diff --git a/python/paddle/fluid/dygraph/math_op_patch.py b/python/paddle/fluid/dygraph/math_op_patch.py new file mode 100644 index 0000000000000000000000000000000000000000..57b59185255b60ac447b3c2b2d23e957bfe11a3a --- /dev/null +++ b/python/paddle/fluid/dygraph/math_op_patch.py @@ -0,0 +1,222 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +from .. import core +from ..framework import Variable, convert_np_dtype_to_dtype_ +from ..layers.layer_function_generator import OpProtoHolder +from . import to_variable, no_grad + +_supported_int_dtype_ = [ + core.VarDesc.VarType.UINT8, + core.VarDesc.VarType.INT8, + core.VarDesc.VarType.INT16, + core.VarDesc.VarType.INT32, + core.VarDesc.VarType.INT64, +] + + +def monkey_patch_math_varbase(): + """ + Similar to monkey_patch_variable. + The difference is, in dygraph mode, use auto-generated op functions for better performance. + """ + + def safe_get_dtype(var): + try: + dtype = var.dtype + except: + raise ValueError("Cannot get data type from %s", var.name) + return dtype + + @no_grad + def create_tensor(value, dtype, shape): + value = float(value) + inputs = {} + attrs = { + 'dtype': dtype, + 'shape': shape, + 'value': value, + 'force_cpu': False + } + outs = core.ops.fill_constant(inputs, attrs) + outs['Out'][0].stop_gradient = True + return outs['Out'][0] + + def create_scalar(value, dtype): + return create_tensor(value, dtype, shape=[1]) + + def astype(self, dtype): + """ + **Notes**: + **The variable must be a** :ref:`api_fluid_Tensor` + + Cast a variable to a specified data type. + + Args: + + self(Variable): The source variable + + dtype: The target data type + + Returns: + Variable: Variable with new dtype + + Examples: + In Static Graph Mode: + + .. code-block:: python + + import paddle.fluid as fluid + + startup_prog = fluid.Program() + main_prog = fluid.Program() + with fluid.program_guard(startup_prog, main_prog): + original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32') + new_variable = original_variable.astype('int64') + print("new var's dtype is: {}".format(new_variable.dtype)) + + In Dygraph Mode: + + .. code-block:: python + + import paddle.fluid as fluid + import numpy as np + + x = np.ones([2, 2], np.float32) + with fluid.dygraph.guard(): + original_variable = fluid.dygraph.to_variable(x) + print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype)) + new_variable = original_variable.astype('int64') + print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype)) + + """ + inputs = {'X': [self]} + attrs = { + "in_dtype": self.dtype, + "out_dtype": convert_np_dtype_to_dtype_(dtype) + } + outs = core.ops.cast(inputs, attrs) + return outs['Out'][0] + + def _scalar_elementwise_op_(var, scale, bias): + inputs = {'X': [var]} + attrs = {"scale": scale, "bias": bias} + outs = core.ops.scale(inputs, attrs) + return outs['Out'][0] + + def _scalar_elementwise_add_(var, value): + return _scalar_elementwise_op_(var, 1.0, value) + + def _scalar_elementwise_sub_(var, value): + return _scalar_elementwise_op_(var, 1.0, -value) + + def _scalar_elementwise_rsub_(var, value): + return _scalar_elementwise_op_(var, -1.0, value) + + def _scalar_elementwise_mul_(var, value): + return _scalar_elementwise_op_(var, value, 0.0) + + def _scalar_elementwise_div_(var, value): + return _scalar_elementwise_op_(var, 1.0 / value, 0.0) + + def _elemwise_method_creator_(method_name, + op_type, + reverse=False, + scalar_method=None): + def __impl__(self, other_var): + # FIXME(zjl): elementwise_div between integers cannot be converted to scale, + # which may lose accuracy. This is a hot fix for release 1.6. + if scalar_method is not None and not ( + op_type == 'elementwise_div' and + self.dtype in _supported_int_dtype_): + if isinstance(other_var, float): + if self.dtype in _supported_int_dtype_: + assert other_var == int(other_var), \ + "float value {} cannot convert to integer".format(other_var) + return scalar_method(self, other_var) + elif isinstance(other_var, int): + return scalar_method(self, float(other_var)) + + lhs_dtype = safe_get_dtype(self) + + if not isinstance(other_var, core.VarBase): + if reverse: + other_var = create_tensor( + other_var, dtype=lhs_dtype, shape=self.shape) + else: + # add fill_op + other_var = create_scalar(value=other_var, dtype=lhs_dtype) + + rhs_dtype = safe_get_dtype(other_var) + if lhs_dtype != rhs_dtype: + other_var = astype(other_var, lhs_dtype) + if reverse: + tmp = self + self = other_var + other_var = tmp + + axis = -1 + op = getattr(core.ops, op_type) + inputs = {'X': [self], 'Y': [other_var]} + attrs = {'axis': axis} + outs = op(inputs, attrs) + return outs['Out'][0] + + comment = OpProtoHolder.instance().get_op_proto(op_type).comment + + __impl__.