提交 91d73c3f 编写于 作者: T Travis CI

Deploy to GitHub Pages: 85189e8d

上级 47aea0cd
...@@ -9,6 +9,100 @@ Please be aware that you will need to change `Dockers settings ...@@ -9,6 +9,100 @@ Please be aware that you will need to change `Dockers settings
of your hardware resource on Mac OS X and Windows. of your hardware resource on Mac OS X and Windows.
Usage of CPU-only and GPU Images
----------------------------------
For each version of PaddlePaddle, we release 2 Docker images, a
CPU-only one and a CUDA GPU one. We do so by configuring
`dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_
automatically generate the latest docker images `paddledev/paddle:0.10.0rc1-cpu`
and `paddledev/paddle:0.10.0rc1-gpu`.
To run the CPU-only image as an interactive container:
.. code-block:: bash
docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
or, we can run it as a daemon container
.. code-block:: bash
docker run -d -p 2202:22 -p 8888:8888 paddledev/paddle:0.10.0rc1-cpu
and SSH to this container using password :code:`root`:
.. code-block:: bash
ssh -p 2202 root@localhost
An advantage of using SSH is that we can connect to PaddlePaddle from
more than one terminals. For example, one terminal running vi and
another one running Python interpreter. Another advantage is that we
can run the PaddlePaddle container on a remote server and SSH to it
from a laptop.
Above methods work with the GPU image too -- just please don't forget
to install CUDA driver and let Docker knows about it:
.. code-block:: bash
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0rc1-gpu
PaddlePaddle Book
------------------
The Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code, equations,
visualizations and explanatory text in a single browser.
PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
We already exposed port 8888 for this book. If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
Once you are inside the container, simply issue the command:
.. code-block:: bash
jupyter notebook
Then, you would back and paste the address into the local browser:
.. code-block:: text
http://localhost:8888/
That's all. Enjoy your journey!
Non-AVX Images
--------------
Please be aware that the CPU-only and the GPU images both use the AVX
instruction set, but old computers produced before 2008 do not support
AVX. The following command checks if your Linux computer supports
AVX:
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
If it doesn't, we will need to build non-AVX images manually from
source code:
.. code-block:: bash
cd ~
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
docker build --build-arg WITH_AVX=OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg WITH_AVX=OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
Development Using Docker Development Using Docker
------------------------ ------------------------
...@@ -82,103 +176,6 @@ Windows -- in a consistent way. ...@@ -82,103 +176,6 @@ Windows -- in a consistent way.
cd /paddle/build cd /paddle/build
ctest ctest
4. Run PaddlePaddle Book under Docker Container
The Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code, equations,
visualizations and explanatory text in a single browser.
PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
We already exposed port 8888 for this book. If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
Once you are inside the container, simply issue the command:
.. code-block:: bash
jupyter notebook
Then, you would back and paste the address into the local browser:
.. code-block:: text
http://localhost:8888/
That's all. Enjoy your journey!
CPU-only and GPU Images
-----------------------
For each version of PaddlePaddle, we release 2 Docker images, a
CPU-only one and a CUDA GPU one. We do so by configuring
`dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_
automatically runs the following commands:
.. code-block:: bash
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu --build-arg BUILD_AND_INSTALL=ON .
To run the CPU-only image as an interactive container:
.. code-block:: bash
docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
or, we can run it as a daemon container
.. code-block:: bash
docker run -d -p 2202:22 paddledev/paddle:0.10.0rc1-cpu
and SSH to this container using password :code:`root`:
.. code-block:: bash
ssh -p 2202 root@localhost
An advantage of using SSH is that we can connect to PaddlePaddle from
more than one terminals. For example, one terminal running vi and
another one running Python interpreter. Another advantage is that we
can run the PaddlePaddle container on a remote server and SSH to it
from a laptop.
Above methods work with the GPU image too -- just please don't forget
to install CUDA driver and let Docker knows about it:
.. code-block:: bash
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0rc1-gpu
Non-AVX Images
--------------
Please be aware that the CPU-only and the GPU images both use the AVX
instruction set, but old computers produced before 2008 do not support
AVX. The following command checks if your Linux computer supports
AVX:
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
If it doesn't, we will need to build non-AVX images manually from
source code:
.. code-block:: bash
cd ~
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
docker build --build-arg WITH_AVX=OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg WITH_AVX=OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
Documentation Documentation
------------- -------------
......
