From 99dcd66508b5d45dc57b49b2891419178263d4d5 Mon Sep 17 00:00:00 2001 From: hong <43953930+phlrain@users.noreply.github.com> Date: Fri, 12 Mar 2021 14:22:05 +0800 Subject: [PATCH] try to fix imperative orc unitest error; test=develop (#31568) --- .../test_imperative_ocr_attention_model.py | 34 +++++++++---------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_ocr_attention_model.py b/python/paddle/fluid/tests/unittests/test_imperative_ocr_attention_model.py index f256e97e837..973c5598579 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_ocr_attention_model.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_ocr_attention_model.py @@ -29,19 +29,19 @@ class Config(object): config for training ''' # encoder rnn hidden_size - encoder_size = 16 + encoder_size = 8 # decoder size for decoder stage - decoder_size = 16 + decoder_size = 8 # size for word embedding - word_vector_dim = 16 + word_vector_dim = 8 # max length for label padding - max_length = 5 + max_length = 3 # optimizer setting LR = 1.0 learning_rate_decay = None # batch size to train - batch_size = 8 + batch_size = 2 # class number to classify num_classes = 64 @@ -55,7 +55,7 @@ class Config(object): TRAIN_LIST_FILE_NAME = "train.list" # data shape for input image - DATA_SHAPE = [1, 48, 384] + DATA_SHAPE = [1, 16, 64] class ConvBNPool(fluid.dygraph.Layer): @@ -124,13 +124,13 @@ class OCRConv(fluid.dygraph.Layer): def __init__(self, is_test=False, use_cudnn=True): super(OCRConv, self).__init__() self.conv_bn_pool_1 = ConvBNPool( - 2, [16, 16], [1, 16], is_test=is_test, use_cudnn=use_cudnn) + 2, [8, 8], [1, 8], is_test=is_test, use_cudnn=use_cudnn) self.conv_bn_pool_2 = ConvBNPool( - 2, [32, 32], [16, 32], is_test=is_test, use_cudnn=use_cudnn) + 2, [8, 8], [8, 8], is_test=is_test, use_cudnn=use_cudnn) self.conv_bn_pool_3 = ConvBNPool( - 2, [64, 64], [32, 64], is_test=is_test, use_cudnn=use_cudnn) + 2, [8, 8], [8, 8], is_test=is_test, use_cudnn=use_cudnn) self.conv_bn_pool_4 = ConvBNPool( - 2, [128, 128], [64, 128], + 2, [16, 16], [8, 16], is_test=is_test, pool=False, use_cudnn=use_cudnn) @@ -212,9 +212,9 @@ class EncoderNet(fluid.dygraph.Layer): self.ocr_convs = OCRConv(is_test=is_test, use_cudnn=use_cudnn) self.fc_1_layer = Linear( - 768, rnn_hidden_size * 3, param_attr=para_attr, bias_attr=False) + 32, rnn_hidden_size * 3, param_attr=para_attr, bias_attr=False) self.fc_2_layer = Linear( - 768, rnn_hidden_size * 3, param_attr=para_attr, bias_attr=False) + 32, rnn_hidden_size * 3, param_attr=para_attr, bias_attr=False) self.gru_forward_layer = DynamicGRU( size=rnn_hidden_size, h_0=h_0, @@ -241,10 +241,9 @@ class EncoderNet(fluid.dygraph.Layer): transpose_conv_features = fluid.layers.transpose( conv_features, perm=[0, 3, 1, 2]) - sliced_feature = fluid.layers.reshape( transpose_conv_features, [ - -1, 48, transpose_conv_features.shape[2] * + -1, 8, transpose_conv_features.shape[2] * transpose_conv_features.shape[3] ], inplace=False) @@ -376,9 +375,9 @@ class TestDygraphOCRAttention(unittest.TestCase): seed = 90 epoch_num = 1 if core.is_compiled_with_cuda(): - batch_num = 6 + batch_num = 3 else: - batch_num = 4 + batch_num = 2 np.random.seed = seed image_np = np.random.randn(Config.batch_size, Config.DATA_SHAPE[0], Config.DATA_SHAPE[1], @@ -536,8 +535,9 @@ class TestDygraphOCRAttention(unittest.TestCase): self.assertTrue(np.array_equal(value, dy_param_init_value[key])) for key, value in six.iteritems(static_param_value): - self.assertTrue(np.allclose(value, dy_param_value[key])) + self.assertTrue(np.allclose(value, dy_param_value[key], rtol=1e-05)) if __name__ == '__main__': + paddle.enable_static() unittest.main() -- GitLab