Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
8cc8e411
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8cc8e411
编写于
10月 19, 2021
作者:
W
WangXi
提交者:
GitHub
10月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid] static model parallel dropout support deterministic RandomSeedGenerator (#36228)
上级
d89a759b
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
354 addition
and
32 deletion
+354
-32
paddle/fluid/framework/generator.cc
paddle/fluid/framework/generator.cc
+37
-0
paddle/fluid/framework/generator.h
paddle/fluid/framework/generator.h
+6
-0
paddle/fluid/operators/dropout_impl_util.h
paddle/fluid/operators/dropout_impl_util.h
+3
-7
paddle/fluid/operators/seed_op.cc
paddle/fluid/operators/seed_op.cc
+11
-0
paddle/fluid/operators/seed_op.cu
paddle/fluid/operators/seed_op.cu
+2
-9
paddle/fluid/operators/seed_op.h
paddle/fluid/operators/seed_op.h
+24
-10
paddle/fluid/pybind/generator_py.cc
paddle/fluid/pybind/generator_py.cc
+2
-0
python/paddle/distributed/fleet/meta_parallel/parallel_layers/random.py
...distributed/fleet/meta_parallel/parallel_layers/random.py
+137
-0
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+5
-1
python/paddle/fluid/tests/unittests/test_dropout_op.py
python/paddle/fluid/tests/unittests/test_dropout_op.py
+44
-0
python/paddle/fluid/tests/unittests/test_optimizer.py
python/paddle/fluid/tests/unittests/test_optimizer.py
+44
-4
python/paddle/fluid/tests/unittests/test_seed_op.py
python/paddle/fluid/tests/unittests/test_seed_op.py
+31
-1
python/paddle/framework/random.py
python/paddle/framework/random.py
+8
-0
未找到文件。
paddle/fluid/framework/generator.cc
浏览文件 @
8cc8e411
...
...
@@ -63,6 +63,43 @@ const std::shared_ptr<Generator>& DefaultCPUGenerator() {
return
default_cpu_generator
;
}
using
RNGMap
=
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
Generator
>>
;
static
RNGMap
&
GetRandomSeedGeneratorMap
()
{
static
auto
random_seed_generator_map
=
RNGMap
();
return
random_seed_generator_map
;
}
const
std
::
shared_ptr
<
Generator
>&
SetRandomSeedGenerator
(
const
std
::
string
&
name
,
uint64_t
seed
)
{
auto
&
rng_map
=
GetRandomSeedGeneratorMap
();
auto
iter
=
rng_map
.
find
(
name
);
PADDLE_ENFORCE_EQ
(
iter
==
rng_map
.
end
(),
true
,
platform
::
errors
::
AlreadyExists
(
"%s RandomSeedGenerator is already exist"
,
name
));
auto
generator
=
std
::
make_shared
<
Generator
>
(
seed
);
bool
emplace_success
=
rng_map
.
emplace
(
name
,
generator
).
second
;
PADDLE_ENFORCE_EQ
(
emplace_success
,
true
,
platform
::
errors
::
PermissionDenied
(
"SetRandomSeedGenerator cannot emplace %s RandomSeedGenerator"
,
name
));
return
rng_map
[
name
];
}
const
std
::
shared_ptr
<
Generator
>&
GetRandomSeedGenerator
(
const
std
::
string
&
name
)
{
auto
&
rng_map
=
GetRandomSeedGeneratorMap
();
auto
iter
=
rng_map
.
find
(
name
);
PADDLE_ENFORCE_EQ
(
iter
!=
rng_map
.
end
(),
true
,
platform
::
errors
::
NotFound
(
"%s RandomSeedGenerator is not found, please "
"use `set_random_seed_generator` to set rng first"
,
name
));
return
iter
->
second
;
}
std
::
shared_ptr
<
std
::
mt19937_64
>
OpDefaultCPUEngine
()
{
static
auto
op_default_cpu_engine
=
std
::
make_shared
<
std
::
mt19937_64
>
();
return
op_default_cpu_engine
;
...
...
paddle/fluid/framework/generator.h
浏览文件 @
8cc8e411
...
...