...@@ -176,9 +176,10 @@ ...@@ -176,9 +176,10 @@
<nav class="local-toc"><ul> <nav class="local-toc"><ul>
<li><a class="reference internal" href="#">PaddlePaddle in Docker Containers</a><ul> <li><a class="reference internal" href="#">PaddlePaddle in Docker Containers</a><ul>
<li><a class="reference internal" href="#development-using-docker">Development Using Docker</a></li> <li><a class="reference internal" href="#usage-of-cpu-only-and-gpu-images">Usage of CPU-only and GPU Images</a></li>
<li><a class="reference internal" href="#cpu-only-and-gpu-images">CPU-only and GPU Images</a></li> <li><a class="reference internal" href="#paddlepaddle-book">PaddlePaddle Book</a></li>
<li><a class="reference internal" href="#non-avx-images">Non-AVX Images</a></li> <li><a class="reference internal" href="#non-avx-images">Non-AVX Images</a></li>
<li><a class="reference internal" href="#development-using-docker">Development Using Docker</a></li>
<li><a class="reference internal" href="#documentation">Documentation</a></li> <li><a class="reference internal" href="#documentation">Documentation</a></li>
</ul> </ul>
</li> </li>
...@@ -220,6 +221,75 @@ running PaddlePaddle. This is reasonable as Docker now runs on all ...@@ -220,6 +221,75 @@ running PaddlePaddle. This is reasonable as Docker now runs on all
major operating systems including Linux, Mac OS X, and Windows. major operating systems including Linux, Mac OS X, and Windows.
Please be aware that you will need to change <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/627">Dockers settings</a> to make full use Please be aware that you will need to change <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/627">Dockers settings</a> to make full use
of your hardware resource on Mac OS X and Windows.</p> of your hardware resource on Mac OS X and Windows.</p>
<div class="section" id="usage-of-cpu-only-and-gpu-images">
<h2>Usage of CPU-only and GPU Images<a class="headerlink" href="#usage-of-cpu-only-and-gpu-images" title="Permalink to this headline"></a></h2>
<p>For each version of PaddlePaddle, we release 2 Docker images, a
CPU-only one and a CUDA GPU one. We do so by configuring
<a class="reference external" href="https://hub.docker.com/r/paddledev/paddle/">dockerhub.com</a>
automatically generate the latest docker images <cite>paddledev/paddle:0.10.0rc1-cpu</cite>
and <cite>paddledev/paddle:0.10.0rc1-gpu</cite>.</p>
<p>To run the CPU-only image as an interactive container:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
</pre></div>
</div>
<p>or, we can run it as a daemon container</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -d -p <span class="m">2202</span>:22 -p <span class="m">8888</span>:8888 paddledev/paddle:0.10.0rc1-cpu
</pre></div>
</div>
<p>and SSH to this container using password <code class="code docutils literal"><span class="pre">root</span></code>:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>ssh -p <span class="m">2202</span> root@localhost
</pre></div>
</div>
<p>An advantage of using SSH is that we can connect to PaddlePaddle from
more than one terminals. For example, one terminal running vi and
another one running Python interpreter. Another advantage is that we
can run the PaddlePaddle container on a remote server and SSH to it
from a laptop.</p>
<p>Above methods work with the GPU image too &#8211; just please don&#8217;t forget
to install CUDA driver and let Docker knows about it:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">CUDA_SO</span><span class="o">=</span><span class="s2">&quot;</span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libcuda* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2"> </span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libnvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2">&quot;</span>
<span class="nb">export</span> <span class="nv">DEVICES</span><span class="o">=</span><span class="k">$(</span><span class="se">\l</span>s /dev/nvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;--device {}:{}&#39;</span><span class="k">)</span>
docker run <span class="si">${</span><span class="nv">CUDA_SO</span><span class="si">}</span> <span class="si">${</span><span class="nv">DEVICES</span><span class="si">}</span> -it paddledev/paddle:0.10.0rc1-gpu
