diff --git a/paddle/fluid/eager/auto_code_generator/final_state_generator/CMakeLists.txt b/paddle/fluid/eager/auto_code_generator/final_state_generator/CMakeLists.txt index ce1e81dd971ad15152c0b7a8514e3ed210225a91..6a4c577f5e5f30fc330a3781389e1fb044908adc 100644 --- a/paddle/fluid/eager/auto_code_generator/final_state_generator/CMakeLists.txt +++ b/paddle/fluid/eager/auto_code_generator/final_state_generator/CMakeLists.txt @@ -38,7 +38,7 @@ add_custom_target( COMMAND "${PYTHON_EXECUTABLE}" "${PADDLE_SOURCE_DIR}/paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py" - "--api_yaml_path=${api_yaml_path}" + "--api_yaml_path=${api_yaml_path},${fwd_api_yaml_path}" "--backward_yaml_path=${backward_yaml_path}" "--forwards_cc_path=${tmp_forwards_cc_path}" "--forwards_h_path=${tmp_forwards_h_path}" diff --git a/paddle/fluid/eager/auto_code_generator/final_state_generator/codegen_utils.py b/paddle/fluid/eager/auto_code_generator/final_state_generator/codegen_utils.py index c45f751b8c3dc94d3509a2d62e228f781ff5b356..29049bff90de3cde6dba2a0c838f9fb45f3d3a52 100644 --- a/paddle/fluid/eager/auto_code_generator/final_state_generator/codegen_utils.py +++ b/paddle/fluid/eager/auto_code_generator/final_state_generator/codegen_utils.py @@ -353,6 +353,9 @@ class FunctionGeneratorBase: self.forward_api_contents = forward_api_contents self.namespace = namespace + self.is_forward_only = False if 'backward' in forward_api_contents.keys( + ) else True + self.forward_api_name = "" self.orig_forward_inputs_list = [ diff --git a/paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py b/paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py index 0420bb2dbcbec22d3d740a057857de0a148d045c..ff4824d78e0a01ed31c9037b7b36d7e79494d43a 100644 --- a/paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py +++ b/paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py @@ -209,6 +209,26 @@ FORWARD_FUNCTION_TEMPLATE = \ }} """ + +FORWARD_ONLY_FUNCTION_TEMPLATE = \ +""" +{} {}({}) {{ + // Dygraph Record Event +{} + // AMP Logic +{} + + // Forward API Call + VLOG(3) << \"Final State Running: \" << \"{}\"; +{} + // Get Outputs +{} + + // Returns + return {}; +}} +""" + FORWARD_BODY_TEMPLATE = \ """ if(require_any_grad) {{ {} @@ -297,6 +317,7 @@ FORWARD_CC_FILE_TEMPLATE = \ #include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h" #include "paddle/fluid/eager/api/generated/eager_generated/backwards/nodes.h" +#include "paddle/phi/api/include/strings_api.h" #include "paddle/phi/api/include/sparse_api.h" #include "paddle/fluid/eager/api/utils/global_utils.h" #include "paddle/fluid/platform/profiler/event_tracing.h" @@ -321,6 +342,7 @@ FORWARD_H_FILE_TEMPLATE = \ #include "paddle/fluid/eager/to_static/run_program_op_func.h" #include "paddle/fluid/eager/api/manual/eager_manual/dygraph_forward_api.h" +using CPUPlace = phi::CPUPlace; {} {} """ @@ -406,6 +428,27 @@ CHECK_NAN_AND_INF_TEMPLATE = \ """ if (FLAGS_check_nan_inf) {{ egr::CheckTensorHasNanOrInf("{}", {}); }} """ +# This list contains ops that do not need to generate amp logic +# All optimizer ops in this list +no_amp_list = [ + 'adam_', 'adam', 'adamw_', 'adamw', 'average_accumulates', + 'average_accumulates_', 'decayed_adagrad_', 'decayed_adagrad', + 'dgc_momentum_', 'dgc_momentum', 'distributed_fused_lamb_', + 'distributed_fused_lamb', 'dpsgd_', 'dpsgd', 'ftrl_', 'ftrl', 'lamb_', + 'lamb', 'lars_momentum_', 'lars_momentum', 'merged_adam_', 'merged_adam', + 'merged_momentum_', 'merged_momentum', 'momentum_', 'momentum', + 'proximal_adagrad_', 'proximal_adagrad', 'proximal_gd_', 'proximal_gd', + 'rmsprop_', 'rmsprop', 'sgd_', 'sgd', 'lamb_', 'lamb', 'assign_value_', + 'sparse_momentum_', 'sparse_momentum', 'full_' +] + +inplace_optional_out_type_map = { + "Tensor": + "paddle::optional&", + "std::vector": + "paddle::optional>&" +} + ####################### ## Generator Helpers ## @@ -513,15 +556,16 @@ class DygraphFunctionGeneratorBase(FunctionGeneratorBase): ), "Unable to find \"args\" in api.yaml" assert 'output' in forward_api_contents.keys( ), "Unable to find \"output\" in api.yaml" - assert 'backward' in forward_api_contents.keys( - ), "Unable to find \"backward\" in api.yaml" - assert 'args' in grad_api_contents.keys( - ), "Unable to find \"args\" in backward.yaml" - assert 'output' in grad_api_contents.keys( - ), "Unable to find \"output\" in backward.yaml" - assert 'forward' in grad_api_contents.keys( - ), "Unable to find \"forward\" in backward.yaml" + if grad_api_contents is not None: + assert 'backward' in forward_api_contents.keys( + ), "Unable to find \"backward\" in api.yaml" + assert 'args' in grad_api_contents.keys( + ), "Unable to find \"args\" in backward.yaml" + assert 'output' in grad_api_contents.keys( + ), "Unable to find \"output\" in backward.yaml" + assert 'forward' in grad_api_contents.keys( + ), "Unable to find \"forward\" in backward.yaml" def ForwardsValidationCheck(self): forward_inputs_list = self.forward_inputs_list @@ -629,6 +673,11 @@ class DygraphFunctionGeneratorBase(FunctionGeneratorBase): self.forward_inputs_list, self.forward_attrs_list, self.forward_returns_list = ParseYamlForwardFromBackward( backward_forward_str) + def CollectForwardInfoFromYamlForward(self): + self.forward_inputs_list, self.forward_attrs_list, self.forward_returns_list = ParseYamlForwardFromBackward( + self.forward_api_contents['args'] + " -> " + + self.forward_api_contents['output']) + def SlotNameMatching(self): backward_inputs_list = self.backward_inputs_list backward_returns_list = self.backward_returns_list @@ -694,6 +743,14 @@ class DygraphFunctionGeneratorBase(FunctionGeneratorBase): backward_output_pos ] + def GetPassStopGradientArgsList(self, forward_outputs_position_map): + pass_stop_gradient_args_list = ["false"] + for name, (_, _) in forward_outputs_position_map.items(): + output_autograd_meta_name = GetAutoGradMetaName(name) + pass_stop_gradient_args_list.append(output_autograd_meta_name) + pass_stop_gradient_args_str = ",".join(pass_stop_gradient_args_list) + return pass_stop_gradient_args_str + def GenerateNodeCreationCodes(self, for_backward=False): forward_api_name = self.forward_api_name forward_inputs_position_map = self.forward_inputs_position_map @@ -706,11 +763,8 @@ class DygraphFunctionGeneratorBase(FunctionGeneratorBase): optional_inputs = self.optional_inputs # Pass Stop Gradient Args - pass_stop_gradient_args_list = ["false"] - for name, (_, _) in forward_outputs_position_map.items(): - output_autograd_meta_name = GetAutoGradMetaName(name) - pass_stop_gradient_args_list.append(output_autograd_meta_name) - pass_stop_gradient_args_str = ",".join(pass_stop_gradient_args_list) + pass_stop_gradient_args_str = self.GetPassStopGradientArgsList( + forward_outputs_position_map) # Node Construction num_backward_inputs = len(forward_outputs_position_map.keys()) @@ -851,10 +905,10 @@ class DygraphFunctionGeneratorBase(FunctionGeneratorBase): ########################## # Parse forward and backward inplace_map self.ParseForwardInplaceInfo() - self.ParseBackwardInplaceInfo() - - # Parse no_need_buffer - self.ParseNoNeedBuffer() + if self.grad_api_contents is not None: + self.ParseBackwardInplaceInfo() + # Parse no_need_buffer + self.ParseNoNeedBuffer() # Parse optional_inputs self.ParseDispensable() @@ -863,11 +917,15 @@ class DygraphFunctionGeneratorBase(FunctionGeneratorBase): self.ParseIntermediate() self.IntermediateValidationCheck() - # Initialize backward_forward_str, backward_inputs_list, backward_attrs_list, backward_returns_list - self.CollectBackwardInfo() + if self.grad_api_contents is not None: + # Initialize backward_forward_str, backward_inputs_list, backward_attrs_list, backward_returns_list + self.CollectBackwardInfo() - # Initialize forward_inputs_list, forward_attrs_list, forward_returns_list - self.CollectForwardInfoFromBackwardContents() + # Initialize forward_inputs_list, forward_attrs_list, forward_returns_list + self.CollectForwardInfoFromBackwardContents() + + if self.is_forward_only: + self.CollectForwardInfoFromYamlForward() # Initialize orig_forward_inputs_list, orig_forward_attrs_list, orig_forward_returns_list self.CollectOriginalForwardInfo() @@ -882,11 +940,11 @@ class DygraphFunctionGeneratorBase(FunctionGeneratorBase): self.DetermineForwardPositionMap(self.forward_inputs_list, self.forward_returns_list) - # Initialize backward_forward_inputs_map, backward_grad_inputs_map, backward_grad_outputs_map - self.SlotNameMatching() - - # Backward Validation Check - self.BackwardValidationCheck() + if self.grad_api_contents is not None: + # Initialize backward_forward_inputs_map, backward_grad_inputs_map, backward_grad_outputs_map + self.SlotNameMatching() + # Backward Validation Check + self.BackwardValidationCheck() class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase): @@ -909,7 +967,8 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase): forward_inputs_position_map = self.forward_inputs_position_map forward_outputs_position_map = self.forward_outputs_position_map forward_attrs_list = self.forward_attrs_list - backward_grad_outputs_map = self.backward_grad_outputs_map + if not self.is_forward_only: + backward_grad_outputs_map = self.backward_grad_outputs_map optional_inputs = self.optional_inputs intermediate_outputs = self.intermediate_outputs @@ -934,7 +993,11 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase): is_optional = (name in optional_inputs) if IsPlainTensorType(ttype): if is_optional: - arg_str = f"const paddle::optional& {name}" + if self.is_forward_only and is_inplaced and forward_inplace_map and name in forward_inplace_map.keys( + ): + arg_str = f"paddle::optional& {name}" + else: + arg_str = f"const paddle::optional& {name}" amp_tensors_vector_optional_list.append( f"if ({name}) amp_tensors_vector.push_back({{ *{name} }});\n" ) @@ -1028,15 +1091,27 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase): if IsPlainTensorType(rtype): if is_inplaced and forward_inplace_map and name in forward_inplace_map.values( ): - returns_type_list[pos] = "paddle::experimental::Tensor&" + ind = list(forward_inplace_map.values()).index(name) + if