"comment":"\nSequence Softmax Operator.\n\nSequenceSoftmaxOp computes the softmax activation among all time-steps for each\nsequence. The dimension of each time-step should be 1. Thus, the shape of\ninput Tensor can be either [N, 1] or [N], where N is the sum of the length\nof all sequences.\n\nThe algorithm works as follows:\n for i-th sequence in a mini-batch:\n $$Out(X[lod[i]:lod[i+1]], :) =\n\\frac{\\exp(X[lod[i]:lod[i+1], :])}\n {\\sum(\\exp(X[lod[i]:lod[i+1], :]))}$$\n\nFor example, for a mini-batch of 3 sequences with variable-length,\neach containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],\nthen softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]\nand N turns out to be 7.\n\n",
"comment":"\nSequence Softmax Operator.\n\nSequenceSoftmaxOp computes the softmax activation among all time-steps for each\nsequence. The dimension of each time-step should be 1. Thus, the shape of\ninput Tensor can be either [N, 1] or [N], where N is the sum of the length\nof all sequences.\n\nThe algorithm works as follows:\n\n for i-th sequence in a mini-batch:\n\n$$\nOut(X[lod[i]:lod[i+1]], :) = \\\n\\frac{\\exp(X[lod[i]:lod[i+1], :])} \\\n{\\sum(\\exp(X[lod[i]:lod[i+1], :]))}\n$$\n\nFor example, for a mini-batch of 3 sequences with variable-length,\neach containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],\nthen softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]\nand N turns out to be 7.\n\n",