</pre></div>
</div>
</div>
<div class="section" id="paddlepaddle-book">
<h2>PaddlePaddle Book<a class="headerlink" href="#paddlepaddle-book" title="Permalink to this headline"></a></h2>
<p>The Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code, equations,
visualizations and explanatory text in a single browser.</p>
<p>PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
We already exposed port 8888 for this book. If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.</p>
<p>Once you are inside the container, simply issue the command:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>jupyter notebook
</pre></div>
</div>
<p>Then, you would back and paste the address into the local browser:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>http://localhost:8888/
</pre></div>
</div>
<p>That&#8217;s all. Enjoy your journey!</p>
</div>
<div class="section" id="non-avx-images">
<h2>Non-AVX Images<a class="headerlink" href="#non-avx-images" title="Permalink to this headline"></a></h2>
<p>Please be aware that the CPU-only and the GPU images both use the AVX
instruction set, but old computers produced before 2008 do not support
AVX. The following command checks if your Linux computer supports
AVX:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="k">if</span> cat /proc/cpuinfo <span class="p">|</span> grep -i avx<span class="p">;</span> <span class="k">then</span> <span class="nb">echo</span> Yes<span class="p">;</span> <span class="k">else</span> <span class="nb">echo</span> No<span class="p">;</span> <span class="k">fi</span>
</pre></div>
</div>
<p>If it doesn&#8217;t, we will need to build non-AVX images manually from
source code:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> ~
git clone https://github.com/PaddlePaddle/Paddle.git
<span class="nb">cd</span> Paddle
docker build --build-arg <span class="nv">WITH_AVX</span><span class="o">=</span>OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg <span class="nv">WITH_AVX</span><span class="o">=</span>OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
</pre></div>
</div>
</div>
<div class="section" id="development-using-docker"> <div class="section" id="development-using-docker">
<h2>Development Using Docker<a class="headerlink" href="#development-using-docker" title="Permalink to this headline"></a></h2> <h2>Development Using Docker<a class="headerlink" href="#development-using-docker" title="Permalink to this headline"></a></h2>
<p>Developers can work on PaddlePaddle using Docker. This allows <p>Developers can work on PaddlePaddle using Docker. This allows
...@@ -276,79 +346,8 @@ ctest ...@@ -276,79 +346,8 @@ ctest
</pre></div> </pre></div>
</div> </div>
</li> </li>
<li><p class="first">Run PaddlePaddle Book under Docker Container</p>
<p>The Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code, equations,
visualizations and explanatory text in a single browser.</p>
<p>PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
We already exposed port 8888 for this book. If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.</p>
<p>Once you are inside the container, simply issue the command:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>jupyter notebook
</pre></div>
</div>
<p>Then, you would back and paste the address into the local browser:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>http://localhost:8888/
</pre></div>
</div>
<p>That&#8217;s all. Enjoy your journey!</p>
</li>
</ol> </ol>
</div> </div>
<div class="section" id="cpu-only-and-gpu-images">
<h2>CPU-only and GPU Images<a class="headerlink" href="#cpu-only-and-gpu-images" title="Permalink to this headline"></a></h2>
<p>For each version of PaddlePaddle, we release 2 Docker images, a
CPU-only one and a CUDA GPU one. We do so by configuring
<a class="reference external" href="https://hub.docker.com/r/paddledev/paddle/">dockerhub.com</a>
automatically runs the following commands:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile --build-arg <span class="nv">BUILD_AND_INSTALL</span><span class="o">=</span>ON .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu --build-arg <span class="nv">BUILD_AND_INSTALL</span><span class="o">=</span>ON .
