diff --git a/paddle/fluid/framework/new_exec.cc b/paddle/fluid/framework/new_exec.cc new file mode 100644 index 0000000000000000000000000000000000000000..977e320a76844f3c8b9d4e8235f7ea8744d34226 --- /dev/null +++ b/paddle/fluid/framework/new_exec.cc @@ -0,0 +1,726 @@ +#include +#include + +#include +#include +#include +#include +#include + +#include "paddle/fluid/framework/executor_gc_helper.h" +#include "paddle/fluid/framework/garbage_collector.h" +#include "paddle/fluid/framework/op_info.h" +#include "paddle/fluid/framework/program_desc.h" +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/framework/tensor.h" +#include "paddle/fluid/platform/device_context.h" +#include "paddle/fluid/framework/variable.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/operator.h" + +#include "paddle/fluid/pybind/pybind.h" + +#include "paddle/fluid/platform/init.h" + +#include +#include + +//USE_OP(fill_constant); +//USE_OP(elementwise_add); + +using namespace std; + +namespace paddle { +namespace framework { + +class RuntimeInferShapeContext : public InferShapeContext { + public: + RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx) + : op_(op), ctx_(ctx) {} + + bool HasInput(const std::string& name) const override { + // has only one input + const auto& ins = ctx_.inputs; + auto it = ins.find(name); + if (it == ins.end()) { + return false; + } + const auto& in = it->second; + if (in.size() == 0) return false; + PADDLE_ENFORCE_EQ( + in.size(), 1UL, + platform::errors::InvalidArgument( + "Input %s should not contain more than one inputs.", name)); + return in[0] != nullptr; + } + + bool HasOutput(const std::string& name) const override { + // has only one output + const auto& outs = ctx_.outputs; + auto it = outs.find(name); + if (it == outs.end()) { + return false; + } + const auto& out = it->second; + if (out.size() == 0) { + return false; + } + PADDLE_ENFORCE_EQ( + out.size(), 1UL, + platform::errors::InvalidArgument( + "Output %s should not contain more than one outputs.", name)); + return out[0] != nullptr; + } + + bool HasInputs(const std::string& name) const override { + const auto& ins = ctx_.inputs; + auto it = ins.find(name); + if (it == ins.end() || it->second.empty()) { + return false; + } + for (auto& input : it->second) { + if (input == nullptr) { + return false; + } + } + return true; + } + + bool HasOutputs(const std::string& name) const override { + const auto& outs = ctx_.outputs; + auto it = outs.find(name); + if (it == outs.end() || it->second.empty()) { + return false; + } + for (auto& output : it->second) { + if (output == nullptr) { + return false; + } + } + return true; + } + + AttrReader Attrs() const override { return AttrReader(op_.Attrs()); } + + std::vector Inputs(const std::string& name) const override { + return op_.Inputs(name); + } + + std::vector Outputs(const std::string& name) const override { + return op_.Outputs(name); + } + + std::string GetInputNameByIdx(size_t idx) const override { + auto& op_proto = + paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_; + PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(), + platform::errors::OutOfRange( + "The index should be less than the size of inputs of " + "operator %s, but got index is %d and size is %d", + op_.Type(), idx, op_proto->inputs().size())); + return op_proto->inputs()[idx].name(); + } + + std::string GetOutputNameByIdx(size_t idx) const override { + auto& op_proto = + paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_; + PADDLE_ENFORCE_LT( + idx, op_proto->outputs().size(), + platform::errors::OutOfRange( + "The index should be less than the size of outputs of " + "operator %s, but got index is %d and size