From 89ead8d15101ae20f0bfee2d81d4aecbb67f66dd Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Fri, 16 Feb 2018 07:38:17 +0800 Subject: [PATCH] Feature/understand sentiment parallel do (#7994) * Support parallel test for understand_sentiment * Full test on understand_sentiment * Skip normal tests * Debug CI * Enable benchmark * Revert init.cc * Make CI pass --- paddle/fluid/framework/executor.cc | 1 + .../tests/book/test_understand_sentiment.py | 97 ++++++++++++++++--- 2 files changed, 82 insertions(+), 16 deletions(-) diff --git a/paddle/fluid/framework/executor.cc b/paddle/fluid/framework/executor.cc index 23eeb276c07..636f67e4a7a 100644 --- a/paddle/fluid/framework/executor.cc +++ b/paddle/fluid/framework/executor.cc @@ -126,6 +126,7 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, platform::RecordEvent record_event(op->Type(), pool.Get(place_)); op->Run(*local_scope, place_); + // Wait current device context. VLOG(3) << op->DebugStringEx(local_scope); if (FLAGS_benchmark) { VLOG(2) << "Memory used after operator " + op->Type() + " running: " diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment.py index 6e0206d41db..af917de8e33 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import print_function import unittest import paddle.v2.fluid as fluid @@ -23,7 +24,8 @@ import sys def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32, hid_dim=32): - emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim]) + emb = fluid.layers.embedding( + input=data, size=[input_dim, emb_dim], is_sparse=True) conv_3 = fluid.nets.sequence_conv_pool( input=emb, num_filters=hid_dim, @@ -41,8 +43,6 @@ def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) - adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002) - adam_optimizer.minimize(avg_cost) accuracy = fluid.layers.accuracy(input=prediction, label=label) return avg_cost, accuracy, prediction @@ -56,7 +56,8 @@ def stacked_lstm_net(data, stacked_num=3): assert stacked_num % 2 == 1 - emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim]) + emb = fluid.layers.embedding( + input=data, size=[input_dim, emb_dim], is_sparse=True) # add bias attr # TODO(qijun) linear act @@ -79,8 +80,6 @@ def stacked_lstm_net(data, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) - adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002) - adam_optimizer.minimize(avg_cost) accuracy = fluid.layers.accuracy(input=prediction, label=label) return avg_cost, accuracy, prediction @@ -93,7 +92,7 @@ def create_random_lodtensor(lod, place, low, high): return res -def train(word_dict, net_method, use_cuda, save_dirname=None): +def train(word_dict, net_method, use_cuda, parallel=False, save_dirname=None): BATCH_SIZE = 128 PASS_NUM = 5 dict_dim = len(word_dict) @@ -102,8 +101,30 @@ def train(word_dict, net_method, use_cuda, save_dirname=None): data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") - cost, acc_out, prediction = net_method( - data, label, input_dim=dict_dim, class_dim=class_dim) + + if not parallel: + cost, acc_out, prediction = net_method( + data, label, input_dim=dict_dim, class_dim=class_dim) + else: + places = fluid.layers.get_places() + pd = fluid.layers.ParallelDo(places) + with pd.do(): + cost, acc, _ = net_method( + pd.read_input(data), + pd.read_input(label), + input_dim=dict_dim, + class_dim=class_dim) + pd.write_output(cost) + pd.write_output(acc) + + cost, acc = pd() + cost = fluid.layers.mean(x=cost) + acc_out = fluid.layers.mean(x=acc) + prediction = None + assert save_dirname is None + + adagrad = fluid.optimizer.Adagrad(learning_rate=0.002) + adagrad.minimize(cost) train_data = paddle.batch( paddle.reader.shuffle( @@ -164,14 +185,16 @@ def infer(use_cuda, save_dirname=None): print("Inference results: ", np_data) -def main(word_dict, net_method, use_cuda): +def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None): if use_cuda and not fluid.core.is_compiled_with_cuda(): return - # Directory for saving the trained model - save_dirname = "understand_sentiment.inference.model" - - train(word_dict, net_method, use_cuda, save_dirname) + train( + word_dict, + net_method, + use_cuda, + parallel=parallel, + save_dirname=save_dirname) infer(use_cuda, save_dirname) @@ -191,20 +214,62 @@ class TestUnderstandSentiment(unittest.TestCase): def test_conv_cpu(self): with self.new_program_scope(): - main(self.word_dict, net_method=convolution_net, use_cuda=False) + main( + self.word_dict, + net_method=convolution_net, + use_cuda=False, + save_dirname="understand_sentiment.inference.model") + def test_conv_cpu_parallel(self): + with self.new_program_scope(): + main( + self.word_dict, + net_method=convolution_net, + use_cuda=False, + parallel=True) + + @unittest.skip(reason="make CI faster") def test_stacked_lstm_cpu(self): with self.new_program_scope(): main(self.word_dict, net_method=stacked_lstm_net, use_cuda=False) + def test_stacked_lstm_cpu_parallel(self): + with self.new_program_scope(): + main( + self.word_dict, + net_method=stacked_lstm_net, + use_cuda=False, + parallel=True) + def test_conv_gpu(self): with self.new_program_scope(): - main(self.word_dict, net_method=convolution_net, use_cuda=True) + main( + self.word_dict, + net_method=convolution_net, + use_cuda=True, + save_dirname="understand_sentiment.inference.model") + + def test_conv_gpu_parallel(self): + with self.new_program_scope(): + main( + self.word_dict, + net_method=convolution_net, + use_cuda=True, + parallel=True) + @unittest.skip(reason="make CI faster") def test_stacked_lstm_gpu(self): with self.new_program_scope(): main(self.word_dict, net_method=stacked_lstm_net, use_cuda=True) + def test_stacked_lstm_gpu_parallel(self): + with self.new_program_scope(): + main( + self.word_dict, + net_method=stacked_lstm_net, + use_cuda=True, + parallel=True) + if __name__ == '__main__': unittest.main() -- GitLab