
+
D
,
cur_in_data
+
D
);
}
}
// C_t = I_t * ~C_t
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D
,
cur_c_out_data
);
if
(
use_peepholes
)
{
// + W_oc * C_t for peephole connection
blas
.
VMUL
(
D
,
wc_data
+
D2
,
cur_c_out_data
,
checked_cell_data
+
D2
);
blas
.
VADD
(
D
,
cur_in_data
+
D3
,
checked_cell_data
+
D2
,
cur_in_data
+
D3
);
// O_t
act_gate
(
D
,
cur_in_data
+
D3
,
cur_in_data
+
D3
);
act_gate
(
D
,
cur_in_data
+
D3
,
cur_in_data
+
D3
);
}
GET_Ht
(
cur_c_out_data
,
cur_in_data
,
cur_h_out_data
);
// hidden out= act_state(cellout) * outgate
act_cell
(
D
,
cur_c_out_data
,
cur_in_data
+
D2
);
// H_t = O_t * act_state(C_t)
blas
.
VMUL
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D3
,
cur_h_out_data
);
// move to next data in the same batch
cur_in_data
+=
D4
;
cur_in_data
+=
D4
;
cur_c_out_data
+=
D
;
cur_c_out_data
+=
D
;
cur_h_out_data
+=
D
;
cur_h_out_data
+=
D
;
}
}
// move to data for next timestep
prev_batch_h_data
=
cur_batch_h_out_data
;
prev_batch_c_data
=
cur_batch_c_out_data
;
move_step
(
max_bs
);
tstart
=
1
;
tstart
=
1
;
prev_h_data
=
batched_h_out_data
;
prev_c_data
=
batched_c_out_data
;
}
}
const
auto
&
batch_starts
=
batched_lod
[
0
];
const
auto
&
batch_starts
=
batched_lod
[
0
];
const
int
max_seq_len
=
batch_starts
.
size
()
-
1
;
const
int
max_seq_len
=
batch_starts
.
size
()
-
1
;
for
(
int
step
=
tstart
;
step
<
max_seq_len
;
++
step
)
{
const
int
offset
=
tstart
*
max_bs
*
D
;
const
int
cur_bs
=
batch_starts
[
step
+
1
]
-
batch_starts
[
step
]
;
batched_input_data
=
batched_input_data
+
offset
*
4
;
// + W_h * H_t-1
batched_h_out_data
=
batched_h_out_data
+
offset
;
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
cur_bs
,
D4
,
D
,
static_cast
<
T
>
(
1
),
batched_c_out_data
=
batched_c_out_data
+
offset
;
prev_batch_h_data
,
D
,
wh_data
,
D4
,
static_cast
<
T
>
(
1
),
cur_batch_in_data
,
D4
);
#define DEFINE_CUR \
T* cur_in_data = batched_input_data; \
T
*
cur_in_data
=
cur_batch_in_data
;
T* cur_prev_c_data = prev_c_data; \
T
*
cur_c_out_data
=
cur_batch_c_out_data
;
T* cur_c_out_data = batched_c_out_data; \
T
*
cur_h_out_data
=
cur_batch_h_out_data
;
T* cur_h_out_data = batched_h_out_data
T
*
prev_c_data
=
prev_batch_c_data
;
// NULL if no C0 in step0
T
*
prev_h_data
=
prev_batch_h_data
;
// NULL if no H0 in step0
#define MOVE_ONE_BATCH \
auto
next_data_in_batch
=
[
&
]()
{
cur_in_data += D4; \
cur_in_data
+=
D4
;
cur_prev_c_data += D; \
cur_c_out_data
+=
D
;
cur_c_out_data += D; \
cur_h_out_data
+=
D
;
cur_h_out_data += D
prev_c_data
=
prev_c_data
?
prev_c_data
+
D
:
nullptr
;
prev_h_data
=
prev_h_data
?