</pre></div>
</div>
<p>To run the CPU-only image as an interactive container:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
</pre></div>
</div>
<p>or, we can run it as a daemon container</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -d -p <span class="m">2202</span>:22 paddledev/paddle:0.10.0rc1-cpu
</pre></div>
</div>
<p>and SSH to this container using password <code class="code docutils literal"><span class="pre">root</span></code>:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>ssh -p <span class="m">2202</span> root@localhost
</pre></div>
</div>
<p>An advantage of using SSH is that we can connect to PaddlePaddle from
more than one terminals. For example, one terminal running vi and
another one running Python interpreter. Another advantage is that we
can run the PaddlePaddle container on a remote server and SSH to it
from a laptop.</p>
<p>Above methods work with the GPU image too &#8211; just please don&#8217;t forget
to install CUDA driver and let Docker knows about it:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">CUDA_SO</span><span class="o">=</span><span class="s2">&quot;</span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libcuda* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2"> </span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libnvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2">&quot;</span>
<span class="nb">export</span> <span class="nv">DEVICES</span><span class="o">=</span><span class="k">$(</span><span class="se">\l</span>s /dev/nvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;--device {}:{}&#39;</span><span class="k">)</span>
docker run <span class="si">${</span><span class="nv">CUDA_SO</span><span class="si">}</span> <span class="si">${</span><span class="nv">DEVICES</span><span class="si">}</span> -it paddledev/paddle:0.10.0rc1-gpu
</pre></div>
</div>
</div>
<div class="section" id="non-avx-images">
<h2>Non-AVX Images<a class="headerlink" href="#non-avx-images" title="Permalink to this headline"></a></h2>
<p>Please be aware that the CPU-only and the GPU images both use the AVX
instruction set, but old computers produced before 2008 do not support
AVX. The following command checks if your Linux computer supports
AVX:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="k">if</span> cat /proc/cpuinfo <span class="p">|</span> grep -i avx<span class="p">;</span> <span class="k">then</span> <span class="nb">echo</span> Yes<span class="p">;</span> <span class="k">else</span> <span class="nb">echo</span> No<span class="p">;</span> <span class="k">fi</span>
</pre></div>
</div>
<p>If it doesn&#8217;t, we will need to build non-AVX images manually from
source code:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> ~
git clone https://github.com/PaddlePaddle/Paddle.git
<span class="nb">cd</span> Paddle
docker build --build-arg <span class="nv">WITH_AVX</span><span class="o">=</span>OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg <span class="nv">WITH_AVX</span><span class="o">=</span>OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
</pre></div>
</div>
</div>
<div class="section" id="documentation"> <div class="section" id="documentation">
<h2>Documentation<a class="headerlink" href="#documentation" title="Permalink to this headline"></a></h2> <h2>Documentation<a class="headerlink" href="#documentation" title="Permalink to this headline"></a></h2>
<p>Paddle Docker images include an HTML version of C++ source code <p>Paddle Docker images include an HTML version of C++ source code
......
此差异已折叠。
...@@ -4,138 +4,137 @@ PaddlePaddle的Docker容器使用方式 ...@@ -4,138 +4,137 @@ PaddlePaddle的Docker容器使用方式
PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 `Dockers设置 <https://github.com/PaddlePaddle/Paddle/issues/627>`_ 才能充分利用Mac OS X和Windows上的硬件资源。 PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 `Dockers设置 <https://github.com/PaddlePaddle/Paddle/issues/627>`_ 才能充分利用Mac OS X和Windows上的硬件资源。
通过Docker容器开发PaddlePaddle 纯CPU和GPU的docker镜像使用说明
------------------------------ ------------------------------
开发人员可以在Docker中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。 对于每一个PaddlePaddle版本,我们都会发布两个Docker镜像:纯CPU的和GPU的。
我们通过设置 `dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_ 自动生成最新的docker镜像:
`paddledev/paddle:0.10.0rc1-cpu` 和 `paddledev/paddle:0.10.0rc1-gpu`。
1. 将开发环境构建为Docker镜像 以交互容器方式运行纯CPU的镜像:
.. code-block:: bash .. code-block:: bash
git clone --recursive https://github.com/PaddlePaddle/Paddle docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
cd Paddle
docker build -t paddle:dev -f paddle/scripts/docker/Dockerfile .