@@ -126,5 +126,11 @@ std::shared_ptr<std::mt19937_64> GetCPURandomEngine(uint64_t);
const
std
::
shared_ptr
<
Generator
>&
GetDefaultCUDAGenerator
(
int64_t
device_id
=
-
1
);
const
std
::
shared_ptr
<
Generator
>&
SetRandomSeedGenerator
(
const
std
::
string
&
name
,
uint64_t
seed
);
const
std
::
shared_ptr
<
Generator
>&
GetRandomSeedGenerator
(
const
std
::
string
&
name
);
}
// namespace framework
}
// namespace paddle
paddle/fluid/operators/dropout_impl_util.h
浏览文件 @
8cc8e411
...
...
@@ -29,7 +29,7 @@ inline void GetSeedDataAndIncrement(const platform::CUDADeviceContext& dev_ctx,
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
dev_ctx
.
GetPlace
()).
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
if
(
(
seed
)
&&
platform
::
is_gpu_place
(
seed
->
place
())
)
{
if
(
seed
)
{
framework
::
Tensor
seed_cpu_tensor
;
TensorCopySync
(
*
seed
,
platform
::
CPUPlace
(),
&
seed_cpu_tensor
);
*
seed_data
=
static_cast
<
uint64_t
>
(
seed_cpu_tensor
.
data
<
int
>
()[
0
]);
...
...
@@ -38,13 +38,9 @@ inline void GetSeedDataAndIncrement(const platform::CUDADeviceContext& dev_ctx,
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
offset
);
*
seed_data
=
seed_offset
.
first
;
*
increment
=
seed_offset
.
second
;
}
else
{
if
(
seed
)
{
*
seed_data
=
*
(
seed
->
data
<
int
>
());
}
else
{
std
::
random_device
rnd
;
*
seed_data
=
is_fix_seed
?
seed_val
:
rnd
();
}
*
increment
=
offset
;
}
}
...
...
paddle/fluid/operators/seed_op.cc
浏览文件 @
8cc8e411
...
...
@@ -39,6 +39,17 @@ class SeedOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddOutput
(
"Out"
,
"The output of seed op."
);
AddAttr
<
int
>
(
"seed"
,
"Dropout random seed."
).
SetDefault
(
0
);
AddAttr
<
bool
>
(
"deterministic"
,
"(bool, default false) Whether to use deterministic "
"RandomSeedGenerator which "
"generate by `set_random_seed_generator`"
)
.
SetDefault
(
false
)
.
AsExtra
();
AddAttr
<
std
::
string
>
(
"rng_name"
,
"use deterministic RandomSeedGenerator which name is `rng_name`"
)
.
SetDefault
(
""
)
.
AsExtra
();
AddAttr
<
bool
>
(
"force_cpu"
,
"(bool, default false) Force fill output variable to cpu "
"memory. Otherwise, fill output variable to the running "
...
...
paddle/fluid/operators/seed_op.cu
浏览文件 @
8cc8e411
...
...
@@ -23,16 +23,9 @@ class GPUSeedKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
int
user_seed
=
context
.
Attr
<
int
>
(
"seed"
);
auto
force_cpu
=
context
.
Attr
<
bool
>
(
"force_cpu"
);
std
::
random_device
rnd
;
int
seed
;
if
(
user_seed
!=
0
)
{
seed
=
user_seed
;
}
else
{
seed
=
rnd
();
}
int
seed
=
get_seed
(
context
);
auto
force_cpu
=
context
.
Attr
<
bool
>
(
"force_cpu"
);
bool
cpu_place
=
force_cpu
||
context
.
GetPlace
()
==
platform
::
CPUPlace
();
if
(
cpu_place
)
{
platform
::
DeviceContextPool
&
pool
=
...
...
paddle/fluid/operators/seed_op.h
浏览文件 @
8cc8e411
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
...
...
@@ -20,24 +21,37 @@ namespace paddle {
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
CPUSeedKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
static
int
get_seed
(
const
framework
::
ExecutionContext
&
context
)
{
int
user_seed
=
context
.
Attr
<
int
>
(
"seed"
);
bool
deterministic
=
context
.
Attr
<
bool
>
(
"deterministic"
);
int
seed
=
0
;
if
(
!
deterministic
)
{
// NOTE: fixed seed should only be used in unittest or for debug.