prev_h_data
+
D
:
nullptr
;
#define MOVE_ONE_STEP \
};
prev_c_data = batched_c_out_data; \
prev_h_data = batched_h_out_data; \
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
// iterate each data in same batch
batched_c_out_data = cur_c_out_data; \
// ~C_t
batched_h_out_data = cur_h_out_data; \
act_cand
(
D
,
cur_in_data
,
cur_in_data
);
batched_input_data = cur_in_data
if
(
use_peepholes
)
{
if
(
use_peepholes
)
{
// + W_ic|W_fc * C_t-1 for peephole connection
for
(
int
step
=
tstart
;
step
<
max_seq_len
;
++
step
)
{
blas
.
VMUL
(
D
,
wc_data
,
prev_c_data
,
checked_cell_data
);
const
int
cur_bs
=
batch_starts
[
step
+
1
]
-
batch_starts
[
step
];
blas
.
VMUL
(
D
,
wc_data
+
D
,
prev_c_data
,
checked_cell_data
+
D
);
GEMM_WH_ADDON
(
cur_bs
,
prev_h_data
,
batched_input_data
);
blas
.
VADD
(
D2
,
cur_in_data
+
D
,
checked_cell_data
,
cur_in_data
+
D
);
DEFINE_CUR
;
// I_t, F_t
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
act_gate
(
D2
,
cur_in_data
+
D
,
cur_in_data
+
D
);
COMPUTE_CtHt_PEEPHOLE
(
cur_in_data
,
cur_prev_c_data
,
cur_c_out_data
,
}
else
{
cur_h_out_data
);
// I_t, F_t, O_t
MOVE_ONE_BATCH
;
act_gate
(
D3
,
cur_in_data
+
D
,
cur_in_data
+
D
);
}
}
MOVE_ONE_STEP
;
// F_t * C_t-1
blas
.
VMUL
(
D
,
cur_in_data
+
D2
,
prev_c_data
,
cur_in_data
+
D2
);
// I_t * ~C_t
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D
,
cur_in_data
+
D
);
// C_t = F_t * C_t-1 + I_t * ~C_t
blas
.
VADD
(
D
,
cur_in_data
+
D
,
cur_in_data
+
D2
,
cur_c_out_data
);
if
(
use_peepholes
)
{
// + W_oc * C_t for peephole connection
blas
.
VMUL
(
D
,
wc_data
+
D2
,
cur_c_out_data
,
checked_cell_data
+
D2
);
blas
.
VADD
(
D
,
cur_in_data
+
D3
,
checked_cell_data
+
D2
,
cur_in_data
+
D3
);
// O_t
act_gate
(
D
,
cur_in_data
+
D3
,
cur_in_data
+
D3
);
}
}
}
else
{
// hidden out= act_state(cellout) * outgate
for
(
int
step
=
tstart
;
step
<
max_seq_len
;
++
step
)
{
act_cell
(
D
,
cur_c_out_data
,
cur_in_data
+
D2
);
const
int
cur_bs
=
batch_starts
[
step
+
1
]
-
batch_starts
[
step
];
// H_t = O_t * act_state(C_t)
GEMM_WH_ADDON
(
cur_bs
,
prev_h_data
,
batched_input_data
);
blas
.
VMUL
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D3
,
cur_h_out_data
);
DEFINE_CUR
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
// move to next data in same batch
COMPUTE_CtHt
(
cur_in_data
,
cur_prev_c_data
,
cur_c_out_data
,
next_data_in_batch
();
cur_h_out_data
);
MOVE_ONE_BATCH
;
}
MOVE_ONE_STEP
;
}
}
// move to data for next timestep
prev_batch_h_data
=
cur_batch_h_out_data
;
prev_batch_c_data
=
cur_batch_c_out_data
;
move_step
(
cur_bs
);
}
}
#undef MOVE_ONE_STEP
#undef MOVE_ONE_BATCH
#undef DEFINE_CUR
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
batched_h_out
->
set_lod
(
batched_lod
);
batched_h_out
->
set_lod
(
batched_lod
);
...