list(forward_inplace_map.keys() + )[ind] in self.optional_inputs: + returns_type_list[pos] = inplace_optional_out_type_map[ + rtype] + else: + returns_type_list[pos] = "paddle::experimental::Tensor&" else: returns_type_list[pos] = "paddle::experimental::Tensor" else: assert IsVectorTensorType(rtype) if is_inplaced and forward_inplace_map and name in forward_inplace_map.values( ): - returns_type_list[ - pos] = "std::vector&" + ind = list(forward_inplace_map.values()).index(name) + if list(forward_inplace_map.keys() + )[ind] in self.optional_inputs: + returns_type_list[pos] = inplace_optional_out_type_map[ + rtype] + else: + returns_type_list[ + pos] = "std::vector&" else: returns_type_list[ pos] = "std::vector" @@ -1052,56 +1127,64 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase): # Node Creation Pre-Processing # 1. Get Input AutoGradMeta - inputs_autograd_meta_list = [] - compute_require_grad_args_list = ["trace_backward"] - for name, (ttype, pos) in forward_inputs_position_map.items(): - # Has corresponding grad output - has_corresponding_grad_output = False - for _, (_, corresponding_pos, - _) in backward_grad_outputs_map.items(): - if pos == corresponding_pos: - has_corresponding_grad_output = True - if has_corresponding_grad_output or ( - name in forward_inplace_map - and forward_api_name not in inplace_check_blacklist): - input_autograd_meta_name = GetAutoGradMetaName(name) - if IsPlainTensorType(ttype): - input_autograd_meta = f"{indent}egr::AutogradMeta* {input_autograd_meta_name} = egr::EagerUtils::nullable_autograd_meta({name});" - else: - assert IsVectorTensorType(ttype) - input_autograd_meta_vec_name = GetAutoGradMetaVectorName( - name) - input_autograd_meta = f"{indent}std::vector {input_autograd_meta_vec_name} = egr::EagerUtils::nullable_autograd_meta({name});\n" - input_autograd_meta += f"{indent}std::vector* {input_autograd_meta_name} = &{input_autograd_meta_vec_name};" - inputs_autograd_meta_list.append(input_autograd_meta) - compute_require_grad_args_list.append(input_autograd_meta_name) - inputs_autograd_meta_str = "\n".join(inputs_autograd_meta_list) - compute_require_grad_args_str = ",".join(compute_require_grad_args_list) + + if not self.is_forward_only: + inputs_autograd_meta_list = [] + compute_require_grad_args_list = ["trace_backward"] + for name, (ttype, pos) in forward_inputs_position_map.items(): + # Has corresponding grad output + has_corresponding_grad_output = False + if not self.is_forward_only: + for _, (_, corresponding_pos, + _) in backward_grad_outputs_map.items(): + if pos == corresponding_pos: + has_corresponding_grad_output = True + if has_corresponding_grad_output or ( + name in forward_inplace_map and forward_api_name + not in inplace_check_blacklist) or self.is_forward_only: + input_autograd_meta_name = GetAutoGradMetaName(name) + if IsPlainTensorType(ttype): + input_autograd_meta = f"{indent}egr::AutogradMeta* {input_autograd_meta_name} = egr::EagerUtils::nullable_autograd_meta({name});" + else: + assert IsVectorTensorType(ttype) + input_autograd_meta_vec_name = GetAutoGradMetaVectorName( + name) + input_autograd_meta = f"{indent}std::vector {input_autograd_meta_vec_name} = egr::EagerUtils::nullable_autograd_meta({name});\n" + input_autograd_meta += f"{indent}std::vector* {input_autograd_meta_name} = &{input_autograd_meta_vec_name};" + inputs_autograd_meta_list.append(input_autograd_meta) + compute_require_grad_args_list.append( + input_autograd_meta_name) + + inputs_autograd_meta_str = "\n".join(inputs_autograd_meta_list) + compute_require_grad_args_str = ",".join( + compute_require_grad_args_list) # 2. Get Output AutoGradMeta - outputs_autograd_meta_list = [] - num_fwd_outputs = len(forward_outputs_position_map.keys()) - for name, (rtype, pos) in forward_outputs_position_map.items(): - output_autograd_meta_name = GetAutoGradMetaName(name) - output_autograd_meta_vec_name = GetAutoGradMetaVectorName(name) - if num_fwd_outputs == 1: - if IsPlainTensorType(rtype): - output_autograd_meta = f"{indent}egr::AutogradMeta* {output_autograd_meta_name} = egr::EagerUtils::autograd_meta(&{name});" - else: - assert IsVectorTensorType(rtype) - output_autograd_meta = f"{indent}std::vector {output_autograd_meta_vec_name} = egr::EagerUtils::autograd_meta(&{name});\n" - output_autograd_meta += f"{indent}std::vector* {output_autograd_meta_name} = &{output_autograd_meta_vec_name};" - else: - # Tuple api_result - if IsPlainTensorType(rtype): - output_autograd_meta = f"{indent}egr::AutogradMeta* {output_autograd_meta_name} = egr::EagerUtils::autograd_meta(&{name});" + if not self.is_forward_only: + outputs_autograd_meta_list = [] + num_fwd_outputs = len(forward_outputs_position_map.keys()) + + for name, (rtype, pos) in forward_outputs_position_map.items(): + output_autograd_meta_name = GetAutoGradMetaName(name) + output_autograd_meta_vec_name = GetAutoGradMetaVectorName(name) + if num_fwd_outputs == 1: + if IsPlainTensorType(rtype): + output_autograd_meta = f"{indent}egr::AutogradMeta* {output_autograd_meta_name} = egr::EagerUtils::autograd_meta(&{name});" + else: + assert IsVectorTensorType(rtype) + output_autograd_meta = f"{indent}std::vector {output_autograd_meta_vec_name} = egr::EagerUtils::autograd_meta(&{name});\n" + output_autograd_meta += f"{indent}std::vector* {output_autograd_meta_name} = &{output_autograd_meta_vec_name};" else: - assert IsVectorTensorType(rtype) - output_autograd_meta = f"{indent}std::vector {output_autograd_meta_vec_name} = egr::EagerUtils::autograd_meta(&{name});\n" - output_autograd_meta += f"{indent}std::vector* {output_autograd_meta_name} = &{output_autograd_meta_vec_name};" + # Tuple api_result + if IsPlainTensorType(rtype): + output_autograd_meta = f"{indent}egr::AutogradMeta* {output_autograd_meta_name} = egr::EagerUtils::autograd_meta(&{name});" + else: + assert IsVectorTensorType(rtype) + output_autograd_meta = f"{indent}std::vector {output_autograd_meta_vec_name} = egr::EagerUtils::autograd_meta(&{name});\n" + output_autograd_meta += f"{indent}std::vector* {output_autograd_meta_name} = &{output_autograd_meta_vec_name};" - outputs_autograd_meta_list.append(output_autograd_meta) - outputs_autograd_meta_str = "\n".join(outputs_autograd_meta_list) + outputs_autograd_meta_list.append(output_autograd_meta) + outputs_autograd_meta_str = "\n".join(outputs_autograd_meta_list) # 3. Check Inplace check_inplace_str = "" @@ -1117,8 +1200,11 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase): inplace_name, inplace_name) # Node Creation - self.GenerateNodeCreationCodes() - node_creation_str = self.node_creation_str + if not self.is_forward_only: + self.GenerateNodeCreationCodes() + node_creation_str = self.node_creation_str + else: + node_creation_str = "" dygraph_event_str = f"{indent}paddle::platform::RecordEvent dygraph_entrance_record_event(\"{forward_api_name} dygraph\", paddle::platform::TracerEventType::Operator, 1);\n" forward_function_name = GetDygraphForwardFunctionName(forward_api_name) @@ -1144,13 +1230,30 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase): amp_autocast_list_str, amp_call_str) # Generate forward_definition_str and forward_declaration_str - self.forward_definition_str += FORWARD_FUNCTION_TEMPLATE.format( - returns_type_str, forward_function_name, inputs_args_definition_str, - dygraph_event_str, amp_logic_str, inputs_autograd_meta_str, - forward_function_name, forward_call_str, check_nan_inf_str, - get_outputs_str, outputs_autograd_meta_str, - compute_require_grad_args_str, check_inplace_str, - bump_inplace_version_str, node_creation_str, returns_str) + if not self.is_forward_only: + self.forward_definition_str += FORWARD_FUNCTION_TEMPLATE.format( + returns_type_str, forward_function_name, + inputs_args_definition_str, dygraph_event_str, amp_logic_str, + inputs_autograd_meta_str, forward_function_name, + forward_call_str, check_nan_inf_str, get_outputs_str, + outputs_autograd_meta_str, compute_require_grad_args_str, + check_inplace_str, bump_inplace_version_str, node_creation_str, + returns_str) + else: + if (len(amp_tensors_vector_list) > 0) and (self.forward_api_name + not in no_amp_list): + self.forward_definition_str += FORWARD_ONLY_FUNCTION_TEMPLATE.format( + returns_type_str, forward_function_name, + inputs_args_definition_str, dygraph_event_str, + amp_logic_str, forward_function_name, forward_call_str, + get_outputs_str, returns_str) + else: + self.forward_definition_str += FORWARD_ONLY_FUNCTION_TEMPLATE.format( + returns_type_str, forward_function_name, + inputs_args_definition_str, dygraph_event_str, " ", + forward_function_name, forward_call_str, get_outputs_str, + returns_str) + self.forward_declaration_str += f"{returns_type_str} {forward_function_name}({inputs_args_declaration_str});\n" def GenerateInplacedForwardDygraphFunctions(self): @@ -1648,11 +1751,18 @@ class DygraphForwardAndNodesGenerator(GeneratorBase): self.node_declaration_str = "" self.node_definition_str = "" + def CollectIsForwardOnly(self, forward_api_contents): + self.is_forward_only = False if 'backward' in forward_api_contents.keys( + ) else True + def ParseYamlContents(self): self.ParseForwardYamlContents() backward_yaml_path = self.backward_yaml_path - self.grad_api_dict = ReadBwdFile(backward_yaml_path) + + # string api is forward_only, no backward_yaml respectively + if backward_yaml_path is not None: + self.grad_api_dict = ReadBwdFile(backward_yaml_path) def GetBackwardAPIContents(self, forward_api_contents): grad_api_dict = self.grad_api_dict @@ -1674,9 +1784,13 @@ class DygraphForwardAndNodesGenerator(GeneratorBase): for forward_api_contents in forward_api_list: if forward_api_contents['api'] in black_ops_list: continue - backward_api_contents = self.GetBackwardAPIContents( - forward_api_contents) - if backward_api_contents is None: continue + self.CollectIsForwardOnly(forward_api_contents) + + if self.is_forward_only: + backward_api_contents = None + else: + backward_api_contents = self.GetBackwardAPIContents( + forward_api_contents) # Generate Dygraph Forward Function function_generator = DygraphForwardFunctionGenerator( @@ -1688,6 +1802,8 @@ class