From 9a73283b05111cf1440e6d28d9e701dd76a16016 Mon Sep 17 00:00:00 2001 From: lyuwenyu Date: Tue, 22 Jun 2021 19:29:31 +0800 Subject: [PATCH] update docs --- python/paddle/hapi/model.py | 19 ++++++------------- 1 file changed, 6 insertions(+), 13 deletions(-) diff --git a/python/paddle/hapi/model.py b/python/paddle/hapi/model.py index 3cc356f34de..25081a64e24 100644 --- a/python/paddle/hapi/model.py +++ b/python/paddle/hapi/model.py @@ -25,23 +25,18 @@ import warnings import time import socket import contextlib -from collections import Iterable import paddle from paddle import fluid from paddle.fluid import core from paddle.fluid.framework import in_dygraph_mode from paddle.fluid.framework import Variable -from paddle.fluid.framework import ParamBase -from paddle.fluid.framework import _current_expected_place from paddle.fluid.framework import _get_paddle_place from paddle.fluid.framework import _current_expected_place as _get_device from paddle.fluid.executor import global_scope from paddle.fluid.io import is_belong_to_optimizer from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.parallel import ParallelEnv -from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator -from paddle.fluid.dygraph.dygraph_to_static.program_translator import FunctionSpec from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX from paddle.fluid.layers.utils import flatten @@ -50,9 +45,6 @@ from paddle.fluid.layers import collective from paddle.io import DataLoader from paddle.io import Dataset from paddle.io import DistributedBatchSampler -from paddle.fluid.executor import scope_guard -from paddle.fluid.executor import Executor -from paddle.fluid.dygraph.layers import Layer from paddle.metric import Metric from paddle.static import InputSpec as Input import paddle.distributed as dist @@ -1022,7 +1014,8 @@ class Model(object): def train_batch(self, inputs, labels=None, update=True): """ - Run one training step on a batch of data. + Run one training step on one batch of data. And using `update` indicates + whether optimizer update gradients computing by this batch. Args: inputs (numpy.ndarray|Tensor|list): Batch of input data. It could @@ -1542,7 +1535,7 @@ class Model(object): shuffle=True, num_workers=0, callbacks=None, - accumulate=1, ): + accumulate_grad_batches=1, ): """ Trains the model for a fixed number of epochs. If `eval_data` is set, evaluation will be done at the end of each epoch. @@ -1585,8 +1578,8 @@ class Model(object): callbacks (Callback|None): A list of `Callback` instances to apply during training. If None, `ProgBarLogger` and `ModelCheckpoint` are automatically inserted. Default: None. - accumulate (int): The number of steps to accumulate gradident during - training process before optimizer updates. It can mimic large batch + accumulate_grad_batches (int): The number of batches to accumulate gradident + during training process before optimizer updates. It can mimic large batch size. Default: 1. Returns: @@ -1709,7 +1702,7 @@ class Model(object): do_eval = eval_loader is not None self._test_dataloader = eval_loader - self._accumulate = accumulate + self._accumulate = accumulate_grad_batches steps = self._len_data_loader(train_loader) cbks = config_callbacks( -- GitLab