__doc__ = """ + {0} + Args: + self(Variable): left hand variable + other_var(Variable|float|int): right hand variable + + Returns: + Variable + """.format(comment) + __impl__.__name__ = method_name + return __impl__ + + # inject methods + for method_name, op_type, reverse, scalar_method in ( + ("__add__", "elementwise_add", False, _scalar_elementwise_add_), + # a+b == b+a. Do not need to reverse explicitly + ("__radd__", "elementwise_add", False, _scalar_elementwise_add_), + ("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_), + ("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_), + ("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_), + # a*b == b*a. Do not need to reverse explicitly + ("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_), + ("__div__", "elementwise_div", False, _scalar_elementwise_div_), + ("__truediv__", "elementwise_div", False, _scalar_elementwise_div_), + ("__rdiv__", "elementwise_div", True, None), + ("__rtruediv__", "elementwise_div", True, None), + ("__pow__", "elementwise_pow", False, None), + ("__rpow__", "elementwise_pow", True, None), + ("__floordiv__", "elementwise_floordiv", False, None), + ("__mod__", "elementwise_mod", False, None), + # for logical compare + ("__eq__", "equal", False, None), + ("__ne__", "not_equal", False, None), + ("__lt__", "less_than", False, None), + ("__le__", "less_equal", False, None), + ("__gt__", "greater_than", False, None), + ("__ge__", "greater_equal", False, None)): + + setattr(core.VarBase, method_name, + _elemwise_method_creator_(method_name, op_type, reverse, + scalar_method)) + + core.VarBase.astype = astype diff --git a/python/paddle/fluid/dygraph/varbase_patch_methods.py b/python/paddle/fluid/dygraph/varbase_patch_methods.py index 118afd93e4c8d34aa40e1ae95a4e9b8020f73b49..4cdb518bcec2586b292e09a4f693abf524b9764d 100644 --- a/python/paddle/fluid/dygraph/varbase_patch_methods.py +++ b/python/paddle/fluid/dygraph/varbase_patch_methods.py @@ -18,6 +18,7 @@ from . import BackwardStrategy from ..framework import Variable, _getitem_impl_ from .. import unique_name import numpy as np +from .math_op_patch import monkey_patch_math_varbase def monkey_patch_varbase(): @@ -214,3 +215,6 @@ def monkey_patch_varbase(): ("__str__", __str__), ("to_string", to_string), ("__getitem__", __getitem__)): setattr(core.VarBase, method_name, method) + + # patch math methods for varbase + monkey_patch_math_varbase() diff --git a/python/paddle/fluid/layers/math_op_patch.py b/python/paddle/fluid/layers/math_op_patch.py index 73ae377ac346f3a2e6e87af479dfd423751b9304..bfb4c8543ba14d5e1e05487f0eea1a7ae8b3f42f 100644 --- a/python/paddle/fluid/layers/math_op_patch.py +++ b/python/paddle/fluid/layers/math_op_patch.py @@ -15,7 +15,7 @@ from __future__ import print_function from .. import core -from ..framework import Variable, unique_name, in_dygraph_mode, default_main_program +from ..framework import Variable, unique_name from .layer_function_generator import OpProtoHolder from ..initializer import force_init_on_cpu @@ -40,8 +40,6 @@ def monkey_patch_variable(): return dtype def current_block(var): - if in_dygraph_mode(): - return default_main_program().global_block() return var.block.program.current_block() def create_new_tmp_var(block, dtype): @@ -275,9 +273,5 @@ def monkey_patch_variable(): setattr(Variable, method_name, _elemwise_method_creator_(method_name, op_type, reverse, scalar_method)) - setattr(core.VarBase, method_name, - _elemwise_method_creator_(method_name, op_type, reverse, - scalar_method)) Variable.astype = astype - setattr(core.VarBase, "astype", astype) diff --git a/python/paddle/fluid/tests/unittests/test_math_op_patch_var_base.py b/python/paddle/fluid/tests/unittests/test_math_op_patch_var_base.py new file mode 100644 index 0000000000000000000000000000000000000000..1fffccb8fa3c97ae9e866993a2f1a237ba2e8755 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_math_op_patch_var_base.py @@ -0,0 +1,206 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +from decorator_helper import prog_scope +import paddle.fluid as fluid +import numpy as np + + +class TestMathOpPatchesVarBase(unittest.TestCase): + def setUp(self): + self.shape = [10, 