From 9b6a02966616785e55e6dbeb985961c9b7d80985 Mon Sep 17 00:00:00 2001 From: Wojciech Uss Date: Tue, 2 Apr 2019 15:11:57 +0200 Subject: [PATCH] fix dataset reading and add support for full dataset (#16559) --- paddle/fluid/inference/api/helper.h | 21 +-- .../fluid/inference/tests/api/CMakeLists.txt | 14 +- .../tests/api/analyzer_bert_tester.cc | 2 +- .../tests/api/analyzer_dam_tester.cc | 8 +- ...alyzer_int8_image_classification_tester.cc | 53 ++++--- .../tests/api/analyzer_lac_tester.cc | 10 +- .../tests/api/analyzer_mm_dnn_tester.cc | 7 +- .../tests/api/analyzer_ner_tester.cc | 10 +- .../tests/api/analyzer_pyramid_dnn_tester.cc | 10 +- .../tests/api/analyzer_resnet50_tester.cc | 2 +- .../tests/api/analyzer_rnn1_tester.cc | 4 +- .../tests/api/analyzer_rnn2_tester.cc | 8 +- .../tests/api/analyzer_seq_conv1_tester.cc | 10 +- .../tests/api/analyzer_seq_pool1_tester.cc | 2 +- .../analyzer_text_classification_tester.cc | 7 +- .../tests/api/analyzer_transformer_tester.cc | 2 +- .../tests/api/analyzer_vis_tester.cc | 5 +- .../fluid/inference/tests/api/tester_helper.h | 147 +++++++++++------- .../inference/tests/api/trt_models_tester.cc | 2 +- 19 files changed, 193 insertions(+), 131 deletions(-) diff --git a/paddle/fluid/inference/api/helper.h b/paddle/fluid/inference/api/helper.h index 258a79fa4e8..c89dd41e0a6 100644 --- a/paddle/fluid/inference/api/helper.h +++ b/paddle/fluid/inference/api/helper.h @@ -27,6 +27,7 @@ #include #include #include "paddle/fluid/inference/api/paddle_inference_api.h" +#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/port.h" #include "paddle/fluid/string/printf.h" @@ -266,17 +267,17 @@ static std::string DescribeZeroCopyTensor(const ZeroCopyTensor &tensor) { } static void PrintTime(int batch_size, int repeat, int num_threads, int tid, - double latency, int epoch = 1) { - LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat - << ", threads: " << num_threads << ", thread id: " << tid - << ", latency: " << latency << "ms, fps: " << 1 / (latency / 1000.f) + double batch_latency, int epoch = 1) { + PADDLE_ENFORCE(batch_size > 0, "Non-positive batch size."); + double sample_latency = batch_latency / batch_size; + LOG(INFO) << "====== threads: " << num_threads << ", thread id: " << tid << " ======"; - if (epoch > 1) { - int samples = batch_size * epoch; - LOG(INFO) << "====== sample number: " << samples - << ", average latency of each sample: " << latency / samples - << "ms ======"; - } + LOG(INFO) << "====== batch_size: " << batch_size << ", iterations: " << epoch + << ", repetitions: " << repeat << " ======"; + LOG(INFO) << "====== batch latency: " << batch_latency + << "ms, number of samples: " << batch_size * epoch + << ", sample latency: " << sample_latency + << "ms, fps: " << 1000.f / sample_latency << " ======"; } static bool IsFileExists(const std::string &path) { diff --git a/paddle/fluid/inference/tests/api/CMakeLists.txt b/paddle/fluid/inference/tests/api/CMakeLists.txt index 647913cc807..8ecb0310c97 100644 --- a/paddle/fluid/inference/tests/api/CMakeLists.txt +++ b/paddle/fluid/inference/tests/api/CMakeLists.txt @@ -26,7 +26,11 @@ endfunction() function(inference_analysis_api_int8_test target model_dir data_dir filename) inference_analysis_test(${target} SRCS ${filename} EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} benchmark - ARGS --infer_model=${model_dir}/model --infer_data=${data_dir}/data.bin --batch_size=100) + ARGS --infer_model=${model_dir}/model + --infer_data=${data_dir}/data.bin + --warmup_batch_size=100 + --batch_size=50 + --iterations=2) endfunction() function(inference_analysis_api_test_with_fake_data target install_dir filename model_name) @@ -146,22 +150,22 @@ inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_con # int8 image classification tests if(WITH_MKLDNN) - set(INT8_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8") + set(INT8_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8v2") if (NOT EXISTS ${INT8_DATA_DIR}) - inference_download_and_uncompress(${INT8_DATA_DIR} ${INFERENCE_URL}"/int8" "imagenet_val_100.tar.gz") + inference_download_and_uncompress(${INT8_DATA_DIR} "${INFERENCE_URL}/int8" "imagenet_val_100_tail.tar.gz") endif() #resnet50 