@@ -615,6 +565,16 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
...
@@ -615,6 +565,16 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
BatchCompute
(
ctx
);
BatchCompute
(
ctx
);
}
}
}
}
#undef COMPUTE_CtHt_PEEPHOLE
#undef COMPUTE_CtHt
#undef GET_Ct_NOH0C0
#undef COMPUTE_CtHt_NOH0C0
#undef COMPUTE_CtHt_PEEPHOLE_NOH0C0
#undef GET_Ht
#undef GET_Ct
#undef GEMM_WH_ADDON
#undef INIT_BASE_INPUT_DATAS
#undef INIT_BASE_SIZES
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
#undef INIT_VEC_FUNC
...
...
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
浏览文件 @
9f2ccf5b
...
@@ -53,12 +53,11 @@ class TestFusionLSTMOp(OpTest):
...
@@ -53,12 +53,11 @@ class TestFusionLSTMOp(OpTest):
self
.
M
=
8
self
.
M
=
8
self
.
D
=
16
self
.
D
=
16
self
.
has_initial_state
=
False
self
.
has_initial_state
=
False
self
.
use_peepholes
=
False
self
.
is_reverse
=
False
self
.
is_reverse
=
False
self
.
act_gate
=
'sigmoid'
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
use_peepholes
=
False
self
.
use_seq
=
False
self
.
set_conf
()
self
.
set_conf
()
T
=
sum
(
self
.
lod
[
0
])
T
=
sum
(
self
.
lod
[
0
])
...
@@ -108,7 +107,6 @@ class TestFusionLSTMOp(OpTest):
...
@@ -108,7 +107,6 @@ class TestFusionLSTMOp(OpTest):
}
}
self
.
attrs
=
{
self
.
attrs
=
{
'use_peepholes'
:
self
.
use_peepholes
,
'use_peepholes'
:
self
.
use_peepholes
,
'use_seq'
:
self
.
use_seq
,
'is_reverse'
:
self
.
is_reverse
,
'is_reverse'
:
self
.
is_reverse
,
'gate_activation'
:
self
.
act_gate
,
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
'cell_activation'
:
self
.
act_cell
,
...
@@ -178,50 +176,18 @@ class TestFusionLSTMOpPeepholesReverse(TestFusionLSTMOp):
...
@@ -178,50 +176,18 @@ class TestFusionLSTMOpPeepholesReverse(TestFusionLSTMOp):
self
.
is_reverse
=
True
self
.
is_reverse
=
True
class
TestFusionLSTMOpP
oopholesBS1
(
TestFusionLSTMOp
):
class
TestFusionLSTMOpP
eepholesInitReverse
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
def
set_conf
(
self
):
self
.
use_peepholes
=
True
self
.
use_peepholes
=
True
self
.
lod
=
[[
3
]]
self
.
D
=
16
class
TestFusionLSTMOpSeqInit
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
has_initial_state
=
True
class
TestFusionLSTMOpSeqReverse
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
is_reverse
=
True
class
TestFusionLSTMOpSeqInitReverse
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
has_initial_state
=
True
self
.
has_initial_state
=
True
self
.
is_reverse
=
True
self
.
is_reverse
=
True
class
TestFusionLSTMOp
SeqPeepholes
(
TestFusionLSTMOp
):
class
TestFusionLSTMOp
PeepholesBS1
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
use_peepholes
=
True
self
.
use_peepholes
=
True
self
.
lod
=
[[
2
]]
self
.
D
=
8
class
TestFusionLSTMOpSeqPeepholesInit
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
use_peepholes
=
True
self
.
has_initial_state
=
True
class
TestFusionLSTMOpSeqPeepholesReverse
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
use_peepholes
=
True
self
.
is_reverse
=
True
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录