10] + self.dtype = np.float32 + + def test_add(self): + a_np = np.random.random(self.shape).astype(self.dtype) + b_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = a + b + self.assertTrue(np.array_equal(res.numpy(), a_np + b_np)) + + def test_sub(self): + a_np = np.random.random(self.shape).astype(self.dtype) + b_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = a - b + self.assertTrue(np.array_equal(res.numpy(), a_np - b_np)) + + def test_mul(self): + a_np = np.random.random(self.shape).astype(self.dtype) + b_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = a * b + self.assertTrue(np.array_equal(res.numpy(), a_np * b_np)) + + def test_div(self): + a_np = np.random.random(self.shape).astype(self.dtype) + b_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = a / b + self.assertTrue(np.array_equal(res.numpy(), a_np / b_np)) + + def test_add_scalar(self): + a_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = 0.1 + res = a + b + self.assertTrue(np.array_equal(res.numpy(), a_np + b)) + + def test_add_scalar_reverse(self): + a_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = 0.1 + res = b + a + self.assertTrue(np.array_equal(res.numpy(), b + a_np)) + + def test_sub_scalar(self): + a_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = 0.1 + res = a - b + self.assertTrue(np.array_equal(res.numpy(), a_np - b)) + + def test_sub_scalar_reverse(self): + a_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = 0.1 + res = b - a + self.assertTrue(np.array_equal(res.numpy(), b - a_np)) + + def test_mul_scalar(self): + a_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = 0.1 + res = a * b + self.assertTrue(np.array_equal(res.numpy(), a_np * b)) + + # div_scalar, not equal + def test_div_scalar(self): + a_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = 0.1 + res = a / b + self.assertTrue(np.allclose(res.numpy(), a_np / b)) + + # pow of float type, not equal + def test_pow(self): + a_np = np.random.random(self.shape).astype(self.dtype) + b_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = a**b + self.assertTrue(np.allclose(res.numpy(), a_np**b_np)) + + def test_floor_div(self): + a_np = np.random.randint(1, 100, size=self.shape) + b_np = np.random.randint(1, 100, size=self.shape) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = a // b + self.assertTrue(np.array_equal(res.numpy(), a_np // b_np)) + + def test_mod(self): + a_np = np.random.randint(1, 100, size=self.shape) + b_np = np.random.randint(1, 100, size=self.shape) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = a % b + self.assertTrue(np.array_equal(res.numpy(), a_np % b_np)) + + # for logical compare + def test_equal(self): + a_np = np.asarray([1, 2, 3, 4, 5]) + b_np = np.asarray([1, 2, 3, 4, 5]) + c_np = np.asarray([1, 2, 2, 4, 5]) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + c = fluid.dygraph.to_variable(c_np) + res1 = (a == b) + res2 = (a == c) + self.assertTrue(np.array_equal(res1.numpy(), a_np == b_np)) + self.assertTrue(np.array_equal(res2.numpy(), a_np == c_np)) + + def test_not_equal(self): + a_np = np.asarray([1, 2, 3, 4, 5]) + b_np = np.asarray([1, 2, 3, 4, 5]) + c_np = np.asarray([1, 2, 2, 4, 5]) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + c = fluid.dygraph.to_variable(c_np) + res1 = (a != b) + res2 = (a != c) + self.assertTrue(np.array_equal(res1.numpy(), a_np != b_np)) + self.assertTrue(np.array_equal(res2.numpy(), a_np != c_np)) + + def test_less_than(self): + a_np = np.random.random(self.shape).astype(self.dtype) + b_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = (a < b) + self.assertTrue(np.array_equal(res.numpy(), a_np < b_np)) + + def test_less_equal(self): + a_np = np.random.random(self.shape).astype(self.dtype) + b_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = (a <= b) + self.assertTrue(np.array_equal(res.numpy(), a_np <= b_np)) + + def test_greater_than(self): + a_np = np.random.random(self.shape).astype(self.dtype) + b_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = (a > b) + self.assertTrue(np.array_equal(res.numpy(), a_np > b_np)) + + def test_greater_equal(self): + a_np = np.random.random(self.shape).astype(self.dtype) + b_np = np.random.random(self.shape).astype(self.dtype) + with fluid.dygraph.guard(): + a = fluid.dygraph.to_variable(a_np) + b = fluid.dygraph.to_variable(b_np) + res = (a >= b) + self.assertTrue(np.array_equal(res.numpy(), a_np >= b_np)) + + +if __name__ == '__main__': + unittest.main()