int8 set(INT8_RESNET50_MODEL_DIR "${INT8_DATA_DIR}/resnet50") if (NOT EXISTS ${INT8_RESNET50_MODEL_DIR}) - inference_download_and_uncompress(${INT8_RESNET50_MODEL_DIR} ${INFERENCE_URL}"/int8" "resnet50_int8_model.tar.gz" ) + inference_download_and_uncompress(${INT8_RESNET50_MODEL_DIR} "${INFERENCE_URL}/int8" "resnet50_int8_model.tar.gz" ) endif() inference_analysis_api_int8_test(test_analyzer_int8_resnet50 ${INT8_RESNET50_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc SERIAL) #mobilenet int8 set(INT8_MOBILENET_MODEL_DIR "${INT8_DATA_DIR}/mobilenet") if (NOT EXISTS ${INT8_MOBILENET_MODEL_DIR}) - inference_download_and_uncompress(${INT8_MOBILENET_MODEL_DIR} ${INFERENCE_URL}"/int8" "mobilenetv1_int8_model.tar.gz" ) + inference_download_and_uncompress(${INT8_MOBILENET_MODEL_DIR} "${INFERENCE_URL}/int8" "mobilenetv1_int8_model.tar.gz" ) endif() inference_analysis_api_int8_test(test_analyzer_int8_mobilenet ${INT8_MOBILENET_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc SERIAL) endif() diff --git a/paddle/fluid/inference/tests/api/analyzer_bert_tester.cc b/paddle/fluid/inference/tests/api/analyzer_bert_tester.cc index e73358d8827..9b2e74ec16e 100644 --- a/paddle/fluid/inference/tests/api/analyzer_bert_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_bert_tester.cc @@ -154,7 +154,7 @@ void profile(bool use_mkldnn = false) { config.EnableMKLDNN(); } - std::vector outputs; + std::vector> outputs; std::vector> inputs; LoadInputData(&inputs); TestPrediction(reinterpret_cast(&config), diff --git a/paddle/fluid/inference/tests/api/analyzer_dam_tester.cc b/paddle/fluid/inference/tests/api/analyzer_dam_tester.cc index 735e4fb5637..e10d239a5d1 100644 --- a/paddle/fluid/inference/tests/api/analyzer_dam_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_dam_tester.cc @@ -197,7 +197,7 @@ void profile(bool use_mkldnn = false) { cfg.SetMKLDNNOp(op_list); } - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); @@ -206,9 +206,11 @@ void profile(bool use_mkldnn = false) { if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { PADDLE_ENFORCE_GT(outputs.size(), 0); - size_t size = GetSize(outputs[0]); + auto output = outputs.back(); + PADDLE_ENFORCE_GT(output.size(), 0); + size_t size = GetSize(output[0]); PADDLE_ENFORCE_GT(size, 0); - float *result = static_cast(outputs[0].data.data()); + float *result = static_cast(output[0].data.data()); for (size_t i = 0; i < size; i++) { EXPECT_NEAR(result[i], result_data[i], 1e-3); } diff --git a/paddle/fluid/inference/tests/api/analyzer_int8_image_classification_tester.cc b/paddle/fluid/inference/tests/api/analyzer_int8_image_classification_tester.cc index 5a4f9a31a16..ece094717b8 100644 --- a/paddle/fluid/inference/tests/api/analyzer_int8_image_classification_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_int8_image_classification_tester.cc @@ -17,8 +17,6 @@ limitations under the License. */ #include "paddle/fluid/inference/api/paddle_analysis_config.h" #include "paddle/fluid/inference/tests/api/tester_helper.h" -DEFINE_int32(iterations, 0, "Number of iterations"); - namespace paddle { namespace inference { namespace analysis { @@ -30,8 +28,13 @@ void SetConfig(AnalysisConfig *cfg) { cfg->SwitchIrOptim(); cfg->SwitchSpecifyInputNames(false); cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads); - cfg->EnableMKLDNN(); + cfg->pass_builder()->SetPasses( + {"infer_clean_graph_pass", "mkldnn_placement_pass", + "depthwise_conv_mkldnn_pass", "conv_bn_fuse_pass", + "conv_eltwiseadd_bn_fuse_pass", "conv_bias_mkldnn_fuse_pass", + "conv_elementwise_add_mkldnn_fuse_pass", "conv_relu_mkldnn_fuse_pass", + "fc_fuse_pass", "is_test_pass"}); } template @@ -40,8 +43,8 @@ class TensorReader { TensorReader(std::ifstream &file, size_t beginning_offset, std::vector shape, std::string name) : file_(file), position(beginning_offset), shape_(shape), name_(name) { - numel = - std::accumulate(shape_.begin(), shape_.end(), 1, std::multiplies()); + numel = std::accumulate(shape_.begin(), shape_.end(), size_t{1}, + std::multiplies()); } PaddleTensor NextBatch() { @@ -71,10 +74,14 @@ class TensorReader { }; std::shared_ptr> GetWarmupData( - const std::vector> &test_data, int num_images) { + const std::vector> &test_data, + int num_images = FLAGS_warmup_batch_size) { int test_data_batch_size = test_data[0][0].shape[0]; - CHECK_LE(static_cast(num_images), - test_data.size() * test_data_batch_size); + auto iterations_max = test_data.size(); + PADDLE_ENFORCE( + static_cast(num_images) <= iterations_max * test_data_batch_size, + "The requested quantization warmup data size " + + std::to_string(num_images) + " is bigger than all test data size."); PaddleTensor images; images.name = "input"; @@ -120,20 +127,17 @@ void SetInput(std::vector> *inputs, std::vector image_batch_shape{batch_size, 3, 224, 224}; std::vector label_batch_shape{batch_size, 1}; + auto images_offset_in_file = static_cast(file.tellg()); auto labels_offset_in_file = - static_cast(file.tellg()) + - sizeof(float) * total_images * - std::accumulate(image_batch_shape.begin() + 1, - image_batch_shape.end(), 1, std::multiplies()); + images_offset_in_file + sizeof(float) * total_images * 3 * 224 * 224; - TensorReader image_reader(file, 0, image_batch_shape, "input"); + TensorReader image_reader(file, images_offset_in_file, + image_batch_shape, "input"); TensorReader label_reader(file, labels_offset_in_file, label_batch_shape, "label"); - auto iterations = total_images / batch_size; - if (FLAGS_iterations > 0 && FLAGS_iterations < iterations) - iterations = FLAGS_iterations; - for (auto i = 0; i < iterations; i++) { + auto iterations_max = total_images / batch_size; + for (auto i = 0; i < iterations_max; i++) { auto images = image_reader.NextBatch(); auto labels = label_reader.NextBatch(); inputs->emplace_back( @@ -148,20 +152,21 @@ TEST(Analyzer_int8_resnet50, quantization) { AnalysisConfig q_cfg; SetConfig(&q_cfg); + // read data from file and prepare batches with test data std::vector> input_slots_all; - SetInput(&input_slots_all, 100); + SetInput(&input_slots_all); + // prepare warmup batch from input data read earlier + // warmup batch size can be different than batch size std::shared_ptr> warmup_data = - GetWarmupData(input_slots_all, 100); + GetWarmupData(input_slots_all); + // configure quantizer q_cfg.EnableMkldnnQuantizer(); q_cfg.mkldnn_quantizer_config()->SetWarmupData(warmup_data); - q_cfg.mkldnn_quantizer_config()->SetWarmupBatchSize(100); + q_cfg.mkldnn_quantizer_config()->SetWarmupBatchSize(FLAGS_warmup_batch_size); - CompareQuantizedAndAnalysis( - reinterpret_cast(&cfg), - reinterpret_cast(&q_cfg), - input_slots_all); + CompareQuantizedAndAnalysis(&cfg, &q_cfg, input_slots_all); } } // namespace analysis diff --git a/paddle/fluid/inference/tests/api/analyzer_lac_tester.cc b/paddle/fluid/inference/tests/api/analyzer_lac_tester.cc index 347672eaae3..142905dcd8d 100644 --- a/paddle/fluid/inference/tests/api/analyzer_lac_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_lac_tester.cc @@ -124,7 +124,7 @@ void SetInput(std::vector> *inputs) { TEST(Analyzer_LAC, profile) { AnalysisConfig cfg; SetConfig(&cfg); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); @@ -137,11 +137,13 @@ TEST(Analyzer_LAC, profile) { 24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, 25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43, 44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39, 14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23}; - PADDLE_ENFORCE_EQ(outputs.size(), 1UL); - size_t size = GetSize(outputs[0]); + PADDLE_ENFORCE_GT(outputs.size(), 0); + auto output = outputs.back(); + PADDLE_ENFORCE_EQ(output.size(), 1UL); + size_t size = GetSize(output[0]); size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t); PADDLE_ENFORCE_GE(size, batch1_size); - int64_t *pdata = static_cast(outputs[0].data.data()); + int64_t *pdata = static_cast(output[0].data.data()); for (size_t i = 0; i < batch1_size; ++i) { EXPECT_EQ(pdata[i], lac_ref_data[i]); } diff --git a/paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc b/paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc index 089f655c180..2eb347a44b3 100644 --- a/paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc @@ -96,7 +96,7 @@ void SetInput(std::vector> *inputs) { void profile(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); - std::vector outputs; + std::vector> outputs; if (use_mkldnn) { cfg.EnableMKLDNN(); @@ -108,8 +108,9 @@ void profile(bool use_mkldnn = false) { input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { - PADDLE_ENFORCE_EQ(outputs.size(), 2UL); - for (auto &output : outputs) { + PADDLE_ENFORCE_GT(outputs.size(), 0); + PADDLE_ENFORCE_EQ(outputs.back().size(), 2UL); + for (auto &output : outputs.back()) { size_t size = GetSize(output); PADDLE_ENFORCE_GT(size, 0); float *result = static_cast(output.data.data()); diff --git a/paddle/fluid/inference/tests/api/analyzer_ner_tester.cc b/paddle/fluid/inference/tests/api/analyzer_ner_tester.cc index a70aa7a6ac4..36e07d5f556 100644 --- a/paddle/fluid/inference/tests/api/analyzer_ner_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_ner_tester.cc @@ -106,7 +106,7 @@ void SetInput(std::vector> *inputs) { void profile(bool memory_load = false) { AnalysisConfig cfg; SetConfig(&cfg, memory_load); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); @@ -117,10 +117,12 @@ void profile(bool memory_load = false) { // the first inference result const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26, 48, 39, 38, 16, 25}; - PADDLE_ENFORCE_EQ(outputs.size(), 1UL); - size_t size = GetSize(outputs[0]); + PADDLE_ENFORCE_GT(outputs.size(), 0); + auto output = outputs.back(); + PADDLE_ENFORCE_EQ(output.size(), 1UL); + size_t size = GetSize(output[0]); PADDLE_ENFORCE_GT(size, 0); - int64_t *result = static_cast(outputs[0].data.data()); + int64_t *result = static_cast(output[0].data.data()); for (size_t i = 0; i < std::min(11UL, size); i++) { EXPECT_EQ(result[i], chinese_ner_result_data[i]); } diff --git a/paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc b/paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc index 5157bd280d0..9443b08063b 100644 --- a/paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc @@ -127,7 +127,7 @@ void SetInput(std::vector> *inputs) { TEST(Analyzer_Pyramid_DNN, profile) { AnalysisConfig cfg; SetConfig(&cfg); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); @@ -135,10 +135,12 @@ TEST(Analyzer_Pyramid_DNN, profile) { input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data && !FLAGS_zero_copy) { - PADDLE_ENFORCE_EQ(outputs.size(), 1UL); - size_t size = GetSize(outputs[0]); + PADDLE_ENFORCE_GT(outputs.size(), 0); + auto output = outputs.back(); + PADDLE_ENFORCE_EQ(output.size(), 1UL); + size_t size = GetSize(output[0]); PADDLE_ENFORCE_GT(size, 0); - float *result = static_cast(outputs[0].data.data()); + float *result = static_cast(output[0].data.data()); // output is probability, which is in (0, 1). for (size_t i = 0; i < size; i++) { EXPECT_GT(result[i], 0); diff --git a/paddle/fluid/inference/tests/api/analyzer_resnet50_tester.cc b/paddle/fluid/inference/tests/api/analyzer_resnet50_tester.cc index 629981d565f..d4330e6cddf 100644 --- a/paddle/fluid/inference/tests/api/analyzer_resnet50_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_resnet50_tester.cc @@ -40,7 +40,7 @@ void profile(bool use_mkldnn = false) { if (use_mkldnn) { cfg.EnableMKLDNN(); } - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); diff --git a/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc b/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc index dcf4b38ce8a..54fd3a4a4ca 100644 --- a/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc @@ -229,7 +229,7 @@ TEST(Analyzer_rnn1, profile) { SetConfig(&cfg); cfg.DisableGpu(); cfg.SwitchIrDebug(); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); @@ -280,7 +280,7 @@ TEST(Analyzer_rnn1, compare_determine) { TEST(Analyzer_rnn1, multi_thread) { AnalysisConfig cfg; SetConfig(&cfg); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); diff --git a/paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc b/paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc index 007f9f0b66a..9ccbf58cbd2 100644 --- a/paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc @@ -126,7 +126,7 @@ void SetInput(std::vector> *inputs) { TEST(Analyzer_rnn2, profile) { AnalysisConfig cfg; SetConfig(&cfg); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); @@ -136,9 +136,11 @@ TEST(Analyzer_rnn2, profile) { if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { // the first inference result PADDLE_ENFORCE_GT(outputs.size(), 0); - size_t size = GetSize(outputs[0]); + auto output = outputs.back(); + PADDLE_ENFORCE_GT(output.size(), 0); + size_t size = GetSize(output[0]); PADDLE_ENFORCE_GT(size, 0); - float *result = static_cast(outputs[0].data.data()); + float *result = static_cast(output[0].data.data()); for (size_t i = 0; i < size; i++) { EXPECT_NEAR(result[i], result_data[i], 1e-3); } diff --git a/paddle/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc b/paddle/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc index 47c1d737584..9f23b9f037b 100644 --- a/paddle/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc @@ -110,7 +110,7 @@ void SetInput(std::vector> *inputs) { TEST(Analyzer_seq_conv1, profile) { AnalysisConfig cfg; SetConfig(&cfg); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); @@ -119,10 +119,12 @@ TEST(Analyzer_seq_conv1, profile) { if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { // the first inference result - PADDLE_ENFORCE_EQ(outputs.size(), 1UL); - size_t size = GetSize(outputs[0]); + PADDLE_ENFORCE_GT(outputs.size(), 0); + auto output = outputs.back(); + PADDLE_ENFORCE_EQ(output.size(), 1UL); + size_t size = GetSize(output[0]); PADDLE_ENFORCE_GT(size, 0); - float *result = static_cast(outputs[0].data.data()); + float *result = static_cast(output[0].data.data()); // output is probability, which is in (0, 1). for (size_t i = 0; i < size; i++) { EXPECT_GT(result[i], 0); diff --git a/paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc b/paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc index 19fa5528da4..d6f7f468a6c 100644 --- a/paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc @@ -156,7 +156,7 @@ void profile(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg, use_mkldnn); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), diff --git a/paddle/fluid/inference/tests/api/analyzer_text_classification_tester.cc b/paddle/fluid/inference/tests/api/analyzer_text_classification_tester.cc index 2003be82019..54492dbc238 100644 --- a/paddle/fluid/inference/tests/api/analyzer_text_classification_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_text_classification_tester.cc @@ -70,7 +70,7 @@ TEST(Analyzer_Text_Classification, profile) { AnalysisConfig cfg; SetConfig(&cfg); cfg.SwitchIrDebug(); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); @@ -79,8 +79,9 @@ TEST(Analyzer_Text_Classification, profile) { if (FLAGS_num_threads == 1) { // Get output - LOG(INFO) << "get outputs " << outputs.size(); - for (auto &output : outputs) { + PADDLE_ENFORCE_GT(outputs.size(), 0); + LOG(INFO) << "get outputs " << outputs.back().size(); + for (auto &output : outputs.back()) { LOG(INFO) << "output.shape: " << to_string(output.shape); // no lod ? CHECK_EQ(output.lod.size(), 0UL); diff --git a/paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc b/paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc index a925da312cd..bd4f1b61973 100644 --- a/paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc @@ -186,7 +186,7 @@ void SetInput(std::vector> *inputs) { void profile(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); - std::vector outputs; + std::vector> outputs; if (use_mkldnn) { cfg.EnableMKLDNN(); } diff --git a/paddle/fluid/inference/tests/api/analyzer_vis_tester.cc b/paddle/fluid/inference/tests/api/analyzer_vis_tester.cc index ca04c1365cb..fb47048cd0c 100644 --- a/paddle/fluid/inference/tests/api/analyzer_vis_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_vis_tester.cc @@ -87,7 +87,7 @@ void profile(bool use_mkldnn = false) { cfg.EnableMKLDNN(); } // cfg.pass_builder()->TurnOnDebug(); - std::vector outputs; + std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); @@ -100,7 +100,8 @@ void profile(bool use_mkldnn = false) { auto refer = ProcessALine(line); file.close(); - auto &output = outputs.front(); + PADDLE_ENFORCE_GT(outputs.size(), 0); + auto &output = outputs.back().front(); size_t numel = output.data.length() / PaddleDtypeSize(output.dtype); CHECK_EQ(numel, refer.data.size()); for (size_t i = 0; i < numel; ++i) { diff --git a/paddle/fluid/inference/tests/api/tester_helper.h b/paddle/fluid/inference/tests/api/tester_helper.h index 33f1d025485..9a0dcc722cf 100644 --- a/paddle/fluid/inference/tests/api/tester_helper.h +++ b/paddle/fluid/inference/tests/api/tester_helper.h @@ -41,7 +41,10 @@ DEFINE_string(model_name, "", "model name"); DEFINE_string(infer_model, "", "model path"); DEFINE_string(infer_data, "", "data file"); DEFINE_string(refer_result, "", "reference result for comparison"); -DEFINE_int32(batch_size, 1, "batch size."); +DEFINE_int32(batch_size, 1, "batch size"); +DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup"); +// setting iterations to 0 means processing the whole dataset +DEFINE_int32(iterations, 0, "number of batches to process"); DEFINE_int32(repeat, 1, "Running the inference program repeat times."); DEFINE_bool(test_all_data, false, "Test the all dataset in data file."); DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads."); @@ -239,7 +242,7 @@ void SetFakeImageInput(std::vector> *inputs, } input.shape = shape; input.dtype = PaddleDType::FLOAT32; - size_t len = std::accumulate(shape.begin(), shape.end(), 1, + size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1}, [](int a, int b) { return a * b; }); input.data.Resize(len * sizeof(float)); input.lod.assign({{0, static_cast(FLAGS_batch_size)}}); @@ -286,17 +289,18 @@ void ConvertPaddleTensorToZeroCopyTensor( void PredictionWarmUp(PaddlePredictor *predictor, const std::vector> &inputs, - std::vector *outputs, int num_threads, - int tid) { + std::vector> *outputs, + int num_threads, int tid) { int batch_size = FLAGS_batch_size; LOG(INFO) << "Running thread " << tid << ", warm up run..."; if (FLAGS_zero_copy) { ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]); } + outputs->resize(1); Timer warmup_timer; warmup_timer.tic(); if (!FLAGS_zero_copy) { - predictor->Run(inputs[0], outputs, batch_size); + predictor->Run(inputs[0], &(*outputs)[0], batch_size); } else { predictor->ZeroCopyRun(); } @@ -308,11 +312,16 @@ void PredictionWarmUp(PaddlePredictor *predictor, void PredictionRun(PaddlePredictor *predictor, const std::vector> &inputs, - std::vector *outputs, int num_threads, - int tid) { - int batch_size = FLAGS_batch_size; + std::vector> *outputs, + int num_threads, int tid) { int num_times = FLAGS_repeat; - LOG(INFO) << "Thread " << tid << " run " << num_times << " times..."; + int iterations = inputs.size(); // process the whole dataset ... + if (FLAGS_iterations > 0 && FLAGS_iterations < inputs.size()) + iterations = + FLAGS_iterations; // ... unless the number of iterations is set + outputs->resize(iterations); + LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads + << ", run " << num_times << " times..."; Timer run_timer; double elapsed_time = 0; #ifdef WITH_GPERFTOOLS @@ -320,14 +329,14 @@ void PredictionRun(PaddlePredictor *predictor, #endif if (!FLAGS_zero_copy) { run_timer.tic(); - for (size_t i = 0; i < inputs.size(); i++) { + for (size_t i = 0; i < iterations; i++) { for (int j = 0; j < num_times; j++) { - predictor->Run(inputs[i], outputs, batch_size); + predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size); } } elapsed_time = run_timer.toc(); } else { - for (size_t i = 0; i < inputs.size(); i++) { + for (size_t i = 0; i < iterations; i++) { ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]); run_timer.tic(); for (int j = 0; j < num_times; j++) { @@ -340,13 +349,14 @@ void PredictionRun(PaddlePredictor *predictor, ProfilerStop(); #endif - PrintTime(batch_size, num_times, num_threads, tid, elapsed_time / num_times, - inputs.size()); + auto batch_latency = elapsed_time / (iterations * num_times); + PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency, + iterations); if (FLAGS_record_benchmark) { Benchmark benchmark; benchmark.SetName(FLAGS_model_name); - benchmark.SetBatchSize(batch_size); - benchmark.SetLatency(elapsed_time / num_times); + benchmark.SetBatchSize(FLAGS_batch_size); + benchmark.SetLatency(batch_latency); benchmark.PersistToFile("benchmark_record.txt"); } } @@ -354,16 +364,17 @@ void PredictionRun(PaddlePredictor *predictor, void TestOneThreadPrediction( const PaddlePredictor::Config *config, const std::vector> &inputs, - std::vector *outputs, bool use_analysis = true) { + std::vector> *outputs, bool use_analysis = true) { auto predictor = CreateTestPredictor(config, use_analysis); - PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0); - PredictionRun(predictor.get(), inputs, outputs, 1, 0); + PredictionWarmUp(predictor.get(), inputs, outputs, FLAGS_paddle_num_threads, + 0); + PredictionRun(predictor.get(), inputs, outputs, FLAGS_paddle_num_threads, 0); } void TestMultiThreadPrediction( const PaddlePredictor::Config *config, const std::vector> &inputs, - std::vector *outputs, int num_threads, + std::vector> *outputs, int num_threads, bool use_analysis = true) { std::vector threads; std::vector> predictors; @@ -376,7 +387,7 @@ void TestMultiThreadPrediction( threads.emplace_back([&, tid]() { // Each thread should have local inputs and outputs. // The inputs of each thread are all the same. - std::vector outputs_tid; + std::vector> outputs_tid; auto &predictor = predictors[tid]; #ifdef PADDLE_WITH_MKLDNN if (use_analysis) { @@ -384,8 +395,8 @@ void TestMultiThreadPrediction( ->SetMkldnnThreadID(static_cast(tid) + 1); } #endif - PredictionWarmUp(predictor.get(), inputs, outputs, num_threads, tid); - PredictionRun(predictor.get(), inputs, outputs, num_threads, tid); + PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads, tid); + PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid); }); } for (int i = 0; i < num_threads; ++i) { @@ -395,8 +406,8 @@ void TestMultiThreadPrediction( void TestPrediction(const PaddlePredictor::Config *config, const std::vector> &inputs, - std::vector *outputs, int num_threads, - bool use_analysis = FLAGS_use_analysis) { + std::vector> *outputs, + int num_threads, bool use_analysis = FLAGS_use_analysis) { PrintConfig(config, use_analysis); if (num_threads == 1) { TestOneThreadPrediction(config, inputs, outputs, use_analysis); @@ -406,30 +417,41 @@ void TestPrediction(const PaddlePredictor::Config *config, } } -void CompareTopAccuracy(const std::vector &output_slots1, - const std::vector &output_slots2) { - // first output: avg_cost - if (output_slots1.size() == 0 || output_slots2.size() == 0) +void CompareTopAccuracy( + const std::vector> &output_slots_quant, + const std::vector> &output_slots_ref) { + if (output_slots_quant.size() == 0 || output_slots_ref.size() == 0) throw std::invalid_argument( "CompareTopAccuracy: output_slots vector is empty."); - PADDLE_ENFORCE(output_slots1.size() >= 2UL); - PADDLE_ENFORCE(output_slots2.size() >= 2UL); - // second output: acc_top1 - if (output_slots1[1].lod.size() > 0 || output_slots2[1].lod.size() > 0) - throw std::invalid_argument( - "CompareTopAccuracy: top1 accuracy output has nonempty LoD."); - if (output_slots1[1].dtype != paddle::PaddleDType::FLOAT32 || - output_slots2[1].dtype != paddle::PaddleDType::FLOAT32) - throw std::invalid_argument( - "CompareTopAccuracy: top1 accuracy output is of a wrong type."); - float *top1_quantized = static_cast(output_slots1[1].data.data()); - float *top1_reference = static_cast(output_slots2[1].data.data()); - LOG(INFO) << "top1 INT8 accuracy: " << *top1_quantized; - LOG(INFO) << "top1 FP32 accuracy: " << *top1_reference; + float total_accs1_quant{0}; + float total_accs1_ref{0}; + for (size_t i = 0; i < output_slots_quant.size(); ++i) { + PADDLE_ENFORCE(output_slots_quant[i].size() >= 2UL); + PADDLE_ENFORCE(output_slots_ref[i].size() >= 2UL); + // second output: acc_top1 + if (output_slots_quant[i][1].lod.size() > 0 || + output_slots_ref[i][1].lod.size() > 0) + throw std::invalid_argument( + "CompareTopAccuracy: top1 accuracy