DygraphForwardAndNodesGenerator(GeneratorBase): # Generate Dygraph GradNode Function while True: + if backward_api_contents is None: + break next_grad_api_contents = self.GetBackwardAPIContents( backward_api_contents) @@ -1787,7 +1903,12 @@ if __name__ == "__main__": for i in range(len(api_yaml_paths)): api_yaml_path = api_yaml_paths[i] - backward_yaml_path = backward_yaml_paths[i] + + # string api is forwrad only + if not api_yaml_path.endswith('strings_api.yaml'): + backward_yaml_path = backward_yaml_paths[i] + else: + backward_yaml_path = None generator = DygraphForwardAndNodesGenerator(api_yaml_path, backward_yaml_path) diff --git a/paddle/fluid/eager/auto_code_generator/final_state_generator/python_c_gen.py b/paddle/fluid/eager/auto_code_generator/final_state_generator/python_c_gen.py index 7c2c377d8e69cd7148e2d541e7b2e2ca91f4ca49..4d5f5c9d61e802ec0933518b08107b5b6b17b76f 100644 --- a/paddle/fluid/eager/auto_code_generator/final_state_generator/python_c_gen.py +++ b/paddle/fluid/eager/auto_code_generator/final_state_generator/python_c_gen.py @@ -51,20 +51,6 @@ atype_to_parsing_function = { "paddle::experimental::DataType": "CastPyArg2DataType", } -# This list contains ops that do not need to generate amp logic -# All optimizer ops in this list -no_amp_list = [ - 'adam_', 'adam', 'adamw_', 'adamw', 'average_accumulates', - 'average_accumulates_', 'decayed_adagrad_', 'decayed_adagrad', - 'dgc_momentum_', 'dgc_momentum', 'distributed_fused_lamb_', - 'distributed_fused_lamb', 'dpsgd_', 'dpsgd', 'ftrl_', 'ftrl', 'lamb_', - 'lamb', 'lars_momentum_', 'lars_momentum', 'merged_adam_', 'merged_adam', - 'merged_momentum_', 'merged_momentum', 'momentum_', 'momentum', - 'proximal_adagrad_', 'proximal_adagrad', 'proximal_gd_', 'proximal_gd', - 'rmsprop_', 'rmsprop', 'sgd_', 'sgd', 'lamb_', 'lamb', 'assign_value_', - 'sparse_momentum_', 'sparse_momentum', 'full_' -] - def FindParsingFunctionFromAttributeType(atype): if atype not in atype_to_parsing_function.keys(): @@ -131,41 +117,6 @@ static PyObject * eager_final_state_api_{}(PyObject *self, PyObject *args, PyObj NOAMP_DYGRAPH_FUNCTION_TEMPLATE = "decltype({}({})) out = {}({});\n" -AMP_DYGRAPH_FUNCTION_TEMPLATE = \ -""" - decltype({}({})) out; - // AMP Logic - if (egr::Controller::Instance().GetAMPLevel() != paddle::imperative::AmpLevel::O0) {{ - VLOG(5) << "Check and Prepare For AMP"; - {} - paddle::small_vector, egr::kSlotSmallVectorSize> amp_tensors_vector = {}; - {} - {} - {} - out = {}({}); - }} else {{ - out = {}({}); - }} -""" - -INPLACE_AMP_DYGRAPH_FUNCTION_TEMPLATE = \ -""" - using result_type = decltype({}({})); - std::unique_ptr out_ptr; - // AMP Logic - if (egr::Controller::Instance().GetAMPLevel() != paddle::imperative::AmpLevel::O0) {{ - VLOG(5) << "Check and Prepare For AMP"; - {} - paddle::small_vector, egr::kSlotSmallVectorSize> amp_tensors_vector = {}; - {} - {} - {} - out_ptr = std::make_unique({}({})); - }} else {{ - out_ptr = std::make_unique({}({})); - }} - result_type& out = *out_ptr; -""" FUNCTION_SET_DEVICE_TEMPLATE = \ """{} if (paddle::platform::is_gpu_place(place)) {{ @@ -405,23 +356,15 @@ class PythonCSingleFunctionGenerator(FunctionGeneratorBase): num_args = len( forward_inputs_position_map.keys()) + len(orig_forward_attrs_list) dygraph_function_call_list = ["" for i in range(num_args)] - amp_dygraph_function_call_list = ["" for i in range(num_args)] for name, (_, pos) in forward_inputs_position_map.items(): dygraph_function_call_list[pos] = f"{name}" - amp_dygraph_function_call_list[pos] = f"NEW_{name}" for name, _, _, pos in orig_forward_attrs_list: dygraph_function_call_list[pos] = f"{name}" - amp_dygraph_function_call_list[pos] = f"{name}" dygraph_function_call_str = ",".join(dygraph_function_call_list) - amp_dygraph_function_call_str = ",".join(amp_dygraph_function_call_list) # Generate Python-C Function Definitions - if is_forward_only: - fwd_function_name = FUNCTION_NAME_TEMPLATE.format( - "paddle::experimental::", namespace, forward_api_name) - else: - fwd_function_name = FUNCTION_NAME_TEMPLATE.format( - "::", namespace, GetForwardFunctionName(forward_api_name)) + fwd_function_name = FUNCTION_NAME_TEMPLATE.format( + "::", namespace, GetForwardFunctionName(forward_api_name)) return_str = " return ToPyObject(out);" @@ -429,82 +372,15 @@ class PythonCSingleFunctionGenerator(FunctionGeneratorBase): pythonc_record_event_str = RECORD_EVENT_TEMPLATE.format( "pythonc_record_event", forward_api_name, "pybind_imperative_func") - # Forward amp logic - amp_tensors_vector_list = [] - amp_tensors_vector_optional_list = [] - amp_autocast_list = [] - amp_autocast_optional_list = [] - - for name, (ttype, pos) in forward_inputs_position_map.items(): - is_optional = (name in optional_inputs) - if IsVectorTensorType(ttype): - if is_optional: - amp_tensors_vector_optional_list.append( - f"if ({name}.is_initialized()) amp_tensors_vector.push_back({name}.get());\n" - ) - amp_autocast_optional_list.append( - f"auto NEW_{name} = {name}.is_initialized() ? egr::EagerAmpAutoCast(\"{name}\", {name}, amp_dst_dtype, op_name, false) : {name};\n" - ) - else: - amp_tensors_vector_list.append(f"{name}") - amp_autocast_list.append( - f"auto NEW_{name} = egr::EagerAmpAutoCasts(\"{name}\", {name}, amp_dst_dtype, op_name, false);\n" - ) - else: - if is_optional: - amp_tensors_vector_optional_list.append( - f"if ({name}.is_initialized()) amp_tensors_vector.push_back({{{name}.get()}});\n" - ) - amp_autocast_optional_list.append( - f"auto NEW_{name} = {name}.is_initialized() ? egr::EagerAmpAutoCast(\"{name}\", {name}, amp_dst_dtype, op_name, false) : {name};\n" - ) - else: - if forward_inplace_map and name in forward_inplace_map.keys( - ): - amp_tensors_vector_list.append(f"{{{name}}}") - amp_autocast_list.append( - f"auto NEW_{name} = egr::EagerAmpAutoCast(\"{name}\", {name}, amp_dst_dtype, op_name, false);\n" - ) - else: - amp_tensors_vector_list.append(f"{{{name}}}") - amp_autocast_list.append( - f"auto NEW_{name} = egr::EagerAmpAutoCast(\"{name}\", {name}, amp_dst_dtype, op_name, false);\n" - ) - amp_tensors_vector_list_str = "{ " + ",".join( - amp_tensors_vector_list) + " }" - amp_tensors_vector_optional_list_str = "".join( - amp_tensors_vector_optional_list) - amp_autocast_list_str = " ".join( - amp_autocast_list) + " " + " ".join( - amp_autocast_optional_list) - - kernel_trans2_op_name_str = f"auto op_name = phi::TransToFluidOpName(\"{forward_api_name}\");" - amp_get_dst_dtype_str = f"auto amp_dst_dtype = egr::GetAmpDestDtype(op_name, amp_tensors_vector);\n" - noamp_dygraph_function_str = NOAMP_DYGRAPH_FUNCTION_TEMPLATE.format( fwd_function_name, dygraph_function_call_str, fwd_function_name, dygraph_function_call_str) - amp_dygraph_function_str = AMP_DYGRAPH_FUNCTION_TEMPLATE.format( - fwd_function_name, dygraph_function_call_str, - kernel_trans2_op_name_str, amp_tensors_vector_list_str, - amp_tensors_vector_optional_list_str, amp_get_dst_dtype_str, - amp_autocast_list_str, fwd_function_name, - amp_dygraph_function_call_str, fwd_function_name, - dygraph_function_call_str) - # Generate Python-C Function Definetion - if (is_forward_only) and (len(amp_tensors_vector_list) > - 0) and (forward_api_name not in no_amp_list): - self.python_c_function_str = PYTHON_C_FUNCTION_TEMPLATE.format( - forward_api_name, pythonc_record_event_str, forward_api_name, - get_eager_tensor_str, parse_attributes_str, set_device_str, - amp_dygraph_function_str, return_str) - else: - self.python_c_function_str = PYTHON_C_FUNCTION_TEMPLATE.format( - forward_api_name, pythonc_record_event_str, forward_api_name, - get_eager_tensor_str, parse_attributes_str, set_device_str, - noamp_dygraph_function_str, return_str) + self.python_c_function_str = PYTHON_C_FUNCTION_TEMPLATE.format( + forward_api_name, pythonc_record_event_str, forward_api_name, + get_eager_tensor_str, parse_attributes_str, set_device_str, + noamp_dygraph_function_str, return_str) # Set prefix of forward_api_name to avoid conflicts prefix = self.namespace.strip("::") @@ -518,27 +394,14 @@ class PythonCSingleFunctionGenerator(FunctionGeneratorBase): if forward_inplace_map: inplaced_forward_api_name = GetInplacedFunctionName( self.forward_api_name) - if is_forward_only: - inplaced_fwd_function_name = FUNCTION_NAME_TEMPLATE.format( - "paddle::experimental::", namespace, - inplaced_forward_api_name) - else: - inplaced_fwd_function_name = FUNCTION_NAME_TEMPLATE.format( - "::", namespace, - GetForwardFunctionName(inplaced_forward_api_name)) + inplaced_fwd_function_name = FUNCTION_NAME_TEMPLATE.format( + "::", namespace, + GetForwardFunctionName(inplaced_forward_api_name)) inplace_noamp_dygraph_function_str = NOAMP_DYGRAPH_FUNCTION_TEMPLATE.format( inplaced_fwd_function_name, dygraph_function_call_str, inplaced_fwd_function_name, dygraph_function_call_str) - inplace_amp_dygraph_function_str = INPLACE_AMP_DYGRAPH_FUNCTION_TEMPLATE.format( - inplaced_fwd_function_name, dygraph_function_call_str, - kernel_trans2_op_name_str, amp_tensors_vector_list_str, - amp_tensors_vector_optional_list_str, amp_get_dst_dtype_str, - amp_autocast_list_str, inplaced_fwd_function_name, - amp_dygraph_function_call_str, inplaced_fwd_function_name, - dygraph_function_call_str) - return_str = " std::map inplace_var_idx_map;" for inplace_input, inplace_output in forward_inplace_map.items(): return_str += RETURN_INPLACE_PYOBJECT_TEMPLATE.format( @@ -547,19 +410,11 @@ class PythonCSingleFunctionGenerator(FunctionGeneratorBase): return_str += " return ToPyObject(out, args, inplace_var_idx_map);" # Generate Python-C Function Definetion - if (is_forward_only) and (len(amp_tensors_vector_list) > 0) and ( - inplaced_forward_api_name not in no_amp_list): - python_c_inplace_func_str = PYTHON_C_FUNCTION_TEMPLATE.format( - inplaced_forward_api_name, pythonc_record_event_str, - inplaced_forward_api_name, get_eager_tensor_str, - parse_attributes_str, set_device_str, - inplace_amp_dygraph_function_str, return_str) - else: - python_c_inplace_func_str = PYTHON_C_FUNCTION_TEMPLATE.format( - inplaced_forward_api_name, pythonc_record_event_str, - inplaced_forward_api_name, get_eager_tensor_str, - parse_attributes_str, set_device_str, - inplace_noamp_dygraph_function_str, return_str) + python_c_inplace_func_str = PYTHON_C_FUNCTION_TEMPLATE.format( + inplaced_forward_api_name, pythonc_record_event_str, + inplaced_forward_api_name, get_eager_tensor_str, + parse_attributes_str, set_device_str, + inplace_noamp_dygraph_function_str, return_str) python_c_inplace_func_reg_str = PYTHON_C_FUNCTION_REG_TEMPLATE.format( forward_api_name_prefix, inplaced_forward_api_name, namespace, diff --git a/paddle/phi/api/yaml/api.yaml b/paddle/phi/api/yaml/api.yaml index 12ea231a939d1b2500d58a18bb7116fe371dd931..fae468fdd766b8911de665d8a45bc014122e0901 100644 --- a/paddle/phi/api/yaml/api.yaml +++ b/paddle/phi/api/yaml/api.yaml @@ -9,7 +9,7 @@ - api : bernoulli args : (Tensor x) - output : Tensor + output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : diff --git a/paddle/phi/api/yaml/legacy_api.yaml b/paddle/phi/api/yaml/legacy_api.yaml index 8854a1dea213566cf0db822286a2c3696d75f5aa..4213775f27c902bda0f6b49697478ddc02a381cc 100755 --- a/paddle/phi/api/yaml/legacy_api.yaml +++ b/paddle/phi/api/yaml/legacy_api.yaml @@ -184,7 +184,7 @@ - api : arange args : (Tensor start, Tensor end, Tensor step, DataType dtype, Place place={}) - output : Tensor + output : Tensor(out) infer_meta : func : ArangeInferMeta param : [start, end, step] @@ -199,7 +199,7 @@ # arg_max - api : argmax args : (Tensor x, int64_t axis, bool keepdims, bool flatten, int dtype) - output : Tensor + output : Tensor(out) infer_meta : func : ArgMinMaxInferMeta kernel : @@ -208,7 +208,7 @@ # arg_min - api : argmin args : (Tensor x, int64_t axis, bool keepdims, bool flatten, int dtype) - output : Tensor + output : Tensor(out) infer_meta : func : ArgMinMaxInferMeta kernel : @@ -366,7 +366,7 @@ # bitwise_and - api : bitwise_and args : (Tensor x, Tensor y) - output : Tensor + output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : @@ -375,7 +375,7 @@ # bitwise_not - api : bitwise_not args : (Tensor x) - output : Tensor + output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : @@ -384,7 +384,7 @@ # bitwise_or - api : bitwise_or args : (Tensor x, Tensor y) - output : Tensor + output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : @@ -393,7 +393,7 @@ # bitwise_xor - api : bitwise_xor args : (Tensor x, Tensor y) - output : Tensor + output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : @@ -557,7 +557,7 @@ - api : copy_to args : (Tensor x, Place place, bool blocking) - output : Tensor + output : Tensor(out) invoke : copy_to_impl(x, place, blocking) # cos @@ -672,7 +672,7 @@ - api : diag_embed args : (Tensor x, int offset, int dim1, int dim2) - output : Tensor + output : Tensor(out) infer_meta : func : DiagEmbedInferMeta kernel : @@ -720,7 +720,7 @@ - api : eigvals args : (Tensor x) - output : Tensor + output : Tensor(out) infer_meta : func : EigvalsInferMeta kernel : @@ -773,7 +773,7 @@ - api : empty args : (IntArray shape, DataType dtype=DataType::FLOAT32, Place place=CPUPlace()) - output: Tensor + output: Tensor(out) infer_meta : func : CreateInferMeta param : [shape, dtype] @@ -785,7 +785,7 @@ - api : empty_like args : (Tensor x, DataType dtype = DataType::UNDEFINED, Place place = {}) - output: Tensor + output: Tensor(out) infer_meta : func : CreateLikeInferMeta param : [x, dtype] @@ -797,7 +797,7 @@ - api : equal args : (Tensor x, Tensor y, int axis = -1) - output : Tensor + output : Tensor(out) infer_meta : func : CompareInferMeta kernel : @@ -805,7 +805,7 @@ - api : equal_all args : (Tensor x, Tensor y) - output : Tensor + output : Tensor(out) infer_meta : func : CompareAllInferMeta kernel : @@ -986,7 +986,7 @@ - api : full args : (IntArray shape, Scalar value, DataType dtype=DataType::FLOAT32, Place place=CPUPlace()) - output: Tensor + output: Tensor(out) infer_meta : func : CreateInferMeta param : [shape, dtype] @@ -1012,7 +1012,7 @@ - api : full_batch_size_like args : (Tensor input, int[] shape, DataType dtype, Scalar value, int input_dim_idx, int output_dim_idx, Place place=CPUPlace()) - output: Tensor + output: Tensor(out) infer_meta : func : FullBatchSizeLikeInferMeta param : [input, shape, value, dtype, input_dim_idx, output_dim_idx] @@ -1024,7 +1024,7 @@ - api : full_like args : (Tensor x, Scalar value, DataType dtype = DataType::UNDEFINED, Place place = {}) - output: Tensor + output: Tensor(out) infer_meta : func : CreateLikeInferMeta param : [x, dtype] @@ -1058,7 +1058,7 @@ - api : gather_tree args : (Tensor ids, Tensor parents) - output : Tensor + output : Tensor(out) infer_meta : func : GatherTreeMeta kernel : @@ -1066,7 +1066,7 @@ - api : gaussian_random args : (IntArray shape, float mean, float std, int seed, DataType dtype, Place place={}) - output: Tensor + output: Tensor(out) infer_meta : func : GaussianRandomInferMeta param : [shape, mean, std, seed, dtype] @@ -1118,7 +1118,7 @@ - api : greater_equal args : (Tensor x, Tensor y, int axis = -1) - output : Tensor + output : Tensor(out) infer_meta : func : CompareInferMeta kernel : @@ -1126,7 +1126,7 @@ - api : greater_than args : (Tensor x, Tensor y, int axis = -1) - output : Tensor + output : Tensor(out) infer_meta : func : CompareInferMeta kernel : @@ -1211,7 +1211,7 @@ # histogram - api : histogram args : (Tensor x, int64_t bins, int min, int max) - output : Tensor + output : Tensor(out) infer_meta : func : HistogramInferMeta kernel : @@ -1238,7 +1238,7 @@ # increment - api : increment args : (Tensor x, float value) - output : Tensor + output : Tensor(out) infer_meta : func : IncrementInferMeta kernel : @@ -1288,7 +1288,7 @@ # is_empty - api : is_empty args : (Tensor x) - output : Tensor + output : Tensor(out) infer_meta : func : IsEmptyInferMeta kernel : @@ -1306,7 +1306,7 @@ # isfinite - api : isfinite args : (Tensor x) - output : Tensor + output : Tensor(out) infer_meta : func : IsfiniteInferMeta kernel : @@ -1316,7 +1316,7 @@ # isinf - api : isinf args : (Tensor x) - output : Tensor + output : Tensor(out) infer_meta : func : IsfiniteInferMeta kernel : @@ -1326,7 +1326,7 @@ # isnan - api : isnan args : (Tensor x) - output : Tensor + output : Tensor(out) infer_meta : func : IsfiniteInferMeta kernel : @@ -1419,7 +1419,7 @@ - api : less_equal args : (Tensor x, Tensor y, int axis = -1) - output : Tensor + output : Tensor(out) infer_meta : func : CompareInferMeta kernel : @@ -1427,7 +1427,7 @@ - api : less_than args : (Tensor x, Tensor y, int axis = -1) - output : Tensor + output : Tensor(out) infer_meta : func : CompareInferMeta kernel : @@ -1446,7 +1446,7 @@ - api : linspace args : (Tensor start, Tensor stop, Tensor number, DataType dtype) - output : Tensor + output : Tensor(out) infer_meta : func : LinspaceInferMeta kernel : @@ -1520,7 +1520,7 @@ # logical_and - api : logical_and args : (Tensor x, Tensor y) - output : Tensor + output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : @@ -1529,7 +1529,7 @@ # logical_not - api : logical_not args : (Tensor x) - output : Tensor + output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : @@ -1538,7 +1538,7 @@ # logical_or - api : logical_or args : (Tensor x, Tensor y) - output : Tensor + output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : @@ -1547,7 +1547,7 @@ # logical_xor - api : logical_xor args : (Tensor x, Tensor y) - output : Tensor + output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : @@ -1827,7 +1827,7 @@ # multinomial - api : multinomial args : (Tensor x, int num_samples, bool replacement) - output : Tensor + output : Tensor(out) infer_meta : func : MultinomialInferMeta kernel : @@ -1895,7 +1895,7 @@ - api : not_equal args : (Tensor x, Tensor y, int axis = -1) - output : Tensor + output : Tensor(out) infer_meta : func : CompareInferMeta kernel : @@ -1903,7 +1903,7 @@ - api : one_hot args : (Tensor x, Scalar(int) num_classes) - output : Tensor + output : Tensor(out) infer_meta : func : OneHotInferMeta kernel : @@ -1911,12 +1911,12 @@ - api : ones args : (IntArray shape, DataType dtype=DataType::FLOAT32, Place place=CPUPlace()) - output : Tensor + output : Tensor(out) invoke : full(shape, 1, dtype, place) - api : ones_like args : (Tensor x, DataType dtype=DataType::UNDEFINED, Place place={}) - output : Tensor + output : Tensor(out) invoke : full_like(x, 1, dtype, place) - api : p_norm @@ -2061,7 +2061,7 @@ - api : randperm args : (int n, DataType dtype, Place place={}) - output : Tensor + output : Tensor(out) infer_meta : func : RandpermInferMeta param : [n, dtype] @@ -2322,7 +2322,7 @@ - api : shape args : (Tensor input) - output : Tensor + output : Tensor(out) infer_meta : func : ShapeInferMeta kernel : @@ -2334,7 +2334,7 @@ # shard_index - api : shard_index args : (Tensor in, int index_num, int nshards, int shard_id, int ignore_value) - output : Tensor + output : Tensor(out) infer_meta : func : ShardIndexInferMeta kernel : @@ -2362,7 +2362,7 @@ - api : sign args : (Tensor x) - output : Tensor + output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : @@ -2401,7 +2401,7 @@ # size - api : size args : (Tensor x) - output : Tensor + output : Tensor(size) infer_meta : func : SizeInferMeta kernel : @@ -2716,7 +2716,7 @@ # python API: paddle.nn.initializer.TruncatedNormal - api : truncated_gaussian_random args : (int[] shape, float mean, float std, int seed, DataType dtype=DataType::FLOAT32, Place place={}) - output : Tensor + output : Tensor(out) infer_meta : func : TruncatedGaussianRandomInferMeta param : [shape, mean, std, seed, dtype] @@ -2831,7 +2831,7 @@ # where_index - api : where_index args : (Tensor condition) - output : Tensor + output : Tensor(out) infer_meta : func : WhereIndexInferMeta kernel : @@ -2861,12 +2861,12 @@ - api : zeros args : (IntArray shape, DataType dtype=DataType::FLOAT32, Place place=CPUPlace()) - output : Tensor + output : Tensor(out) invoke : full(shape, 0, dtype, place) - api : zeros_like args : (Tensor x, DataType dtype=DataType::UNDEFINED, Place place = {}) - output : Tensor + output : Tensor(out) invoke : full_like(x, 0, dtype, place) - api: broadcast_tensors @@ -2881,7 +2881,7 @@ # dirichlet - api: dirichlet args: (Tensor alpha) - output: Tensor + output: Tensor(out) infer_meta: func: DirichletInferMeta kernel: