diff --git a/doc/getstarted/index_cn.rst b/doc/getstarted/index_cn.rst index 0cb27f802c40ef123fdc9c6799aad3b2a5f554c0..aa418c657a4ba16cce61c030066f4d3e14e891cc 100644 --- a/doc/getstarted/index_cn.rst +++ b/doc/getstarted/index_cn.rst @@ -7,4 +7,4 @@ build_and_install/index_cn.rst concepts/use_concepts_cn.rst -- `深度学习入门课程 `_ +- `深度学习入门课程 `_ diff --git a/doc/getstarted/index_en.rst b/doc/getstarted/index_en.rst index 9f771e93e8b63eb98e31ec12667bd1aa007af20e..be3253e3d41b99a2b696e2c5ef6463ed49680d69 100644 --- a/doc/getstarted/index_en.rst +++ b/doc/getstarted/index_en.rst @@ -6,4 +6,4 @@ GET STARTED build_and_install/index_en.rst -- `Deep Learning 101 `_ +- `Deep Learning 101 `_ diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 9f0f9f2d74db8e0b538adb8263e2844c2cf4b74f..2b48e4dc0f875be9a87797fa14885926999a5010 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -58,7 +58,7 @@ EOF make -j `nproc` if [ ${WITH_TESTING:-OFF} == "ON" ] && [ ${RUN_TEST:-OFF} == "ON" ] ; then pip uninstall -y py-paddle paddle || true - ctest -V + ctest --output-on-failure fi diff --git a/python/paddle/v2/dataset/flowers.py b/python/paddle/v2/dataset/flowers.py new file mode 100644 index 0000000000000000000000000000000000000000..07c13cf719ae0c864c23fef51f0bd7d47f265759 --- /dev/null +++ b/python/paddle/v2/dataset/flowers.py @@ -0,0 +1,184 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This module will download dataset from +http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html +and parse train/test set intopaddle reader creators. + +This set contains images of flowers belonging to 102 different categories. +The images were acquired by searching the web and taking pictures. There are a +minimum of 40 images for each category. + +The database was used in: + +Nilsback, M-E. and Zisserman, A. Automated flower classification over a large + number of classes.Proceedings of the Indian Conference on Computer Vision, +Graphics and Image Processing (2008) +http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}. + +""" +import cPickle +import itertools +from common import download +import tarfile +import scipy.io as scio +from paddle.v2.image import * +import os +import numpy as np +import paddle.v2 as paddle +from multiprocessing import cpu_count +__all__ = ['train', 'test', 'valid'] + +DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz' +LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat' +SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat' +DATA_MD5 = '52808999861908f626f3c1f4e79d11fa' +LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d' +SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c' + + +def default_mapper(sample): + ''' + map image bytes data to type needed by model input layer + ''' + img, label = sample + img = paddle.image.load_image_bytes(img) + img = paddle.image.simple_transform(img, 256, 224, True) + return img.flatten().astype('float32'), label + + +def reader_creator(data_file, + label_file, + setid_file, + dataset_name, + mapper=default_mapper, + buffered_size=1024): + ''' + 1. read images from tar file and + merge images into batch files in 102flowers.tgz_batch/ + 2. get a reader to read sample from batch file + + :param data_file: downloaded data file + :type data_file: string + :param label_file: downloaded label file + :type label_file: string + :param setid_file: downloaded setid file containing information + about how to split dataset + :type setid_file: string + :param dataset_name: data set name (tstid|trnid|valid) + :type dataset_name: string + :param mapper: a function to map image bytes data to type + needed by model input layer + :type mapper: callable + :param buffered_size: the size of buffer used to process images + :type buffered_size: int + :return: data reader + :rtype: callable + ''' + labels = scio.loadmat(label_file)['labels'][0] + indexes = scio.loadmat(setid_file)[dataset_name][0] + img2label = {} + for i in indexes: + img = "jpg/image_%05d.jpg" % i + img2label[img] = labels[i - 1] + file_list = batch_images_from_tar(data_file, dataset_name, img2label) + + def reader(): + for file in open(file_list): + file = file.strip() + batch = None + with open(file, 'r') as f: + batch = cPickle.load(f) + data = batch['data'] + labels = batch['label'] + for sample, label in itertools.izip(data, batch['label']): + yield sample, int(label) + + return paddle.reader.xmap_readers(mapper, reader, + cpu_count(), buffered_size) + + +def train(mapper=default_mapper, buffered_size=1024): + ''' + Create flowers training set reader. + It returns a reader, each sample in the reader is + image pixels in [0, 1] and label in [1, 102] + translated from original color image by steps: + 1. resize to 256*256 + 2. random crop to 224*224 + 3. flatten + :param mapper: a function to map sample. + :type mapper: callable + :param buffered_size: the size of buffer used to process images + :type buffered_size: int + :return: train data reader + :rtype: callable + ''' + return reader_creator( + download(DATA_URL, 'flowers', DATA_MD5), + download(LABEL_URL, 'flowers', LABEL_MD5), + download(SETID_URL, 'flowers', SETID_MD5), 'trnid', mapper, + buffered_size) + + +def test(mapper=default_mapper, buffered_size=1024): + ''' + Create flowers test set reader. + It returns a reader, each sample in the reader is + image pixels in [0, 1] and label in [1, 102] + translated from original color image by steps: + 1. resize to 256*256 + 2. random crop to 224*224 + 3. flatten + :param mapper: a function to map sample. + :type mapper: callable + :param buffered_size: the size of buffer used to process images + :type buffered_size: int + :return: test data reader + :rtype: callable + ''' + return reader_creator( + download(DATA_URL, 'flowers', DATA_MD5), + download(LABEL_URL, 'flowers', LABEL_MD5), + download(SETID_URL, 'flowers', SETID_MD5), 'tstid', mapper, + buffered_size) + + +def valid(mapper=default_mapper, buffered_size=1024): + ''' + Create flowers validation set reader. + It returns a reader, each sample in the reader is + image pixels in [0, 1] and label in [1, 102] + translated from original color image by steps: + 1. resize to 256*256 + 2. random crop to 224*224 + 3. flatten + :param mapper: a function to map sample. + :type mapper: callable + :param buffered_size: the size of buffer used to process images + :type buffered_size: int + :return: test data reader + :rtype: callable + ''' + return reader_creator( + download(DATA_URL, 'flowers', DATA_MD5), + download(LABEL_URL, 'flowers', LABEL_MD5), + download(SETID_URL, 'flowers', SETID_MD5), 'valid', mapper, + buffered_size) + + +def fetch(): + download(DATA_URL, 'flowers', DATA_MD5) + download(LABEL_URL, 'flowers', LABEL_MD5) + download(SETID_URL, 'flowers', SETID_MD5) diff --git a/python/paddle/v2/dataset/tests/flowers_test.py b/python/paddle/v2/dataset/tests/flowers_test.py new file mode 100644 index 0000000000000000000000000000000000000000..cc0626f4feae287d18dfb227cc69a4174da055da --- /dev/null +++ b/python/paddle/v2/dataset/tests/flowers_test.py @@ -0,0 +1,51 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.v2.dataset.flowers +import unittest + + +class TestFlowers(unittest.TestCase): + def check_reader(self, reader): + sum = 0 + label = 0 + size = 224 * 224 * 3 + for l in reader(): + self.assertEqual(l[0].size, size) + if l[1] > label: + label = l[1] + sum += 1 + return sum, label + + def test_train(self): + instances, max_label_value = self.check_reader( + paddle.v2.dataset.flowers.train()) + self.assertEqual(instances, 1020) + self.assertEqual(max_label_value, 102) + + def test_test(self): + instances, max_label_value = self.check_reader( + paddle.v2.dataset.flowers.test()) + self.assertEqual(instances, 6149) + self.assertEqual(max_label_value, 102) + + def test_valid(self): + instances, max_label_value = self.check_reader( + paddle.v2.dataset.flowers.valid()) + self.assertEqual(instances, 1020) + self.assertEqual(max_label_value, 102) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/image.py b/python/paddle/v2/image.py index 85ad6984ba08440d8f8c24a6ca5842024dbafe4b..0d648e9ae697ff0373c6cdc166608d395a8d8086 100644 --- a/python/paddle/v2/image.py +++ b/python/paddle/v2/image.py @@ -1,14 +1,16 @@ import numpy as np try: import cv2 -except: - print( - "import cv2 error, please install opencv-python: pip install opencv-python" - ) +except ImportError: + cv2 = None +import os +import tarfile +import cPickle __all__ = [ - "load_image", "resize_short", "to_chw", "center_crop", "random_crop", - "left_right_flip", "simple_transform", "load_and_transform" + "load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop", + "random_crop", "left_right_flip", "simple_transform", "load_and_transform", + "batch_images_from_tar" ] """ This file contains some common interfaces for image preprocess. @@ -28,6 +30,90 @@ the image layout as follows. """ +def batch_images_from_tar(data_file, + dataset_name, + img2label, + num_per_batch=1024): + """ + Read images from tar file and