<li><strong>input</strong> (<em>Variable</em>) – Input to the function</li>
<li><strong>input</strong> (<em>Variable</em>) – The tensor variable containing the IDs.</li>
<li><strong>size</strong> (<em>tuple|list|None</em>) – Shape of the look up table parameter</li>
<li><strong>size</strong> (<em>tuple|list</em>) – The shape of the look up table parameter. It should
<li><strong>is_sparse</strong> (<em>bool</em>) – Boolean flag that specifying whether the input is sparse</li>
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.</li>
<li><strong>is_sparse</strong> (<em>bool</em>) – The flag indicating whether to use sparse update.</li>
<li><strong>padding_idx</strong> (<em>int|long|None</em>) – If <codeclass="xref py py-attr docutils literal"><spanclass="pre">None</span></code>, it makes no effect to lookup.
Otherwise the given <codeclass="xref py py-attr docutils literal"><spanclass="pre">padding_idx</span></code> indicates padding the output
with zeros whenever lookup encounters it in <codeclass="xref py py-attr docutils literal"><spanclass="pre">input</span></code>. If
<spanclass="math">\(padding_idx < 0\)</span>, the padding_idx to use in lookup is
<spanclass="math">\(size[0] + dim\)</span>.</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
</ul>
</ul>
...
@@ -1044,10 +1052,11 @@ that need to be summed up.</td>
...
@@ -1044,10 +1052,11 @@ that need to be summed up.</td>
<h2>assign<aclass="headerlink"href="#assign"title="Permalink to this headline">¶</a></h2>
<h2>assign<aclass="headerlink"href="#assign"title="Permalink to this headline">¶</a></h2>
<li><strong>input</strong> (<em>Variable</em>) – Input to the function</li>
<li><strong>input</strong> (<em>Variable</em>) – The tensor variable containing the IDs.</li>
<li><strong>size</strong> (<em>tuple|list|None</em>) – Shape of the look up table parameter</li>
<li><strong>size</strong> (<em>tuple|list</em>) – The shape of the look up table parameter. It should
<li><strong>is_sparse</strong> (<em>bool</em>) – Boolean flag that specifying whether the input is sparse</li>
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.</li>
<li><strong>is_sparse</strong> (<em>bool</em>) – The flag indicating whether to use sparse update.</li>
<li><strong>padding_idx</strong> (<em>int|long|None</em>) – If <codeclass="xref py py-attr docutils literal"><spanclass="pre">None</span></code>, it makes no effect to lookup.
Otherwise the given <codeclass="xref py py-attr docutils literal"><spanclass="pre">padding_idx</span></code> indicates padding the output
with zeros whenever lookup encounters it in <codeclass="xref py py-attr docutils literal"><spanclass="pre">input</span></code>. If
<spanclass="math">\(padding_idx < 0\)</span>, the padding_idx to use in lookup is
<spanclass="math">\(size[0] + dim\)</span>.</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
"comment":"(int64, default -1) If the value is -1, it makes no effect to lookup. Otherwise the given value indicates padding the output with zeros whenever lookup encounters it in Ids.",
<li><strong>input</strong> (<em>Variable</em>) – Input to the function</li>
<li><strong>input</strong> (<em>Variable</em>) – The tensor variable containing the IDs.</li>
<li><strong>size</strong> (<em>tuple|list|None</em>) – Shape of the look up table parameter</li>
<li><strong>size</strong> (<em>tuple|list</em>) – The shape of the look up table parameter. It should
<li><strong>is_sparse</strong> (<em>bool</em>) – Boolean flag that specifying whether the input is sparse</li>
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.</li>
<li><strong>is_sparse</strong> (<em>bool</em>) – The flag indicating whether to use sparse update.</li>
<li><strong>padding_idx</strong> (<em>int|long|None</em>) – If <codeclass="xref py py-attr docutils literal"><spanclass="pre">None</span></code>, it makes no effect to lookup.
Otherwise the given <codeclass="xref py py-attr docutils literal"><spanclass="pre">padding_idx</span></code> indicates padding the output
with zeros whenever lookup encounters it in <codeclass="xref py py-attr docutils literal"><spanclass="pre">input</span></code>. If
<spanclass="math">\(padding_idx < 0\)</span>, the padding_idx to use in lookup is
<spanclass="math">\(size[0] + dim\)</span>.</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
</ul>
</ul>
...
@@ -1063,10 +1071,11 @@ that need to be summed up.</td>
...
@@ -1063,10 +1071,11 @@ that need to be summed up.</td>
<li><strong>input</strong> (<em>Variable</em>) – Input to the function</li>
<li><strong>input</strong> (<em>Variable</em>) – The tensor variable containing the IDs.</li>
<li><strong>size</strong> (<em>tuple|list|None</em>) – Shape of the look up table parameter</li>
<li><strong>size</strong> (<em>tuple|list</em>) – The shape of the look up table parameter. It should
<li><strong>is_sparse</strong> (<em>bool</em>) – Boolean flag that specifying whether the input is sparse</li>
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.</li>
<li><strong>is_sparse</strong> (<em>bool</em>) – The flag indicating whether to use sparse update.</li>
<li><strong>padding_idx</strong> (<em>int|long|None</em>) – If <codeclass="xref py py-attr docutils literal"><spanclass="pre">None</span></code>, it makes no effect to lookup.
Otherwise the given <codeclass="xref py py-attr docutils literal"><spanclass="pre">padding_idx</span></code> indicates padding the output
with zeros whenever lookup encounters it in <codeclass="xref py py-attr docutils literal"><spanclass="pre">input</span></code>. If
<spanclass="math">\(padding_idx < 0\)</span>, the padding_idx to use in lookup is
<spanclass="math">\(size[0] + dim\)</span>.</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>