is %d", + op_.Type(), idx, op_proto->outputs().size())); + return op_proto->outputs()[idx].name(); + } + + void ShareDim(const std::string& in, const std::string& out, size_t i = 0, + size_t j = 0) override { + auto in_it = ctx_.inputs.find(in); + auto out_it = ctx_.outputs.find(out); + PADDLE_ENFORCE_NE( + in_it, ctx_.inputs.end(), + platform::errors::NotFound("Input %s does not exist.", in)); + PADDLE_ENFORCE_NE( + out_it, ctx_.outputs.end(), + platform::errors::NotFound("Output %s does not exist.", out)); + PADDLE_ENFORCE_LT(i, in_it->second.size(), + platform::errors::InvalidArgument( + "The index of input dimension is out of range, " + "excepted index less than %zu, but received %zu.", + in_it->second.size(), i)); + PADDLE_ENFORCE_LT(j, out_it->second.size(), + platform::errors::InvalidArgument( + "The index of output dimension is out of range, " + "excepted index less than %zu, but received %zu.", + out_it->second.size(), j)); + + Variable* in_var = in_it->second[i]; + Variable* out_var = out_it->second[j]; + + PADDLE_ENFORCE_EQ( + in_var->Type(), out_var->Type(), + platform::errors::InvalidArgument( + "The type of input (%s) and output (%s) are inconsistent.", in, + out)); + + if (in_var->IsType()) { + auto& in_sele_rows = in_var->Get(); + auto out_sele_rows = out_var->GetMutable(); + out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims()); + out_sele_rows->set_rows(in_sele_rows.rows()); + out_sele_rows->set_height(in_sele_rows.height()); + } else if (in_var->IsType()) { + auto& in_lod_tensor = in_var->Get(); + auto* out_lod_tensor = out_var->GetMutable(); + out_lod_tensor->Resize(in_lod_tensor.dims()); + } else { + PADDLE_THROW(platform::errors::Unimplemented( + "Currently, the input type of ShareDim only can be LoDTensor " + "or SelectedRows.")); + } + } + + void ShareAllLoD(const std::string& in, + const std::string& out) const override { + auto in_it = ctx_.inputs.find(in); + auto out_it = ctx_.outputs.find(out); + PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(), + platform::errors::NotFound( + "Input [%s] found error in Op [%s]", in, op_.Type())); + PADDLE_ENFORCE_NE( + out_it, ctx_.outputs.end(), + platform::errors::NotFound("Output [%s] found error in Op [%s]", out, + op_.Type())); + + auto& in_var_list = in_it->second; + auto& out_var_list = out_it->second; + + PADDLE_ENFORCE_EQ( + in_var_list.size(), out_var_list.size(), + platform::errors::PreconditionNotMet( + "Op [%s]: Input var size should be equal with output var size", + op_.Type())); + + auto& out_var_names = op_.Outputs(out); + + for (size_t i = 0; i < in_var_list.size(); ++i) { + if (out_var_names[i] == framework::kEmptyVarName) { + continue; + } + + Variable* in_var = in_var_list[i]; + if (!in_var->IsType()) return; + Variable* out_var = out_var_list[i]; + PADDLE_ENFORCE_EQ(out_var->IsType(), true, + platform::errors::PreconditionNotMet( + "The %d-th output of Output(%s) must be LoDTensor.", + i, out_var_names[i])); + auto& in_tensor = in_var->Get(); + auto* out_tensor = out_var->GetMutable(); + out_tensor->set_lod(in_tensor.lod()); +#ifdef PADDLE_WITH_MKLDNN + if (in_tensor.layout() != DataLayout::kMKLDNN) +#endif + out_tensor->set_layout(in_tensor.layout()); + } + } + + void ShareLoD(const std::string& in, const std::string& out, size_t i = 0, + size_t j = 0) const override { + auto in_it = ctx_.inputs.find(in); + auto out_it = ctx_.outputs.find(out); + PADDLE_ENFORCE_NE( + in_it, ctx_.inputs.end(), + platform::errors::NotFound("Input %s does not exist.", in)); + PADDLE_ENFORCE_NE( + out_it, ctx_.outputs.end(), + platform::errors::NotFound("Output %s does not exist.", out)); + PADDLE_ENFORCE_LT(i, in_it->second.size(), + platform::errors::InvalidArgument( + "The