// Guarantee to use random seed in training.
std
::
random_device
rnd
;
int
seed
;
if
(
user_seed
!=
0
)
{
seed
=
user_seed
;
}
else
{
std
::
random_device
rnd
;
seed
=
rnd
();
}
out_data
[
0
]
=
seed
;
}
else
{
std
::
string
name
=
context
.
Attr
<
std
::
string
>
(
"rng_name"
);
auto
rng
=
framework
::
GetRandomSeedGenerator
(
name
);
do
{
// NOTE(wangxi): cpu dropout will use random seed if seed == 0
seed
=
static_cast
<
int
>
(
rng
->
Random64
());
}
while
(
seed
==
0
);
}
return
seed
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
CPUSeedKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out_data
[
0
]
=
get_seed
(
context
);
}
};
...
...
paddle/fluid/pybind/generator_py.cc
浏览文件 @
8cc8e411
...
...
@@ -60,6 +60,8 @@ void BindGenerator(py::module* m_ptr) {
&
framework
::
Generator
::
SetIsInitPy
);
m
.
def
(
"default_cpu_generator"
,
&
framework
::
DefaultCPUGenerator
);
m
.
def
(
"default_cuda_generator"
,
&
framework
::
GetDefaultCUDAGenerator
);
m
.
def
(
"set_random_seed_generator"
,
&
framework
::
SetRandomSeedGenerator
);
m
.
def
(
"get_random_seed_generator"
,
&
framework
::
GetRandomSeedGenerator
);
}
}
// namespace pybind
}
// namespace paddle
python/paddle/distributed/fleet/meta_parallel/parallel_layers/random.py
浏览文件 @
8cc8e411
...
...
@@ -15,6 +15,11 @@
import
paddle
import
contextlib
import
numpy
as
np
from
paddle
import
_C_ops
from
paddle.fluid
import
core
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
from
paddle.fluid.framework
import
in_dygraph_mode
,
default_main_program
from
paddle.fluid.layer_helper
import
LayerHelper
__all__
=
[]
...
...
@@ -93,3 +98,135 @@ def model_parallel_random_seed(seed=None):
RNG_STATE_TRACKER
.
reset
()
RNG_STATE_TRACKER
.
add
(
MODEL_PARALLEL_RNG
,
local_seed
)
paddle
.
seed
(
global_seed
)
def
determinate_seed
(
rng_name
):
assert
rng_name
is
not
None
and
rng_name
!=
""
helper
=
LayerHelper
(
'seed'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
paddle
.
int32
)
# set force_cpu to reduce sync copy from CPU->GPU->CPU, and reduce pipeline hang
helper
.
append_op
(
type
=
'seed'
,
outputs
=
{
'Out'
:
out
},
attrs
=
{
'deterministic'
:
True
,
'rng_name'
:
rng_name
,
'force_cpu'
:
True
})
return
out
def
dropout
(
x
,
p
=
0.5
,
axis
=
None
,
rng_name
=
None
,
training
=
True
,
mode
=
"upscale_in_train"
,
name
=
None
):
"""
Dropout is a regularization technique for reducing overfitting by preventing
neuron co-adaption during training. The dropout operator randomly sets the
outputs of some units to zero, while upscale others according to the given
dropout probability.
Args:
x (Tensor): The input tensor. The data type is float32 or float64.
p (float|int): Probability of setting units to zero. Default 0.5.
axis (int|list|tuple): The axis along which the dropout is performed. Default None.
rng_name (str): The random seed generator name, which used to obtain deterministic results.
training (bool): A flag indicating whether it is in train phrase or not. Default True.
mode(str): ['upscale_in_train'(default) | 'downscale_in_infer'].
1. upscale_in_train(default), upscale the output at training time
- train: out = input * mask / ( 1.0 - dropout_prob )
- inference: out = input
2. downscale_in_infer, downscale the output at inference
- train: out = input * mask
- inference: out = input * (1.0 - dropout_prob)
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor representing the dropout, has same shape and data type as `x` .
Examples:
We use ``p=0.5`` in the following description for simplicity.