或者,可以以后台进程方式运行容器:
请注意,默认情况下,:code:`docker build` 不会将源码导入到镜像中并编译它。如果我们想这样做,需要设置一个参数: .. code-block:: bash
.. code-block:: bash docker run -d -p 2202:22 -p 8888:8888 paddledev/paddle:0.10.0rc1-cpu
docker build -t paddle:dev -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
然后用密码 :code:`root` SSH进入容器:
2. 运行开发环境 .. code-block:: bash
当我们编译好了 :code:`paddle:dev`, 我们可以在docker容器里做开发,源代码可以通过挂载本地文件来被载入Docker的开发环境里面: ssh -p 2202 root@localhost
.. code-block:: bash SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。
docker run -d -p 2202:22 -v $PWD:/paddle paddle:dev
以上代码会启动一个带有PaddlePaddle开发环境的docker容器,源代码会被挂载到 :code:`/paddle` 。 以上方法在GPU镜像里也能用-只是请不要忘记按装CUDA驱动,以及告诉Docker:
请注意, :code:`paddle:dev` 的默认入口是 :code:`sshd` 。以上的 :code:`docker run` 命令其实会启动一个在2202端口监听的SSHD服务器。这样,我们就能SSH进入我们的开发容器了: .. code-block:: bash
.. code-block:: bash export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0rc1-gpu
ssh root@localhost -p 2202
3. 在Docker开发环境中编译与安装PaddlPaddle代码 运行PaddlePaddle书籍
---------------------
当在容器里面的时候,可以用脚本 :code:`paddle/scripts/docker/build.sh` 来编译、安装与测试PaddlePaddle: Jupyter Notebook是一个开源的web程序,大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。
.. code-block:: bash PaddlePaddle书籍是为用户和开发者制作的一个交互式的Jupyter Nodebook。
如果您想要更深入了解deep learning,PaddlePaddle书籍一定是您最好的选择。
/paddle/paddle/scripts/docker/build.sh 当您进入容器内之后,只用运行以下命令:
以上指令会在 :code:`/paddle/build` 中编译PaddlePaddle。通过以下指令可以运行单元测试: .. code-block:: bash
.. code-block:: bash jupyter notebook
cd /paddle/build 然后在浏览器中输入以下网址:
ctest
4. 在Docker容器中运行PaddlePaddle书籍 .. code-block:: text
Jupyter Notebook是一个开源的web程序,大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。 http://localhost:8888/
PaddlePaddle书籍是为用户和开发者制作的一个交互式的Jupyter Nodebook。 就这么简单,享受您的旅程!
如果您想要更深入了解deep learning,PaddlePaddle书籍一定是您最好的选择。
当您进入容器内之后,只用运行以下命令:
.. code-block:: bash 非AVX镜像
---------
jupyter notebook 纯CPU镜像以及GPU镜像都会用到AVX指令集,但是2008年之前生产的旧电脑不支持AVX。以下指令能检查Linux电脑是否支持AVX:
然后在浏览器中输入以下网址: .. code-block:: bash
.. code-block:: text if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
http://localhost:8888/ 如果输出是No,我们就需要手动编译一个非AVX版本的镜像:
就这么简单,享受您的旅程! .. code-block:: bash
纯CPU和GPU的docker镜像 cd ~
---------------------- git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
docker build --build-arg WITH_AVX=OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg WITH_AVX=OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
对于每一个PaddlePaddle版本,我们都会发布两个Docker镜像:纯CPU的和GPU的。我们通过设置 `dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_ 自动运行以下两个命令:
.. code-block:: bash 通过Docker容器开发PaddlePaddle
------------------------------
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON . 开发人员可以在Docker中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu --build-arg BUILD_AND_INSTALL=ON .
以交互容器方式运行纯CPU的镜像: 1. 将开发环境构建为Docker镜像
.. code-block:: bash .. code-block:: bash
docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash git clone --recursive https://github.com/PaddlePaddle/Paddle
cd Paddle
docker build -t paddle:dev -f paddle/scripts/docker/Dockerfile .
