Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
918aeb71
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
918aeb71
编写于
6月 16, 2021
作者:
R
ronnywang
提交者:
GitHub
6月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add atan2 op and test (#33067)
* add atan2_op * fix
上级
b0984c7c
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
528 addition
and
0 deletion
+528
-0
paddle/fluid/operators/atan2_op.cc
paddle/fluid/operators/atan2_op.cc
+138
-0
paddle/fluid/operators/atan2_op.cu
paddle/fluid/operators/atan2_op.cu
+31
-0
paddle/fluid/operators/atan2_op.h
paddle/fluid/operators/atan2_op.h
+168
-0
python/paddle/__init__.py
python/paddle/__init__.py
+2
-0
python/paddle/fluid/tests/unittests/test_atan2_op.py
python/paddle/fluid/tests/unittests/test_atan2_op.py
+132
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+56
-0
未找到文件。
paddle/fluid/operators/atan2_op.cc
0 → 100644
浏览文件 @
918aeb71
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/atan2_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
namespace
paddle
{
namespace
operators
{
class
Atan2Op
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X1"
),
"Input"
,
"X1"
,
"atan2"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X2"
),
"Input"
,
"X2"
,
"atan2"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"atan2"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"X1"
);
ctx
->
SetOutputDim
(
"Out"
,
in_dims
);
}
};
class
Atan2OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X1"
,
"(Tensor), The input tensor of atan2 op."
);
AddInput
(
"X2"
,
"(Tensor), The input tensor of atan2 op."
);
AddOutput
(
"Out"
,
"(Tensor), The output tensor of atan2 op."
);
AddComment
(
R"DOC(
Atan2 Operator.
This operator is used to perform elementwise atan2 for input $X1$, $X2$.
$$out = atan2(x1, x2)$$
)DOC"
);
}
};
class
Atan2GradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X1"
),
"Input"
,
"X1"
,
"Atan2Grad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X2"
),
"Input"
,
"X2"
,
"Atan2Grad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out@Grad"
,
"Atan2Grad"
);
auto
x1_grad_name
=
framework
::
GradVarName
(
"X1"
);
auto
x2_grad_name
=
framework
::
GradVarName
(
"X2"
);
auto
dout_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
if
(
ctx
->
HasOutput
(
x1_grad_name
))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X1"
),
dout_dims
);
}
if
(
ctx
->
HasOutput
(
x2_grad_name
))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X2"
),
dout_dims
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
dtype
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X1"
);
return
framework
::
OpKernelType
(
dtype
,
ctx
.
GetPlace
());
}
};
template
<
typename
T
>
class
Atan2GradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
void
Apply
(
GradOpPtr
<
T
>
retv
)
const
override
{
retv
->
SetType
(
"atan2_grad"
);
retv
->
SetInput
(
"X1"
,
this
->
Input
(
"X1"
));
retv
->
SetInput
(
"X2"
,
this
->
Input
(
"X2"
));
retv
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
retv
->
SetAttrMap
(
this
->
Attrs
());
retv
->
SetOutput
(
framework
::
GradVarName
(
"X1"
),
this
->
InputGrad
(
"X1"
));
retv
->
SetOutput
(
framework
::
GradVarName
(
"X2"
),
this
->
InputGrad
(
"X2"
));
}
};
class
Atan2OpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
type
=
ctx
->
GetInputDataType
(
"X1"
);
if
(
ctx
->
GetInputDataType
(
"X1"
)
==
framework
::
proto
::
VarType
::
INT32
||
ctx
->
GetInputDataType
(
"X1"
)
==
framework
::
proto
::
VarType
::
INT64
||
ctx
->
GetInputDataType
(
"X2"
)
==
framework
::
proto
::
VarType
::
INT32
||
ctx
->
GetInputDataType
(
"X2"
)
==
framework
::
proto
::
VarType
::
INT64
)
{
type
=
framework
::
proto
::
VarType
::
FP64
;
}
ctx
->
SetOutputDataType
(
"Out"
,
type
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
