diff --git a/develop/doc/api/v2/fluid/layers.html b/develop/doc/api/v2/fluid/layers.html index 4b9adbbce5f779b437c36dc710d805239f32f5ea..4796a3dbe647c4a24f8ad538f968d81d93786e64 100644 --- a/develop/doc/api/v2/fluid/layers.html +++ b/develop/doc/api/v2/fluid/layers.html @@ -719,18 +719,29 @@ Duplicable: False Optional: False

Transpose Operator.

The input tensor will be permuted according to the axis values given. The op functions is similar to how numpy.transpose works in python.

-

For example: input = numpy.arange(6).reshape((2,3)) -the input is: -array([[0, 1, 2],

+

For example:

-
[3, 4, 5]])
-

given axis is: [1, 0]

-

output = input.transpose(axis) +

input = numpy.arange(6).reshape((2,3))
+
+the input is:
+
+array([[0, 1, 2],
+       [3, 4, 5]])
+
+given axis is:
+
+[1, 0]
+
+output = input.transpose(axis)
+
 then the output is:
-array([[0, 3],

-
-
[1, 4], -[2, 5]])
+ +array([[0, 3], + [1, 4], + [2, 5]]) +
+
+

So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1}, the output tensor shape will be (N, H, W, C)

diff --git a/develop/doc/operators.json b/develop/doc/operators.json index def3da690eaa731bf8d7966e0806bbe6a3d27636..af7adb6fe3a357d7bf0bc990830cd18a86043986 100644 --- a/develop/doc/operators.json +++ b/develop/doc/operators.json @@ -2214,7 +2214,7 @@ } ] },{ "type" : "transpose", - "comment" : "\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions is similar to how numpy.transpose works in python.\n\nFor example: input = numpy.arange(6).reshape((2,3))\nthe input is:\narray([[0, 1, 2],\n [3, 4, 5]])\ngiven axis is: [1, 0]\n\noutput = input.transpose(axis)\nthen the output is:\narray([[0, 3],\n [1, 4],\n [2, 5]])\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n", + "comment" : "\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions is similar to how numpy.transpose works in python.\n\nFor example:\n\n .. code-block:: text\n\n input = numpy.arange(6).reshape((2,3))\n\n the input is:\n\n array([[0, 1, 2],\n [3, 4, 5]])\n\n given axis is:\n\n [1, 0]\n\n output = input.transpose(axis)\n\n then the output is:\n\n array([[0, 3],\n [1, 4],\n [2, 5]])\n\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n", "inputs" : [ { "name" : "X", diff --git a/develop/doc_cn/api/v2/fluid/layers.html b/develop/doc_cn/api/v2/fluid/layers.html index 96a1159cfcabfb38712b4664451ead1c1e03aef0..acd938cb187041f179f343280654236d2cad70fd 100644 --- a/develop/doc_cn/api/v2/fluid/layers.html +++ b/develop/doc_cn/api/v2/fluid/layers.html @@ -732,18 +732,29 @@ Duplicable: False Optional: False

Transpose Operator.

The input tensor will be permuted according to the axis values given. The op functions is similar to how numpy.transpose works in python.

-

For example: input = numpy.arange(6).reshape((2,3)) -the input is: -array([[0, 1, 2],

+

For example:

-
[3, 4, 5]])
-

given axis is: [1, 0]

-

output = input.transpose(axis) +

input = numpy.arange(6).reshape((2,3))
+
+the input is:
+
+array([[0, 1, 2],
+       [3, 4, 5]])
+
+given axis is:
+
+[1, 0]
+
+output = input.transpose(axis)
+
 then the output is:
-array([[0, 3],

-
-
[1, 4], -[2, 5]])
+ +array([[0, 3], + [1, 4], + [2, 5]]) +
+
+

So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1}, the output tensor shape will be (N, H, W, C)