或者,可以以后台进程方式运行容器:
.. code-block:: bash 请注意,默认情况下,:code:`docker build` 不会将源码导入到镜像中并编译它。如果我们想这样做,需要设置一个参数:
docker run -d -p 2202:22 paddledev/paddle:0.10.0rc1-cpu .. code-block:: bash
然后用密码 :code:`root` SSH进入容器: docker build -t paddle:dev -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
.. code-block:: bash
ssh -p 2202 root@localhost 2. 运行开发环境
SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。 当我们编译好了 :code:`paddle:dev`, 我们可以在docker容器里做开发,源代码可以通过挂载本地文件来被载入Docker的开发环境里面:
.. code-block:: bash
以上方法在GPU镜像里也能用-只是请不要忘记按装CUDA驱动,以及告诉Docker: docker run -d -p 2202:22 -v $PWD:/paddle paddle:dev
.. code-block:: bash 以上代码会启动一个带有PaddlePaddle开发环境的docker容器,源代码会被挂载到 :code:`/paddle` 。
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" 请注意, :code:`paddle:dev` 的默认入口是 :code:`sshd` 。以上的 :code:`docker run` 命令其实会启动一个在2202端口监听的SSHD服务器。这样,我们就能SSH进入我们的开发容器了:
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0rc1-gpu
.. code-block:: bash
非AVX镜像 ssh root@localhost -p 2202
---------
纯CPU镜像以及GPU镜像都会用到AVX指令集,但是2008年之前生产的旧电脑不支持AVX。以下指令能检查Linux电脑是否支持AVX: 3. 在Docker开发环境中编译与安装PaddlPaddle代码
当在容器里面的时候,可以用脚本 :code:`paddle/scripts/docker/build.sh` 来编译、安装与测试PaddlePaddle:
.. code-block:: bash .. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi /paddle/paddle/scripts/docker/build.sh
如果输出是No,我们就需要手动编译一个非AVX版本的镜像 以上指令会在 :code:`/paddle/build` 中编译PaddlePaddle。通过以下指令可以运行单元测试
.. code-block:: bash .. code-block:: bash
cd ~ cd /paddle/build
git clone https://github.com/PaddlePaddle/Paddle.git ctest
cd Paddle
docker build --build-arg WITH_AVX=OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg WITH_AVX=OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
文档 文档
......
...@@ -183,9 +183,10 @@ ...@@ -183,9 +183,10 @@
<nav class="local-toc"><ul> <nav class="local-toc"><ul>
<li><a class="reference internal" href="#">PaddlePaddle的Docker容器使用方式</a><ul> <li><a class="reference internal" href="#">PaddlePaddle的Docker容器使用方式</a><ul>
<li><a class="reference internal" href="#dockerpaddlepaddle">通过Docker容器开发PaddlePaddle</a></li> <li><a class="reference internal" href="#cpugpudocker">纯CPU和GPU的docker镜像使用说明</a></li>
<li><a class="reference internal" href="#cpugpudocker">纯CPU和GPU的docker镜像</a></li> <li><a class="reference internal" href="#paddlepaddle">运行PaddlePaddle书籍</a></li>
<li><a class="reference internal" href="#avx">非AVX镜像</a></li> <li><a class="reference internal" href="#avx">非AVX镜像</a></li>
<li><a class="reference internal" href="#dockerpaddlepaddle">通过Docker容器开发PaddlePaddle</a></li>
<li><a class="reference internal" href="#id1">文档</a></li> <li><a class="reference internal" href="#id1">文档</a></li>
</ul> </ul>
</li> </li>
...@@ -223,6 +224,61 @@ ...@@ -223,6 +224,61 @@
<div class="section" id="paddlepaddledocker"> <div class="section" id="paddlepaddledocker">
<h1>PaddlePaddle的Docker容器使用方式<a class="headerlink" href="#paddlepaddledocker" title="永久链接至标题"></a></h1> <h1>PaddlePaddle的Docker容器使用方式<a class="headerlink" href="#paddlepaddledocker" title="永久链接至标题"></a></h1>
<p>PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/627">Dockers设置</a> 才能充分利用Mac OS X和Windows上的硬件资源。</p> <p>PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/627">Dockers设置</a> 才能充分利用Mac OS X和Windows上的硬件资源。</p>
<div class="section" id="cpugpudocker">
<h2>纯CPU和GPU的docker镜像使用说明<a class="headerlink" href="#cpugpudocker" title="永久链接至标题"></a></h2>
<p>对于每一个PaddlePaddle版本,我们都会发布两个Docker镜像:纯CPU的和GPU的。
我们通过设置 <a class="reference external" href="https://hub.docker.com/r/paddledev/paddle/">dockerhub.com</a> 自动生成最新的docker镜像:
<cite>paddledev/paddle:0.10.0rc1-cpu</cite><cite>paddledev/paddle:0.10.0rc1-gpu</cite></p>
<p>以交互容器方式运行纯CPU的镜像:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
</pre></div>
</div>
<p>或者,可以以后台进程方式运行容器:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -d -p <span class="m">2202</span>:22 -p <span class="m">8888</span>:8888 paddledev/paddle:0.10.0rc1-cpu
</pre></div>
</div>
<p>然后用密码 <code class="code docutils literal"><span class="pre">root</span></code> SSH进入容器:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>ssh -p <span class="m">2202</span> root@localhost
</pre></div>
</div>
<p>SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。</p>