batch them into batch file. + param data_file: path of image tar file + type data_file: string + param dataset_name: 'train','test' or 'valid' + type dataset_name: string + param img2label: a dic with image file name as key + and image's label as value + type img2label: dic + param num_per_batch: image number per batch file + type num_per_batch: int + return: path of list file containing paths of batch file + rtype: string + """ + batch_dir = data_file + "_batch" + out_path = "%s/%s" % (batch_dir, dataset_name) + meta_file = "%s/%s.txt" % (batch_dir, dataset_name) + + if os.path.exists(out_path): + return meta_file + else: + os.makedirs(out_path) + + tf = tarfile.open(data_file) + mems = tf.getmembers() + data = [] + labels = [] + file_id = 0 + for mem in mems: + if mem.name in img2label: + data.append(tf.extractfile(mem).read()) + labels.append(img2label[mem.name]) + if len(data) == num_per_batch: + output = {} + output['label'] = labels + output['data'] = data + cPickle.dump( + output, + open('%s/batch_%d' % (out_path, file_id), 'w'), + protocol=cPickle.HIGHEST_PROTOCOL) + file_id += 1 + data = [] + labels = [] + if len(data) > 0: + output = {} + output['label'] = labels + output['data'] = data + cPickle.dump( + output, + open('%s/batch_%d' % (out_path, file_id), 'w'), + protocol=cPickle.HIGHEST_PROTOCOL) + + with open(meta_file, 'a') as meta: + for file in os.listdir(out_path): + meta.write(os.path.abspath("%s/%s" % (out_path, file)) + "\n") + return meta_file + + +def load_image_bytes(bytes, is_color=True): + """ + Load an color or gray image from bytes array. + + Example usage: + + .. code-block:: python + with open('cat.jpg') as f: + im = load_image_bytes(f.read()) + + :param bytes: the input image bytes array. + :type file: str + :param is_color: If set is_color True, it will load and + return a color image. Otherwise, it will + load and return a gray image. + """ + flag = 1 if is_color else 0 + file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8) + img = cv2.imdecode(file_bytes, flag) + return img + + def load_image(file, is_color=True): """ Load an color or gray image from the file path. diff --git a/python/paddle/v2/reader/decorator.py b/python/paddle/v2/reader/decorator.py index 104ce9a0411413bb8fc65eedf5821f98d6acdba3..c76faa596c9fb9079cab3456b721c18ef9768e95 100644 --- a/python/paddle/v2/reader/decorator.py +++ b/python/paddle/v2/reader/decorator.py @@ -14,7 +14,7 @@ __all__ = [ 'map_readers', 'buffered', 'compose', 'chain', 'shuffle', - 'ComposeNotAligned', 'firstn' + 'ComposeNotAligned', 'firstn', 'xmap_readers' ] import itertools @@ -224,3 +224,74 @@ def firstn(reader, n): yield item return firstn_reader + + +class XmapEndSignal(): + pass + + +def xmap_readers(mapper, reader, process_num, buffer_size): + """ + Use multiprocess to map samples from reader by a mapper defined by user. + And this function contains a buffered decorator. + :param mapper: a function to map sample. + :type mapper: callable + :param reader: the data reader to read from + :type reader: callable + :param process_num: process number to handle original sample + :type process_num: int + :param buffer_size: max buffer size + :type buffer_size: int + :return: the decarated reader + :rtype: callable + """ + end = XmapEndSignal() + in_queue = Queue(buffer_size) + out_queue = Queue(buffer_size) + + # define a worker to read samples from reader to in_queue + def read_worker(reader, in_queue): + for i in reader(): + in_queue.put(i) + in_queue.put(end) + + # start a read worker in a thread + t = Thread(target=read_worker, args=(reader, in_queue)) + t.daemon = True + t.start() + + # define a worker to handle samples from in_queue by mapper + # and put mapped samples into out_queue + def handle_worker(in_queue, out_queue, mapper): + sample = in_queue.get() + while not isinstance(sample, XmapEndSignal): + r = mapper(sample) + out_queue.put(r) + sample = in_queue.get() + in_queue.put(end) + out_queue.put(end) + + # start several handle_workers + workers = [] + for i in xrange(process_num): + worker = Thread( + target=handle_worker, args=(in_queue, out_queue, mapper)) + worker.daemon = True + workers.append(worker) + for w in workers: + w.start() + + def xreader(): + sample = out_queue.get() + while not isinstance(sample, XmapEndSignal): + yield sample + sample = out_queue.get() + finish = 1 + while finish < process_num: + sample = out_queue.get() + if isinstance(sample, XmapEndSignal): + finish += 1 + else: + yield sample + + return xreader