index of input dimension is out of range, " + "excepted index less than %zu, but received %zu.", + in_it->second.size(), i)); + PADDLE_ENFORCE_LT(j, out_it->second.size(), + platform::errors::InvalidArgument( + "The index of output dimension is out of range, " + "excepted index less than %zu, but received %zu.", + out_it->second.size(), j)); + + Variable* in_var = in_it->second.at(i); + if (!in_var->IsType()) return; + Variable* out_var = out_it->second.at(j); + PADDLE_ENFORCE_EQ( + out_var->IsType(), true, + platform::errors::InvalidArgument( + "The %zu-th output of Output(%s) must be LoDTensor.", j, out)); + auto& in_tensor = in_var->Get(); + auto* out_tensor = out_var->GetMutable(); + out_tensor->set_lod(in_tensor.lod()); + +// TODO(dzhwinter) : reuse ShareLoD in most operators. +// Need to call ShareLayout explicitly in sequence related ops. +// Shall we have a better method to shared info between in/out Tensor? +#ifdef PADDLE_WITH_MKLDNN + // Fix me: ugly workaround below + // Correct solution: + // set_layout() should NOT be called here (i.e. ShareLoD). Instead, + // layout of output tensor should be set "manually" in Compute() + // of each OPKernel. The reason layout should NOT be shared between + // input and output "automatically" (now by InferShape()->ShareLoD()) + // is that layout transform may occur after InferShape(). + // Workaround: + // Skip set_layout() when input layout is kMKLDNN + // This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN + // OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called + // in Compute() + if (in_tensor.layout() != DataLayout::kMKLDNN) +#endif + out_tensor->set_layout(in_tensor.layout()); + } + + int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override { + PADDLE_THROW(platform::errors::PreconditionNotMet( + "GetLoDLevel is only used in compile time. The calculation of " + "output's actual lod is different among operators so that should be " + "set in the runtime kernel.")); + } + + void SetLoDLevel(const std::string& out, int32_t lod_level, + size_t j = 0) const override { + PADDLE_THROW(platform::errors::PreconditionNotMet( + "SetLoDLevel is only used in compile time. The calculation of " + "output's actual lod is different among operators so that should be " + "set in the runtime kernel.")); + } + + bool IsRuntime() const override { return true; } + + // TODO(paddle-dev): Can this be template? + std::vector GetInputVarPtrs( + const std::string& name) override { + const std::vector& vars = InputVars(name); + std::vector res; + res.reserve(vars.size()); + res.insert(res.begin(), vars.begin(), vars.end()); + return res; + } + + std::vector GetOutputVarPtrs( + const std::string& name) override { + const std::vector& vars = OutputVars(name); + std::vector res; + res.reserve(vars.size()); + res.insert(res.begin(), vars.begin(), vars.end()); + return res; + } + + DDim GetInputDim(const std::string& name) const override { + const std::vector& vars = InputVars(name); + PADDLE_ENFORCE_EQ( + vars.size(), 1UL, + platform::errors::InvalidArgument( + "Input(%s) should hold one element, but now it holds %zu elements.", + name, vars.size())); + return this->GetDim(vars[0]); + } + + std::vector GetInputsDim(const std::string& name) const override { + const std::vector& vars = InputVars(name); + return GetDims(vars); + } + + std::vector GetInputsVarType( + const std::string& name) const override { + return GetVarTypes(InputVars(name)); + } + + std::vector GetOutputsVarType( + const std::string& name) const override { + return GetVarTypes(OutputVars(name)); + } + + void SetOutputDim(const std::string& name, const DDim& dim) override { + //cerr << "set out dim" << endl; + auto& vars = OutputVars(name); + PADDLE_ENFORCE_EQ( + vars.size(), 1UL, + platform::errors::InvalidArgument("Output(%s) should hold one element, " + "but now it holds %zu elements.", + name, vars.size())); + SetDim(vars[0], dim); + } + + void SetOutputsDim(const std::string& name, + const std::vector& dims) override { + auto& vars = OutputVars(name); + SetDims(vars, dims); + } + + protected: + DDim GetDim(Variable* var) const { + PADDLE_ENFORCE_NOT_NULL( + var, platform::errors::InvalidArgument("Input variable is nullptr.")); + if (var->IsType()) { + return var->Get().dims(); + } else if (var->IsType()) { + return var->Get().GetCompleteDims(); + } else { + PADDLE_THROW(platform::errors::InvalidArgument( + "Only LoDTensor or SelectedRows support 'GetDim', but input " + "Variable's type is %s.", + ToTypeName(var->Type()))); + } + } + + std::vector GetDims(const std::vector& vars) const { + std::vector ret; + ret.reserve(vars.size()); + std::transform(vars.begin(), vars.end(), std::back_inserter(ret), + [this](Variable* var) { return this->GetDim(var); }); + return ret; + } + + std::vector GetRepeatedDims(const std::string& name) const override { + PADDLE_THROW(platform::errors::PreconditionNotMet( + "GetRepeatedDims method only ban be used in compile time.")); + } + + void SetDim(Variable* var, const DDim& dim) { + + if (var->IsType()) { + + var->GetMutable()->Resize(dim); + } else if (var->IsType()) { + var->GetMutable()->set_height(dim[0]); + } else { + PADDLE_THROW(platform::errors::Unimplemented( + "Variable type error, expect LoDTensor or SelectedRows, but received " + "(%s).", + ToTypeName(var->Type()))); + } + } + + void SetDims(const std::vector& vars, + const std::vector& dims) { + size_t length = vars.size(); + PADDLE_ENFORCE_EQ(length, dims.size(), + platform::errors::InvalidArgument( + "The number of input variables do not match the " + "number of input dimensions, the number of variables " + "is %zu, the number of dimensions is %zu.", + length, dims.size())); + for (size_t i = 0; i < length; ++i) { + if (vars[i] == nullptr) { + continue; + } + SetDim(vars[i], dims[i]); + } + } + + void SetRepeatedDims(const std::string& name, + const std::vector& dims) override { + PADDLE_THROW(platform::errors::PreconditionNotMet( + "SetRepeatedDims method only can be used in compile time.")); + } + + std::vector GetVarTypes( + const std::vector& vars) const { + std::vector retv; + retv.resize(vars.size()); + std::transform(vars.begin(), vars.end(), retv.begin(), + std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType), + this, std::placeholders::_1)); + return retv; + } + + proto::VarType::Type GetVarType(Variable* var) const { + return ToVarType(var->Type()); + } + + private: + const std::vector& InputVars(const std::string& name) const { + auto it = ctx_.inputs.find(name); + PADDLE_ENFORCE_NE( + it, ctx_.inputs.end(), + platform::errors::NotFound( + "Operator (%s) does not have the input (%s).", op_.Type(), name)); + return it->second; + } + + const std::vector& OutputVars(const std::string& name) const { + auto it = ctx_.outputs.find(name); + PADDLE_ENFORCE_NE( + it, ctx_.outputs.end(), + platform::errors::NotFound( + "Operator (%s) does not have the outputs (%s).", op_.Type(), name)); + return it->second; + } + + const OperatorBase& op_; + const RuntimeContext& ctx_; +}; + + + +framework::ProgramDesc load_from_file( const std::string& file_name ) +{ + std::ifstream fin(file_name, std::ios::in | std::ios::binary); + fin.seekg(0, std::ios::end); + std::string buffer(fin.tellg(), ' '); + fin.seekg(0, std::ios::beg); + fin.read(&buffer[0], buffer.size()); + fin.close(); + + ProgramDesc