1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
.. code-block:: text
Let's see a simple case when x is a 2d tensor with shape 2*3:
[[1 2 3]
[4 5 6]]
we generate mask with the same shape as x, which is 2*3. The value of mask is
sampled from a Bernoulli distribution randomly. For example, we may get such mask:
[[0 1 0]
[1 0 1]]
So the output is obtained from elementwise multiply of x and mask:
[[0 2 0]
[4 0 6]]
Using default setting, i.e. ``mode='upscale_in_train'`` ,
if in training phase, the final upscale output is:
[[0 4 0 ]
[8 0 12]]
if in test phase, the output is the same as input:
[[1 2 3]
[4 5 6]]
we can also set ``mode='downscale_in_infer'`` , then
if in training phase, the final output is:
[[0 2 0]
[4 0 6]]
if in test phase, the scale output is:
[[0.5 1. 1.5]
[2. 2.5 3. ]]
"""
if
rng_name
is
None
:
return
paddle
.
nn
.
functional
.
dropout
(
x
,
p
,
axis
,
training
,
mode
,
name
)
# fast return for p == 0
if
p
==
0
:
return
x
assert
isinstance
(
p
,
(
float
,
int
)),
\
TypeError
(
"p argument should be a number"
)
assert
0
<=
p
<=
1
,
ValueError
(
"p argument should between 0 and 1"
)
assert
mode
in
(
'downscale_in_infer'
,
'upscale_in_train'
),
\
ValueError
(
"mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
)
assert
axis
is
None
,
\
TypeError
(
"unsupport axis when using random seed generator"
)
mode
=
'downgrade_in_infer'
if
mode
==
'downscale_in_infer'
else
mode
#semantic transfer
# dygraph using tracker, doesn't need determinate seed
if
in_dygraph_mode
():
out
,
mask
=
_C_ops
.
dropout
(
x
,
'dropout_prob'
,
p
,
'is_test'
,
not
training
,
'fix_seed'
,
False
,
'seed'
,
0
,
'dropout_implementation'
,
mode
)
return
out
seed
=
determinate_seed
(
rng_name
)
helper
=
LayerHelper
(
'dropout'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'dropout'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
UINT8
,
stop_gradient
=
True
)
helper
.
append_op
(
type
=
'dropout'
,
inputs
=
{
'X'
:
[
x
],
'Seed'
:
seed
},
outputs
=
{
'Out'
:
[
out
],
'Mask'
:
[
mask
]},
attrs
=
{
'dropout_prob'
:
p
,
'is_test'
:
not
training
,
'dropout_implementation'
:
mode
,
})
return
out
python/paddle/fluid/backward.py
浏览文件 @
8cc8e411
...
...
@@ -175,11 +175,15 @@ class ProgramStats(object):
return
op_idx
=
0
while
(
op_idx
<
len
(
self
.
ops
)
):
while
op_idx
<
len
(
self
.
ops
):
op
=
self
.
ops
[
op_idx
]
if
op
.
desc
.
type
()
!=
"dropout"
:
op_idx
+=
1
continue
# already insert seed op before dropout
if
op
.
input
(
'Seed'
)
is
not
None
and
len
(
op
.
input
(
'Seed'
))
==
1
:
op_idx
+=
1
continue
# add a seed op so that the two dropout op can generate same output
op_unique_name
=
unique_name
.
generate
(
"seed"
)
var_unique_name
=
unique_name
.
generate_with_ignorable_key
(
"."
.
join
(
...
...
python/paddle/fluid/tests/unittests/test_dropout_op.py
浏览文件 @
8cc8e411
...
...
@@ -19,6 +19,7 @@ import numpy as np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.static
as
static
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
...
...
@@ -856,5 +857,48 @@ class TestAlphaDropoutCAPI(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
result
.
numpy
(),
result_np
))
class
TestDropoutWithDeterminateSeedGenerator
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
framework
.
random
.
set_random_seed_generator
(
'seed0'
,
123
)
paddle
.
framework
.
random
.
set_random_seed_generator
(
'seed1'
,
123
)
rng0
=
paddle
.
framework
.
random
.
get_random_seed_generator
(
'seed0'
)
rng1
=
paddle
.
framework
.
random
.
get_random_seed_generator
(
'seed1'
)
self
.
places
=
[
paddle
.