<p>以上方法在GPU镜像里也能用-只是请不要忘记按装CUDA驱动,以及告诉Docker:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">CUDA_SO</span><span class="o">=</span><span class="s2">&quot;</span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libcuda* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2"> </span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libnvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2">&quot;</span>
<span class="nb">export</span> <span class="nv">DEVICES</span><span class="o">=</span><span class="k">$(</span><span class="se">\l</span>s /dev/nvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;--device {}:{}&#39;</span><span class="k">)</span>
docker run <span class="si">${</span><span class="nv">CUDA_SO</span><span class="si">}</span> <span class="si">${</span><span class="nv">DEVICES</span><span class="si">}</span> -it paddledev/paddle:0.10.0rc1-gpu
</pre></div>
</div>
</div>
<div class="section" id="paddlepaddle">
<h2>运行PaddlePaddle书籍<a class="headerlink" href="#paddlepaddle" title="永久链接至标题"></a></h2>
<p>Jupyter Notebook是一个开源的web程序,大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。</p>
<p>PaddlePaddle书籍是为用户和开发者制作的一个交互式的Jupyter Nodebook。
如果您想要更深入了解deep learning,PaddlePaddle书籍一定是您最好的选择。</p>
<p>当您进入容器内之后,只用运行以下命令:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>jupyter notebook
</pre></div>
</div>
<p>然后在浏览器中输入以下网址:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>http://localhost:8888/
</pre></div>
</div>
<p>就这么简单,享受您的旅程!</p>
</div>
<div class="section" id="avx">
<h2>非AVX镜像<a class="headerlink" href="#avx" title="永久链接至标题"></a></h2>
<p>纯CPU镜像以及GPU镜像都会用到AVX指令集,但是2008年之前生产的旧电脑不支持AVX。以下指令能检查Linux电脑是否支持AVX:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="k">if</span> cat /proc/cpuinfo <span class="p">|</span> grep -i avx<span class="p">;</span> <span class="k">then</span> <span class="nb">echo</span> Yes<span class="p">;</span> <span class="k">else</span> <span class="nb">echo</span> No<span class="p">;</span> <span class="k">fi</span>
</pre></div>
</div>
<p>如果输出是No,我们就需要手动编译一个非AVX版本的镜像:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> ~
git clone https://github.com/PaddlePaddle/Paddle.git
<span class="nb">cd</span> Paddle
docker build --build-arg <span class="nv">WITH_AVX</span><span class="o">=</span>OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg <span class="nv">WITH_AVX</span><span class="o">=</span>OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
</pre></div>
</div>
</div>
<div class="section" id="dockerpaddlepaddle"> <div class="section" id="dockerpaddlepaddle">
<h2>通过Docker容器开发PaddlePaddle<a class="headerlink" href="#dockerpaddlepaddle" title="永久链接至标题"></a></h2> <h2>通过Docker容器开发PaddlePaddle<a class="headerlink" href="#dockerpaddlepaddle" title="永久链接至标题"></a></h2>
<p>开发人员可以在Docker中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。</p> <p>开发人员可以在Docker中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。</p>
...@@ -260,64 +316,8 @@ ctest ...@@ -260,64 +316,8 @@ ctest
</pre></div> </pre></div>
</div> </div>
</li> </li>
<li><p class="first">在Docker容器中运行PaddlePaddle书籍</p>
<p>Jupyter Notebook是一个开源的web程序,大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。</p>
<p>PaddlePaddle书籍是为用户和开发者制作的一个交互式的Jupyter Nodebook。
如果您想要更深入了解deep learning,PaddlePaddle书籍一定是您最好的选择。</p>
<p>当您进入容器内之后,只用运行以下命令:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>jupyter notebook
</pre></div>
</div>
<p>然后在浏览器中输入以下网址:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>http://localhost:8888/
</pre></div>
</div>
<p>就这么简单,享受您的旅程!</p>
</li>
</ol> </ol>
</div> </div>
<div class="section" id="cpugpudocker">
<h2>纯CPU和GPU的docker镜像<a class="headerlink" href="#cpugpudocker" title="永久链接至标题"></a></h2>
<p>对于每一个PaddlePaddle版本,我们都会发布两个Docker镜像:纯CPU的和GPU的。我们通过设置 <a class="reference external" href="https://hub.docker.com/r/paddledev/paddle/">dockerhub.com</a> 自动运行以下两个命令:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile --build-arg <span class="nv">BUILD_AND_INSTALL</span><span class="o">=</span>ON .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu --build-arg <span class="nv">BUILD_AND_INSTALL</span><span class="o">=</span>ON .
