Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
871e3329
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
871e3329
编写于
8月 30, 2022
作者:
P
pangyoki
提交者:
GitHub
8月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PHI] move layer_norm/layer_norm_grad xpu kernel to phi (#45524)
* move layer_norm xpu kernel to phi, test=kunlun * fix, test=kunlun
上级
56eedf27
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
146 addition
and
140 deletion
+146
-140
paddle/fluid/operators/layer_norm_op_xpu.cc
paddle/fluid/operators/layer_norm_op_xpu.cc
+0
-140
paddle/phi/kernels/xpu/layer_norm_grad_kernel.cc
paddle/phi/kernels/xpu/layer_norm_grad_kernel.cc
+78
-0
paddle/phi/kernels/xpu/layer_norm_kernel.cc
paddle/phi/kernels/xpu/layer_norm_kernel.cc
+68
-0
未找到文件。
paddle/fluid/operators/layer_norm_op_xpu.cc
已删除
100644 → 0
浏览文件 @
56eedf27
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DDim
=
framework
::
DDim
;
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
const
auto
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
auto
matrix_dim
=
phi
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
variance
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
*
x_data
=
x
->
data
<
T
>
();
const
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
float
>
());
const
auto
*
bias_data
=
(
bias
==
nullptr
?
nullptr
:
bias
->
data
<
float
>
());
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
mean_data
=
mean
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
*
variance_data
=
variance
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
// int layer_norm(Context* ctx, const T* x, T* y, int m, int n, float eps,
// const float* scale, const float* bias, float* mean, float* var);
int
r
=
xpu
::
layer_norm
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
XPUType
*>
(
y_data
),
left
,
right
,
epsilon
,
scale_data
,
bias_data
,
mean_data
,
variance_data
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"layer_norm"
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
const
auto
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
auto
matrix_dim
=
phi
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
const
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
variance
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dscale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
dbias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
*
x_data
=
x
->
data
<
T
>
();
const
auto
*
dy_data
=
dy
->
data
<
T
>
();
const
auto
*
mean_data
=
mean
->
data
<
float
>
();
const
auto
*
variance_data
=
variance
->
data
<
float
>
();
const
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
float
>
());
auto
*
dscale_data
=
(
dscale
==
nullptr
?
nullptr
:
dscale
->
mutable_data
<
float
>
(
ctx
.
GetPlace
()));
auto
*
dbias_data
=
(
dbias
==
nullptr
?
nullptr
:
dbias
->
mutable_data
<
float
>
(
ctx
.
GetPlace
()));
auto
*
dx_data
=
(
dx
==
nullptr
?
nullptr
:
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
// int layer_norm_grad(Context* ctx, const T* x, const T* dy, T* dx, int m,
// int n, float eps, const float* scale, const float* mean, const float*
// var, float* dscale, float* dbias);
int
r
=
xpu
::
layer_norm_grad
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
dy_data
),
reinterpret_cast
<
XPUType
*>
(
dx_data
),
left
,
right
,
epsilon
,
scale_data
,
mean_data
,
variance_data
,
dscale_data
,
dbias_data
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"layer_norm_grad"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
layer_norm
,
ops
::
LayerNormXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
LayerNormXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
layer_norm_grad
,
ops
::
LayerNormGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
LayerNormGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif // PADDLE_WITH_XPU
paddle/phi/kernels/xpu/layer_norm_grad_kernel.cc
0 → 100644
浏览文件 @
871e3329
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/layer_norm_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
LayerNormGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
const
paddle
::
optional
<
DenseTensor
>&
scale
,
const
paddle
::
optional
<
DenseTensor
>&
bias
,
const
DenseTensor
&
mean
,
const
DenseTensor
&
variance
,
const
DenseTensor
&
out_grad
,
float
epsilon
,
int
begin_norm_axis
,
bool
is_test
,
DenseTensor
*
x_grad
,
DenseTensor
*
scale_grad
,
DenseTensor
*
bias_grad
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
auto
&
x_dims
=
x
.
dims
();
auto
matrix_dim
=
phi
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
const
auto
*
x_data
=
x
.
data
<
T
>
();
const
auto
*
out_grad_data
=
out_grad
.
data
<
T
>
();
const
auto
*
mean_data
=
mean
.
data
<
float
>
();
const
auto
*
variance_data
=
variance
.
data
<
float
>
();
const
auto
*
scale_data
=
(
scale
.
get_ptr
()
==
nullptr
?
nullptr
:
scale
.
get_ptr
()
->
data
<
float
>
());
auto
*
scale_grad_data
=
(
scale_grad
==
nullptr
?
nullptr
:
ctx
.
template
Alloc
<
float
>(
scale_grad
));
auto
*
bias_grad_data
=
(
bias_grad
==
nullptr
?
nullptr
:
ctx
.
template
Alloc
<
float
>(
bias_grad
));
auto
*
x_grad_data
=
(
x_grad
==
nullptr
?
nullptr
:
ctx
.
template
Alloc
<
T
>(
x_grad
));
// int layer_norm_grad(Context* ctx, const T* x, const T* dy, T* dx, int m,
// int n, float eps, const float* scale, const float* mean, const float*
// var, float* dscale, float* dbias);
int
r
=
xpu
::
layer_norm_grad
(
ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
out_grad_data
),
reinterpret_cast
<
XPUType
*>
(
x_grad_data
),
left
,
right
,
epsilon
,
scale_data
,
mean_data
,
variance_data
,
scale_grad_data
,
bias_grad_data
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"layer_norm_grad"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
layer_norm_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
LayerNormGradKernel
,
float
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/xpu/layer_norm_kernel.cc
0 → 100644
浏览文件 @
871e3329
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/layer_norm_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
LayerNormKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
const
paddle
::
optional
<
DenseTensor
>&
scale
,
const
paddle
::
optional
<
DenseTensor
>&
bias
,
float
epsilon
,
int
begin_norm_axis
,
bool
is_test
,
DenseTensor
*
out
,
DenseTensor
*
mean
,
DenseTensor
*
variance
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
auto
&
x_dims
=
x
.
dims
();
auto
matrix_dim
=
phi
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
const
auto
*
x_data
=
x
.
data
<
T
>
();
const
auto
*
scale_data
=
(
scale
.
get_ptr
()
==
nullptr
?
nullptr
:
scale
.
get_ptr
()
->
data
<
float
>
());
const
auto
*
bias_data
=
(
bias
.
get_ptr
()
==
nullptr
?
nullptr
:
bias
.
get_ptr
()
->
data
<
float
>
());
auto
*
out_data
=
ctx
.
template
Alloc
<
T
>(
out
);
auto
*
mean_data
=
ctx
.
template
Alloc
<
float
>(
mean
);
auto
*
variance_data
=
ctx
.
template
Alloc
<
float
>(
variance
);
// int layer_norm(Context* ctx, const T* x, T* y, int m, int n, float eps,
// const float* scale, const float* bias, float* mean, float* var);
int
r
=
xpu
::
layer_norm
(
ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
XPUType
*>
(
out_data
),
left
,
right
,
epsilon
,
scale_data
,
bias_data
,
mean_data
,
variance_data
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"layer_norm"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
layer_norm
,
XPU
,
ALL_LAYOUT
,
phi
::
LayerNormKernel
,
float
,
phi
::
dtype
::
float16
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录