CPUPlace
()]
if
paddle
.
is_compiled_with_cuda
():
self
.
places
.
append
(
paddle
.
CUDAPlace
(
0
))
def
check_static_result
(
self
,
place
):
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
dropout
with
static
.
program_guard
(
static
.
Program
(),
static
.
Program
()):
input
=
static
.
data
(
name
=
"input"
,
shape
=
[
40
,
40
],
dtype
=
"float32"
)
res1
=
dropout
(
input
,
p
=
0.3
,
training
=
True
,
mode
=
'upscale_in_train'
,
rng_name
=
'seed0'
)
res2
=
dropout
(
input
,
p
=
0.3
,
training
=
True
,
mode
=
'upscale_in_train'
,
rng_name
=
'seed1'
)
res3
=
dropout
(
input
,
p
=
0.3
)
in_np
=
np
.
random
.
random
([
40
,
40
]).
astype
(
"float32"
)
exe
=
static
.
Executor
(
place
)
res_list
=
[
res1
,
res2
]
for
i
in
range
(
2
):
out1
,
out2
=
exe
.
run
(
static
.
default_main_program
(),
feed
=
{
"input"
:
in_np
},
fetch_list
=
res_list
)
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
))
def
test_static
(
self
):
for
place
in
self
.
places
:
self
.
check_static_result
(
place
=
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_optimizer.py
浏览文件 @
8cc8e411
...
...
@@ -619,7 +619,7 @@ class TestLookaheadOptimizer(unittest.TestCase):
class
TestRecomputeOptimizer
(
unittest
.
TestCase
):
def
net
(
self
,
return_input
=
False
,
with_dropout
=
False
):
def
net
(
self
,
return_input
=
False
,
with_dropout
=
False
,
with_seed
=
False
):
program
=
framework
.
Program
()
block
=
program
.
global_block
()
mul_x
=
block
.
create_parameter
(
...
...
@@ -628,7 +628,8 @@ class TestRecomputeOptimizer(unittest.TestCase):
dtype
=
"float32"
,
shape
=
[
10
,
8
],
lod_level
=
0
,
name
=
"mul.y"
)
mul_out
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"mul.out"
)
if
with_dropout
==
True
:
if
with_dropout
is
True
:
mul_out_drop
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
...
...
@@ -636,6 +637,10 @@ class TestRecomputeOptimizer(unittest.TestCase):
name
=
"mul.out.dropout"
)
mul_out_mask
=
block
.
create_var
(
dtype
=
"uint8"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"mul.out.mask"
)
if
with_seed
is
True
:
seed_out
=
block
.
create_var
(
dtype
=
"int32"
,
shape
=
[
1
],
name
=
"seed.out"
)
b1
=
block
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"b1"
)
b1_out
=
block
.
create_var
(
...
...
@@ -652,10 +657,23 @@ class TestRecomputeOptimizer(unittest.TestCase):
"Y"
:
mul_y
},
outputs
=
{
"Out"
:
mul_out
},
attrs
=
{
"x_num_col_dims"
:
1
})
if
with_dropout
==
True
:
if
with_dropout
is
True
:
dropout_inputs
=
{
'X'
:
[
mul_out
]}
if
with_seed
is
True
:
block
.
append_op
(
type
=
'seed'
,
outputs
=
{
'Out'
:
seed_out
},
attrs
=
{
'deterministic'
:
True
,
'rng_name'
:
'rng0'
,
'force_cpu'
:
True
})
dropout_inputs
=
{
'X'
:
[
mul_out
],
'Seed'
:
[
seed_out
]}
block
.
append_op
(
type
=
'dropout'
,
inputs
=
{
'X'
:
[
mul_out
]}
,
inputs
=
dropout_inputs
,
outputs
=
{
'Out'
:
[
mul_out_drop
],
'Mask'
:
[
mul_out_mask
]},
attrs
=
{
'dropout_prob'
:
0.5
,
})
...
...
@@ -670,6 +688,7 @@ class TestRecomputeOptimizer(unittest.TestCase):
inputs
=
{
"X"
:
mul_out
,
"Y"
:
b1
},
outputs
=
{
"Out"
:
b1_out
})
block
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
"X"
:
b1_out
,
...
