未验证 提交 9a2a4b5f 编写于 作者: L Leo Chen 提交者: GitHub

Support setting xpu place in dygraph mode (#27909)

* support setting xpu place

* add ut, test=kunlun
上级 35734138
......@@ -81,9 +81,9 @@ class AccuracyXPUKernel : public framework::OpKernel<T> {
memory::Copy(platform::CPUPlace(), label_int64_host,
BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()),
label_data, label_int64_size);
for (int i = 0; i < num_samples; ++i) {
for (size_t i = 0; i < num_samples; ++i) {
label_int32_host[i] = label_int64_host[i];
for (int j = 0; j < class_dim; ++j) {
for (size_t j = 0; j < class_dim; ++j) {
indices_int32_host[i * class_dim + j] =
indices_int64_host[i * class_dim + j];
}
......
......@@ -1468,6 +1468,7 @@ All parameter, weight, gradient are variables in Paddle.
std::exit(-1);
#endif
})
#ifdef PADDLE_WITH_XPU
.def("_type", &PlaceIndex<platform::XPUPlace>)
.def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
.def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
......@@ -1475,6 +1476,9 @@ All parameter, weight, gradient are variables in Paddle.
.def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
.def("_equals",
&IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
.def("get_device_id",
[](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
.def("__str__", string::to_string<const platform::XPUPlace &>);
py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
......
......@@ -103,15 +103,15 @@ def get_cudnn_version():
def set_device(device):
"""
Paddle supports running calculations on various types of devices, including CPU and GPU.
Paddle supports running calculations on various types of devices, including CPU, GPU and XPU.
They are represented by string identifiers. This function can specify the global device
which the OP will run.
Parameters:
device(str): This parameter determines the specific running device.
It can be ``cpu`` or ``gpu:0``. When ``device`` is ``cpu``, the
program is running on the cpu. When ``device`` is ``gpu``, the
program is running ont the gpu.
It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
index of the GPUs or XPUs.
Examples:
.. code-block:: python
......@@ -132,20 +132,37 @@ def set_device(device):
"The device should not be 'gpu', " \
"since PaddlePaddle is not compiled with CUDA")
place = core.CUDAPlace(ParallelEnv().dev_id)
elif lower_device == 'xpu':
if not core.is_compiled_with_xpu():
raise ValueError(
"The device should not be 'xpu', " \
"since PaddlePaddle is not compiled with XPU")
place = core.XPUPlace(ParallelEnv().dev_id)
else:
avaliable_device = re.match(r'gpu:\d+', lower_device)
if not avaliable_device:
avaliable_gpu_device = re.match(r'gpu:\d+', lower_device)
avaliable_xpu_device = re.match(r'xpu:\d+', lower_device)
if not avaliable_gpu_device and not avaliable_xpu_device:
raise ValueError(
"The device must be a string which is like 'cpu', 'gpu' or 'gpu:0'"
"The device must be a string which is like 'cpu', 'gpu', 'gpu:x', 'xpu' or 'xpu:x'"
)
if avaliable_gpu_device:
if not core.is_compiled_with_cuda():
raise ValueError(
"The device should not be {}, since PaddlePaddle is " \
"not compiled with CUDA".format(avaliable_device))
"not compiled with CUDA".format(avaliable_gpu_device))
device_info_list = device.split(':', 1)
device_id = device_info_list[1]
device_id = int(device_id)
place = core.CUDAPlace(device_id)
if avaliable_xpu_device:
if not core.is_compiled_with_xpu():
raise ValueError(
"The device should not be {}, since PaddlePaddle is " \
"not compiled with XPU".format(avaliable_xpu_device))
device_info_list = device.split(':', 1)
device_id = device_info_list[1]
device_id = int(device_id)
place = core.XPUPlace(device_id)
framework._set_expected_place(place)
return place
......@@ -153,8 +170,8 @@ def set_device(device):
def get_device():
"""
This funciton can get the current global device of the program is running.
It's a string which is like 'cpu' and 'gpu:0'. if the global device is not
set, it will return a string which is 'gpu:0' when cuda is avaliable or it
It's a string which is like 'cpu', 'gpu:x' and 'xpu:x'. if the global device is not
set, it will return a string which is 'gpu:x' when cuda is avaliable or it
will return a string which is 'cpu' when cuda is not avaliable.
Examples:
......@@ -173,5 +190,8 @@ def get_device():
elif isinstance(place, core.CUDAPlace):
device_id = place.get_device_id()
device = 'gpu:' + str(device_id)
elif isinstance(place, core.XPUPlace):
device_id = place.get_device_id()
device = 'xpu:' + str(device_id)
return device
......@@ -51,6 +51,19 @@ class TestStaticDeviceManage(unittest.TestCase):
self.assertEqual(isinstance(exe.place, core.CUDAPlace), True)
self.assertEqual(device, "gpu:0")
def test_xpu_device(self):
if core.is_compiled_with_xpu():
out1 = paddle.zeros(shape=[1, 3], dtype='float32')
out2 = paddle.ones(shape=[1, 3], dtype='float32')
out3 = paddle.concat(x=[out1, out2], axis=0)
paddle.set_device('xpu:0')
exe = paddle.fluid.Executor()
exe.run(paddle.fluid.default_startup_program())
res = exe.run(fetch_list=[out3])
device = paddle.get_device()
self.assertEqual(isinstance(exe.place, core.XPUPlace), True)
self.assertEqual(device, "xpu:0")
class TestImperativeDeviceManage(unittest.TestCase):
def test_cpu(self):
......@@ -78,6 +91,17 @@ class TestImperativeDeviceManage(unittest.TestCase):
core.CUDAPlace), True)
self.assertEqual(device, "gpu:0")
def test_xpu(self):
if core.is_compiled_with_xpu():
with fluid.dygraph.guard():
out = paddle.to_tensor([1, 2])
device = paddle.get_device()
self.assertEqual(
isinstance(framework._current_expected_place(),
core.XPUPlace), True)
self.assertTrue(out.place.is_xpu_place())
self.assertEqual(device, "xpu:0")
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册