program_desc( buffer ); + return program_desc; +} + + +struct VariableScope +{ + std::vector< std::unique_ptr > var_list; + std::map name2id; +}; + + +struct OpFuncNode{ + + //int unsed; + std::map< std::string, std::vector > input_index; + std::map< std::string, std::vector > output_index; + + using OpKernelFunc = std::function; + OpKernelFunc kernel_func_; +}; + + +void build_variable_scope( const framework::ProgramDesc& pdesc, VariableScope* var_scope ) +{ + auto& global_block = pdesc.Block(0); + + + for (auto& var : global_block.AllVars()) { + if (var->Name() == framework::kEmptyVarName) { + continue; + } + //cerr << "var name " << var->Name() << endl; + + if ( var_scope->name2id.find( var->Name() ) == var_scope->name2id.end() ) + { + var_scope->name2id[ var->Name() ] = var_scope->var_list.size(); + } + + auto v = new Variable(); + v->GetMutable(); + var_scope->var_list.push_back(std::unique_ptr(v)); + } +} + +void build_op_func_list( const framework::ProgramDesc& pdesc, std::vector >& op_list, std::vector& vec_func_list, const VariableScope& var_scope ) +{ + auto &global_block = pdesc.Block( 0 ); + + for ( auto& op : global_block.AllOps() ) + { + //cerr << op->Type() << endl; + //bool debug = op->Type() == "softmax_with_cross_entropy_grad"; + bool debug = false; + op_list.push_back( OpRegistry::CreateOp(*op) ); + //cerr << "create op" << endl; + auto* op_base = op_list.back().get(); + + auto input_names = op->Inputs(); + auto output_names = op->Outputs(); + + OpFuncNode op_func_node; + + VariableValueMap ins_map; + std::map< std::string, std::vector > ins_name2id; + for( auto& var_name_item : input_names) + { + std::vector input_vars; + std::vector vec_ids; + input_vars.reserve(var_name_item.second.size()); + for (auto& var_name : var_name_item.second) { + auto it = var_scope.name2id.find( var_name ); + assert( it != var_scope.name2id.end() ); + input_vars.push_back( var_scope.var_list[ it->second].get()); + vec_ids.push_back( it->second ); + } + ins_map[ var_name_item.first ] = input_vars; + ins_name2id[ var_name_item.first ] = vec_ids; + + } + if (debug ) cerr << "1" << endl; + + VariableValueMap outs_map; + std::map > outs_name2id; + for( auto& var_name_item : output_names ) + { + std::vector output_vars; + std::vector vec_ids; + output_vars.reserve(var_name_item.second.size()); + for (auto& var_name : var_name_item.second) { + auto it = var_scope.name2id.find( var_name ); + assert( it != var_scope.name2id.end() ); + //cerr << it->second << "\t" << var_scope.var_list.size() << endl; + output_vars.push_back( var_scope.var_list[ it->second].get() ); + vec_ids.push_back( it->second ); + } + outs_map[ var_name_item.first ] = output_vars; + //cerr << ToTypeName(output_vars[0]->Type() ) << endl; + outs_name2id[ var_name_item.first ] = vec_ids; + } + + op_func_node.input_index = ins_name2id; + op_func_node.output_index = outs_name2id; + RuntimeContext runtime_context( {}, {}); + runtime_context.inputs.swap( ins_map ); + runtime_context.outputs.swap( outs_map ); + //cerr << "create runtime context" << endl; + RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context); + static_cast(op_base)->InferShape( &infer_shape_ctx ); + //cerr << "fin infer shape" << endl; + auto& all_op_kernels = OperatorWithKernel::AllOpKernels(); + auto kernels_iter = all_op_kernels.find(op->Type() ); + PADDLE_ENFORCE_NE( + kernels_iter, all_op_kernels.end(), + platform::errors::Unavailable( + "There are no kernels which are registered in the %s operator.", + op->Type() )); + + //cerr << "create kernel" << endl; + using OpKernelFunc = std::function; + using OpKernelMap = + std::unordered_map; + if (debug ) cerr << "2" << endl; + OpKernelMap& kernels = kernels_iter->second; + //auto place = platform::CPUPlace(); + auto place = platform::CUDAPlace(0); + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto* dev_ctx = pool.Get(place); + Scope scope; + auto exec_ctx = ExecutionContext(*op_base, scope, *dev_ctx, runtime_context ); + if (debug ) cerr << "21" << endl; + auto expected_kernel_key = dynamic_cast(op_base)->GetExpectedKernelType( exec_ctx ); + if (debug ) cerr << "22" << endl; + //cerr << "22" << endl; + auto kernel_iter = kernels.find(expected_kernel_key); + + if (debug ) cerr << "3" << endl; + op_func_node.kernel_func_ = OpKernelFunc(kernel_iter->second); + if (debug ) cerr << "3-1" << endl; + op_func_node.kernel_func_( exec_ctx ); + vec_func_list.push_back( op_func_node ); + if (debug ) cerr << "5" << endl; + } + +} + + + +void exec_op_func_list( const std::vector& vec_func_list, std::vector>& op_list, const VariableScope& var_scope) +{ + for( size_t i = 0; i < vec_func_list.size(); ++i ) + { + auto& func_node = vec_func_list[i]; + auto op_base = op_list[i].get(); + // build runtime cost + VariableValueMap ins_map; + for( auto& var_name_item : func_node.input_index) + { + std::vector input_vars; + + input_vars.reserve(var_name_item.second.size()); + for (auto& id : var_name_item.second) { + input_vars.emplace_back( var_scope.var_list[ id ].get() ); + } + ins_map.emplace( var_name_item.first, std::move(input_vars) ); + } + + VariableValueMap outs_map; + for( auto& var_name_item : func_node.output_index) + { + std::vector out_vars; + + out_vars.reserve(var_name_item.second.size()); + for (auto& id : var_name_item.second) { + out_vars.emplace_back( var_scope.var_list[ id ].get()); + } + outs_map.emplace( var_name_item.first, std::move( out_vars ) ); + } + + RuntimeContext runtime_context( {}, {}); + runtime_context.inputs.swap( ins_map ); + runtime_context.outputs.swap( outs_map ); + + RuntimeInferShapeContext infer_shape_ctx(*(op_list[i].get()), runtime_context); + dynamic_cast(op_base)->InferShape( &infer_shape_ctx ); + + + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + //auto place = platform::CPUPlace(); + auto place = platform::CUDAPlace(0); + auto* dev_ctx = pool.Get(place); + Scope scope; + + auto exec_context = ExecutionContext(*op_base, scope, *dev_ctx, runtime_context ); + + func_node.kernel_func_( exec_context ); + } +} + + + +} +} + + +int main() +{ + paddle::framework::InitDevices(); + paddle::framework::VariableScope global_scope; + + + { + auto test_prog = paddle::framework::load_from_file( "lm_startup_program"); + paddle::framework::build_variable_scope( test_prog, &global_scope ); + + + std::vector vec_func_list; + std::vector> op_list; + paddle::framework::build_op_func_list( test_prog, op_list, vec_func_list, global_scope); + + paddle::framework::exec_op_func_list( vec_func_list, op_list, global_scope ); + } + + cerr << "run main" << endl; + auto main_prog = paddle::framework::load_from_file( "lm_main_program"); + + paddle::framework::build_variable_scope( main_prog, &global_scope ); + + + std::vector vec_main_func_list; + std::vector> op_main_list; + paddle::framework::build_op_func_list( main_prog, op_main_list, vec_main_func_list, global_scope); + + auto start = std::chrono::steady_clock::now(); + ProfilerStart("new_executor.prof"); + for ( size_t i = 0; i < 2320; ++i ) + { + if( i % 200 == 0) + { + cerr << i << endl; + } + paddle::framework::exec_op_func_list( vec_main_func_list, op_main_list, global_scope ); + } + ProfilerStop(); + auto end = std::chrono::steady_clock::now(); + std::chrono::duration diff = end-start; + + cerr << "time cost " << diff.count() << endl; + + + return 1; + +}