output has nonempty LoD."); + if (output_slots_quant[i][1].dtype != paddle::PaddleDType::FLOAT32 || + output_slots_ref[i][1].dtype != paddle::PaddleDType::FLOAT32) + throw std::invalid_argument( + "CompareTopAccuracy: top1 accuracy output is of a wrong type."); + total_accs1_quant += + *static_cast(output_slots_quant[i][1].data.data()); + total_accs1_ref += + *static_cast(output_slots_ref[i][1].data.data()); + } + float avg_acc1_quant = total_accs1_quant / output_slots_quant.size(); + float avg_acc1_ref = total_accs1_ref / output_slots_ref.size(); + + LOG(INFO) << "Avg top1 INT8 accuracy: " << std::fixed << std::setw(6) + << std::setprecision(4) << avg_acc1_quant; + LOG(INFO) << "Avg top1 FP32 accuracy: " << std::fixed << std::setw(6) + << std::setprecision(4) << avg_acc1_ref; LOG(INFO) << "Accepted accuracy drop threshold: " << FLAGS_quantized_accuracy; - CHECK_LE(std::abs(*top1_quantized - *top1_reference), - FLAGS_quantized_accuracy); + CHECK_LE(std::abs(avg_acc1_quant - avg_acc1_ref), FLAGS_quantized_accuracy); } void CompareDeterministic( @@ -455,20 +477,35 @@ void CompareNativeAndAnalysis( const PaddlePredictor::Config *config, const std::vector> &inputs) { PrintConfig(config, true); - std::vector native_outputs, analysis_outputs; + std::vector> native_outputs, analysis_outputs; TestOneThreadPrediction(config, inputs, &native_outputs, false); TestOneThreadPrediction(config, inputs, &analysis_outputs, true); - CompareResult(analysis_outputs, native_outputs); + PADDLE_ENFORCE(native_outputs.size() > 0, "Native output is empty."); + PADDLE_ENFORCE(analysis_outputs.size() > 0, "Analysis output is empty."); + CompareResult(analysis_outputs.back(), native_outputs.back()); } void CompareQuantizedAndAnalysis( - const PaddlePredictor::Config *config, - const PaddlePredictor::Config *qconfig, + const AnalysisConfig *config, const AnalysisConfig *qconfig, const std::vector> &inputs) { - PrintConfig(config, true); - std::vector analysis_outputs, quantized_outputs; - TestOneThreadPrediction(config, inputs, &analysis_outputs, true); - TestOneThreadPrediction(qconfig, inputs, &quantized_outputs, true); + PADDLE_ENFORCE_EQ(inputs[0][0].shape[0], FLAGS_batch_size, + "Input data has to be packed batch by batch."); + LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size + << ", warmup batch size " << FLAGS_warmup_batch_size << "."; + + LOG(INFO) << "--- FP32 prediction start ---"; + auto *cfg = reinterpret_cast(config); + PrintConfig(cfg, true); + std::vector> analysis_outputs; + TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true); + + LOG(INFO) << "--- INT8 prediction start ---"; + auto *qcfg = reinterpret_cast(qconfig); + PrintConfig(qcfg, true); + std::vector> quantized_outputs; + TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true); + + LOG(INFO) << "--- comparing outputs --- "; CompareTopAccuracy(quantized_outputs, analysis_outputs); } @@ -578,9 +615,9 @@ static bool CompareTensorData(const framework::LoDTensor &a, const framework::LoDTensor &b) { auto a_shape = framework::vectorize(a.dims()); auto b_shape = framework::vectorize(b.dims()); - size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1, + size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1}, [](int a, int b) { return a * b; }); - size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1, + size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1}, [](int a, int b) { return a * b; }); if (a_size != b_size) { LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d", diff --git a/paddle/fluid/inference/tests/api/trt_models_tester.cc b/paddle/fluid/inference/tests/api/trt_models_tester.cc index cb668a41741..98ce225a047 100644 --- a/paddle/fluid/inference/tests/api/trt_models_tester.cc +++ b/paddle/fluid/inference/tests/api/trt_models_tester.cc @@ -74,7 +74,7 @@ void profile(std::string model_dir, bool use_analysis, bool use_tensorrt) { SetFakeImageInput(&inputs_all, model_dir, false, "__model__", ""); } - std::vector outputs; + std::vector> outputs; if (use_analysis || use_tensorrt) { AnalysisConfig config; config.EnableUseGpu(100, 0); -- GitLab