atan2
,
ops
::
Atan2Op
,
ops
::
Atan2OpMaker
,
ops
::
Atan2GradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
Atan2GradMaker
<
paddle
::
imperative
::
OpBase
>
,
ops
::
Atan2OpVarTypeInference
);
REGISTER_OPERATOR
(
atan2_grad
,
ops
::
Atan2GradOp
);
REGISTER_OP_CPU_KERNEL
(
atan2
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
>
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_CPU_KERNEL
(
atan2_grad
,
ops
::
Atan2GradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
Atan2GradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
Atan2GradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/atan2_op.cu
0 → 100644
浏览文件 @
918aeb71
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/atan2_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
atan2
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
int32_t
>
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
Atan2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
atan2_grad
,
ops
::
Atan2GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
Atan2GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
Atan2GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/atan2_op.h
0 → 100644
浏览文件 @
918aeb71
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
framework
::
To32BitIndex
;
template
<
typename
T
>
struct
Atan2Out
{
using
type
=
T
;
};
template
<
>
struct
Atan2Out
<
int32_t
>
{
using
type
=
double
;
};
template
<
>
struct
Atan2Out
<
int64_t
>
{
using
type
=
double
;
};
template
<
typename
T
>
struct
Atan2Functor
{
Atan2Functor
(
const
T
*
x1
,
const
T
*
x2
,
typename
Atan2Out
<
T
>::
type
*
out
,
int64_t
numel
)
:
x1_
(
x1
),
x2_
(
x2
),
out_
(
out
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
out_
[
idx
]
=
static_cast
<
typename
Atan2Out
<
T
>::
type
>
(
::
atan2f
(
static_cast
<
float
>
(
x1_
[
idx
]),
static_cast
<
float
>
(
x2_
[
idx
])));
}
const
T
*
x1_
;
const
T
*
x2_
;
typename
Atan2Out
<
T
>::
type
*
out_
;
int64_t
numel_
;
};
template
<
>
struct
Atan2Functor
<
double
>
{
Atan2Functor
(
const
double
*
x1
,
const
double
*
x2
,
double
*
out
,
int64_t
numel
)
:
x1_
(
x1
),
x2_
(
x2
),
out_
(
out
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
out_
[
idx
]
=
::
atan2
(
x1_
[
idx
],
x2_
[
idx
]);
}
const
double
*
x1_
;
const
double
*
x2_
;
double
*
out_
;
int64_t
numel_
;
};
// dx1 = dout * x2 / ((x1)^2 + (x2)^2)
// dx2 = - dout * x1 / ((x1)^2 + (x2)^2)
template
<
typename
T
>
struct
Atan2GradFunctor
{
Atan2GradFunctor
(
const
T
*
x1
,
const
T
*
x2
,
const
T
*
dout
,
T
*
dx1
,
T
*
dx2
,
int64_t
numel
)
:
x1_
(
x1
),
x2_
(
x2
),
dout_
(
dout
),
dx1_
(
dx1
),
dx2_
(
dx2
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
float
x1
=
static_cast
<
float
>
(
x1_
[
idx
]);
float
x2
=
static_cast
<
float
>
(
x2_
[
idx
]);
float
x
=
x1
*
x1
+
x2
*
x2
;
dx1_
[
idx
]
=
static_cast
<
T
>
(
static_cast
<
float
>
(
dout_
[
idx
])
*
x2
/
x
);
dx2_
[
idx
]
=
static_cast
<
T
>
(
-
static_cast
<
float
>
(
dout_
[
idx
])
*
x1
/
x
);
}
const
T
*
x1_
;
const
T
*
x2_
;
const
T
*
dout_
;
T
*
dx1_
;
T
*
dx2_
;
int64_t
numel_
;
};
template
<
>
struct
Atan2GradFunctor
<
double
>
{
Atan2GradFunctor
(
const
double
*
x1
,
const
double
*
x2
,
const
double
*
dout
,
double
*
dx1
,
double
*
dx2
,
int64_t
numel
)
:
x1_
(
x1
),
x2_
(
x2
),
dout_
(
dout
),
dx1_
(
dx1
),
dx2_
(
dx2
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
auto
x
=
x1_
[
idx
]
*
x1_
[
idx
]
+
x2_
[
idx
]
*
x2_
[
idx
];
dx1_
[
idx
]
=
dout_
[
idx
]
*
x2_
[
idx
]
/
x
;
dx2_
[
idx
]
=
-
dout_
[
idx
]
*
x1_
[
idx
]
/
x
;
}
const
double
*
x1_
;
const
double
*
x2_
;
const
double
*
dout_
;
double
*
dx1_
;
double
*
dx2_
;
int64_t
numel_
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
Atan2Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
X1
=
context
.
Input
<
Tensor
>
(
"X1"
);
const
Tensor
*
X2
=
context
.
Input
<
Tensor
>
(
"X2"
);
Tensor
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
numel
=
X1
->
numel
();
auto
x1
=
X1
->
data
<
T
>
();
auto
x2
=
X2
->
data
<
T
>
();
auto
out
=
Out
->
mutable_data
<
typename
Atan2Out
<
T
>::
type
>
(
context
.
GetPlace
(),
size_t
(
numel
*
sizeof
(
typename
Atan2Out
<
T
>::
type
)));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
Atan2Functor
<
T
>
functor
(
x1
,
x2
,
out
,
numel
);
for_range
(
functor
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
Atan2GradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
{
const
Tensor
*
X1
=
context
.
Input
<
Tensor
>
(
"X1"
);
const
Tensor
*
X2
=
context
.
Input
<
Tensor
>
(
"X2"
);
const
Tensor
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
dX1
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X1"
));
Tensor
*
dX2
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X2"
));
auto
numel
=
X1
->
numel
();
auto
x1
=
X1
->
data
<
T
>
();
auto
x2
=
X2
->
data
<
T
>
();
auto
dout
=
dOut
->
data
<
T
>
();
auto
dx1
=
dX1
->
mutable_data
<
T
>
(
context
.
GetPlace
(),
size_t
(
numel
*
sizeof
(
T
)));
auto
dx2
=
dX2
->
mutable_data
<
T
>
(
context
.
GetPlace
(),
size_t
(
numel
*
sizeof
(
T
)));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
Atan2GradFunctor
<
T
>
functor
(
x1
,
x2
,
dout
,
dx1
,
dx2
,
numel
);
for_range
(
functor
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/__init__.py
浏览文件 @
918aeb71
...
...
@@ -152,6 +152,7 @@ from .tensor.math import abs # noqa: F401
from
.tensor.math
import
acos
# noqa: F401
from
.tensor.math
import
asin
# noqa: F401
from
.tensor.math
import
atan
# noqa: F401
from
.tensor.math
import
atan2
# noqa: F401
from
.tensor.math
import
ceil
# noqa: F401
from
.tensor.math
import
cos
# noqa: F401
from
.tensor.math
import
tan
# noqa: F401
...
...
@@ -434,6 +435,7 @@ __all__ = [ # noqa
'divide'
,
'ceil'
,
'atan'
,
'atan2'
,
'expand'
,
'broadcast_to'
,
'ones_like'
,
...
...
python/paddle/fluid/tests/unittests/test_atan2_op.py
0 → 100644
浏览文件 @
918aeb71
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
unittest
from
op_test
import
OpTest
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
compiler
,
Program
,
program_guard
paddle
.
enable_static
()
np
.
random
.
seed
(
0
)
def
atan2_grad
(
x1
,
x2
,
dout
):
dx1
=
dout
*
x2
/
(
x1
*
x1
+
x2
*
x2
)
dx2
=
-
dout
*
x1
/
(
x1
*
x1
+
x2
*
x2
)
return
dx1
,
dx2
class
TestAtan2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"atan2"
self
.
init_dtype
()
x1
=
np
.
random
.
uniform
(
-
1
,
-
0.1
,
[
15
,
17
]).
astype
(
self
.
dtype
)
x2
=
np
.
random
.
uniform
(
0.1
,
1
,
[
15
,
17
]).
astype
(
self
.
dtype
)
out
=
np
.
arctan2
(
x1
,
x2
)
self
.
inputs
=
{
'X1'
:
x1
,
'X2'
:
x2
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad
(
self
):
self
.
check_grad
([
'X1'
,
'X2'
],
'Out'
)
def
test_check_output
(
self
):
self
.
check_output
()
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float64
class
TestAtan2_float
(
TestAtan2
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_grad
(
self
):
if
self
.
dtype
not
in
[
np
.
int32
,
np
.
int64
]:
self
.
check_grad
(
[
'X1'
,
'X2'
],
'Out'
,
user_defined_grads
=
atan2_grad
(
self
.
inputs
[
'X1'
],
self
.
inputs
[
'X2'
],
1
/
self
.
inputs
[
'X1'
].
size
))
class
TestAtan2_float16
(
TestAtan2_float
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestAtan2_int32
(
TestAtan2_float
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
class
TestAtan2_int64
(
TestAtan2_float
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int64
class
TestAtan2API
(
unittest
.
TestCase
):
def
init_dtype
(
self
):
self
.
dtype
=
'float64'
self
.
shape
=
[
11
,
17
]
def
setUp
(
self
):
self
.
init_dtype
()
self
.
x1
=
np
.
random
.
uniform
(
0.1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
self
.
x2
=
np
.
random
.
uniform
(
-
1
,
-
0.1
,
self
.
shape
).
astype
(
self
.
dtype
)
self
.
place
=
[
paddle
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
self
.
place
.
append
(
paddle
.
CUDAPlace
(
0
))
def
test_static_api
(
self
):
paddle
.
enable_static
()
def
run
(
place
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
X1
=
paddle
.
fluid
.
data
(
'X1'
,
self
.
shape
,
dtype
=
self
.
dtype
)
X2
=
paddle
.
fluid
.
data
(
'X2'
,
self
.
shape
,
dtype
=
self
.
dtype
)
out
=
paddle
.
atan2
(
X1
,
X2
)
exe
=
paddle
.
static
.
Executor
(
place
)
res
=
exe
.
run
(
feed
=
{
'X1'
:
self
.
x1
,
'X2'
:
self
.
x2
})
out_ref
=
np
.
arctan2
(
self
.
x1
,
self
.
x2
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
for
place
in
self
.
place
:
run
(
place
)
def
test_dygraph_api
(
self
):
def
run
(
place
):
paddle
.
disable_static
(
place
)
X1
=
paddle
.
to_tensor
(
self
.
x1
)
X2
=
paddle
.
to_tensor
(
self
.
x2
)
out
=
paddle
.
atan2
(
X1
,
X2
)
out_ref
=
np
.
arctan2
(
self
.
x1
,
self
.
x2
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
out
.
numpy
()),
True
)
paddle
.
enable_static
()
for
place
in
self
.
place
:
run
(
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
918aeb71
...
...
@@ -147,6 +147,7 @@ from .math import add # noqa: F401
from
.math
import
add_
# noqa: F401
from
.math
import
subtract
# noqa: F401
from
.math
import
subtract_
# noqa: F401
from
.math
import
atan2
# noqa: F401
from
.math
import
logsumexp
# noqa: F401
from
.math
import
inverse
# noqa: F401
from
.math
import
log2
# noqa: F401
...
...
python/paddle/tensor/math.py
浏览文件 @
918aeb71
...
...
@@ -2386,3 +2386,59 @@ def neg(x, name=None):
"""
return
layers
.
scale
(
x
,
scale
=-
1.0
,
bias
=
0.0
,
bias_after_scale
=
True
,
act
=
None
,
name
=
name
)
def
atan2
(
y
,
x
,
name
=
None
):
r
"""
Element-wise arctangent of y/x with consideration of the quadrant.
Equation:
.. math::
atan2(y,x)=\left\{\begin{matrix}
& tan^{-1}(\frac{y}{x}) & x > 0 \\
& tan^{-1}(\frac{y}{x}) + \pi & y>=0, x < 0 \\
& tan^{-1}(\frac{y}{x}) - \pi & y<0, x < 0 \\
& +\frac{\pi}{2} & y>0, x = 0 \\
& -\frac{\pi}{2} & y<0, x = 0 \\
&\text{undefined} & y=0, x = 0
\end{matrix}\right.
Args:
y (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
x (Tensor): An N-D Tensor, must have the same type as `x`.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).
Examples:
.. code-block:: python
import paddle
y = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
#Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [-1, 1, 1, -1])
x = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
#Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [-1, -1, 1, 1])
out = paddle.atan2(y, x)
#Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [-2.35619450, 2.35619450, 0.78539819, -0.78539819])
"""
if
in_dygraph_mode
():
return
core
.
ops
.
atan2
(
y
,
x
)
else
:
check_variable_and_dtype
(
y
,
'y'
,
[
'int32'
,
'int64'
,
'float16'
,
'float32'
,
'float64'
],
'atan2'
)
check_variable_and_dtype
(
x
,
'x'
,
[
'int32'
,
'int64'
,
'float16'
,
'float32'
,
'float64'
],
'atan2'
)
helper
=
LayerHelper
(
'atan2'
,
**
locals
())
inputs
=
{
'X1'
:
y
,
'X2'
:
x
}
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'atan2'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
out
})
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录