...
@@ -864,6 +883,27 @@ class TestRecomputeOptimizer(unittest.TestCase):
"sgd"
,
"sgd"
,
"sgd"
])
def
test_dropout_with_determinate_seed
(
self
):
mul_out
,
b1_out
,
b2_out
,
mean_out
=
self
.
net
(
with_dropout
=
True
,
with_seed
=
True
)
self
.
assertEqual
(
len
(
mean_out
.
block
.
ops
),
6
)
self
.
assertEqual
([
op
.
type
for
op
in
mean_out
.
block
.
ops
],
[
"mul"
,
"seed"
,
"dropout"
,
"elementwise_add"
,
"elementwise_add"
,
"mean"
])
sgd_optimizer
=
optimizer
.
SGD
(
learning_rate
=
1.0
)
recompute_optimizer
=
optimizer
.
RecomputeOptimizer
(
sgd_optimizer
)
recompute_optimizer
.
_set_checkpoints
([
b1_out
])
opts
,
params_grads
=
recompute_optimizer
.
minimize
(
mean_out
)
self
.
assertEqual
(
len
(
mean_out
.
block
.
ops
),
17
)
self
.
assertEqual
([
op
.
type
for
op
in
mean_out
.
block
.
ops
],
[
"mul"
,
"seed"
,
"dropout"
,
"elementwise_add"
,
"elementwise_add"
,
"mean"
,
"fill_constant"
,
"mean_grad"
,
"elementwise_add_grad"
,
"mul"
,
"dropout"
,
"elementwise_add_grad"
,
"dropout_grad"
,
"mul_grad"
,
"sgd"
,
"sgd"
,
"sgd"
])
def
test_dropout_with_seed
(
self
):
"""
when we recompute a dropout op, make sure that the recomputed one
...
...
python/paddle/fluid/tests/unittests/test_seed_op.py
浏览文件 @
8cc8e411
...
...
@@ -17,7 +17,10 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle
import
paddle.static
as
static
paddle
.
enable_static
()
class
TestSeedOpFixSeed
(
OpTest
):
...
...
@@ -42,5 +45,32 @@ class TestSeedOpDiffSeed(OpTest):
self
.
check_output
(
no_check_set
=
[
"Out"
])
class
TestDropoutWithRandomSeedGenerator
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
framework
.
random
.
set_random_seed_generator
(
'seed0'
,
123
)
paddle
.
framework
.
random
.
set_random_seed_generator
(
'seed1'
,
123
)
self
.
rng0
=
paddle
.
framework
.
random
.
get_random_seed_generator
(
'seed0'
)
self
.
rng1
=
paddle
.
framework
.
random
.
get_random_seed_generator
(
'seed1'
)
self
.
places
=
[
paddle
.
CPUPlace
()]
if
paddle
.
is_compiled_with_cuda
():
self
.
places
.
append
(
paddle
.
CUDAPlace
(
0
))
def
check_static_result
(
self
,
place
):
import
paddle.distributed.fleet.meta_parallel.parallel_layers.random
as
random
with
static
.
program_guard
(
static
.
Program
(),
static
.
Program
()):
res1
=
random
.
determinate_seed
(
'seed0'
)
exe
=
static
.
Executor
(
place
)
res_list
=
[
res1
]
for
i
in
range
(
2
):
out1
,
=
exe
.
run
(
static
.
default_main_program
(),
fetch_list
=
res_list
)
self
.
assertEqual
(
out1
,
np
.
cast
[
'int32'
](
self
.
rng1
.
random
()))
def
test_static
(
self
):
for
place
in
self
.
places
:
self
.
check_static_result
(
place
=
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/framework/random.py
浏览文件 @
8cc8e411
...
...
@@ -122,3 +122,11 @@ def _manual_program_seed(seed):
fluid
.
default_startup_program
().
random_seed
=
seed
program
=
fluid
.
Program
()
program
.
global_seed
(
seed
)
def
set_random_seed_generator
(
name
,
seed
):
core
.
set_random_seed_generator
(
name
,
seed
)
def
get_random_seed_generator
(
name
):
return
core
.
get_random_seed_generator
(
name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录