</pre></div>
</div>
<p>以交互容器方式运行纯CPU的镜像:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
</pre></div>
</div>
<p>或者,可以以后台进程方式运行容器:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -d -p <span class="m">2202</span>:22 paddledev/paddle:0.10.0rc1-cpu
</pre></div>
</div>
<p>然后用密码 <code class="code docutils literal"><span class="pre">root</span></code> SSH进入容器:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>ssh -p <span class="m">2202</span> root@localhost
</pre></div>
</div>
<p>SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。</p>
<p>以上方法在GPU镜像里也能用-只是请不要忘记按装CUDA驱动,以及告诉Docker:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">CUDA_SO</span><span class="o">=</span><span class="s2">&quot;</span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libcuda* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2"> </span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libnvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2">&quot;</span>
<span class="nb">export</span> <span class="nv">DEVICES</span><span class="o">=</span><span class="k">$(</span><span class="se">\l</span>s /dev/nvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;--device {}:{}&#39;</span><span class="k">)</span>
docker run <span class="si">${</span><span class="nv">CUDA_SO</span><span class="si">}</span> <span class="si">${</span><span class="nv">DEVICES</span><span class="si">}</span> -it paddledev/paddle:0.10.0rc1-gpu
</pre></div>
</div>
</div>
<div class="section" id="avx">
<h2>非AVX镜像<a class="headerlink" href="#avx" title="永久链接至标题"></a></h2>
<p>纯CPU镜像以及GPU镜像都会用到AVX指令集,但是2008年之前生产的旧电脑不支持AVX。以下指令能检查Linux电脑是否支持AVX:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="k">if</span> cat /proc/cpuinfo <span class="p">|</span> grep -i avx<span class="p">;</span> <span class="k">then</span> <span class="nb">echo</span> Yes<span class="p">;</span> <span class="k">else</span> <span class="nb">echo</span> No<span class="p">;</span> <span class="k">fi</span>
</pre></div>
</div>
<p>如果输出是No,我们就需要手动编译一个非AVX版本的镜像:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> ~
git clone https://github.com/PaddlePaddle/Paddle.git
<span class="nb">cd</span> Paddle
docker build --build-arg <span class="nv">WITH_AVX</span><span class="o">=</span>OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg <span class="nv">WITH_AVX</span><span class="o">=</span>OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
</pre></div>
</div>
</div>
<div class="section" id="id1"> <div class="section" id="id1">
<h2>文档<a class="headerlink" href="#id1" title="永久链接至标题"></a></h2> <h2>文档<a class="headerlink" href="#id1" title="永久链接至标题"></a></h2>
<p>Paddle的Docker镜像带有一个通过 <a class="reference external" href="https://github.com/woboq/woboq_codebrowser">woboq code browser</a> 生成的HTML版本的C++源代码,便于用户浏览C++源码。</p> <p>Paddle的Docker镜像带有一个通过 <a class="reference external" href="https://github.com/woboq/woboq_codebrowser">woboq code browser</a> 生成的HTML版本的C++源代码,便于用户浏览C++源码。</p>
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册