Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
84a2512b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
84a2512b
编写于
9月 22, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix parameter name and function define
上级
50b8ec05
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
129 addition
and
118 deletion
+129
-118
paddle/operators/math/pooling.cc
paddle/operators/math/pooling.cc
+12
-12
paddle/operators/math/pooling.cu
paddle/operators/math/pooling.cu
+12
-12
paddle/operators/math/pooling.h
paddle/operators/math/pooling.h
+12
-12
paddle/operators/pool_op.cc
paddle/operators/pool_op.cc
+51
-36
paddle/operators/pool_op.h
paddle/operators/pool_op.h
+34
-38
python/paddle/v2/framework/tests/test_pool2d_op.py
python/paddle/v2/framework/tests/test_pool2d_op.py
+4
-4
python/paddle/v2/framework/tests/test_pool3d_op.py
python/paddle/v2/framework/tests/test_pool3d_op.py
+4
-4
未找到文件。
paddle/operators/math/pooling.cc
浏览文件 @
84a2512b
...
...
@@ -21,10 +21,10 @@ namespace math {
template
<
typename
PoolProcess
,
typename
T
>
class
Pool2dForwardFunctor
<
platform
::
CPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
)
{
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
...
...
@@ -75,12 +75,12 @@ class Pool2dForwardFunctor<platform::CPUPlace, PoolProcess, T> {
template
<
typename
PoolProcess
,
class
T
>
class
Pool2dBackwardFunctor
<
platform
::
CPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
)
{
PoolProcess
pool_process
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
...
...
@@ -154,10 +154,10 @@ template class Pool2dBackwardFunctor<
template
<
typename
PoolProcess
,
class
T
>
class
Pool3dForwardFunctor
<
platform
::
CPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
)
{
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
...
...
@@ -224,12 +224,12 @@ class Pool3dForwardFunctor<platform::CPUPlace, PoolProcess, T> {
template
<
typename
PoolProcess
,
class
T
>
class
Pool3dBackwardFunctor
<
platform
::
CPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
)
{
PoolProcess
pool_process
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
...
...
paddle/operators/math/pooling.cu
浏览文件 @
84a2512b
...
...
@@ -105,10 +105,10 @@ __global__ void KernelPool2dBackward(
template
<
typename
PoolProcess
,
typename
T
>
class
Pool2dForwardFunctor
<
platform
::
GPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
)
{
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_height
=
input
.
dims
()[
2
];
...
...
@@ -148,12 +148,12 @@ class Pool2dForwardFunctor<platform::GPUPlace, PoolProcess, T> {
template
<
typename
PoolProcess
,
typename
T
>
class
Pool2dBackwardFunctor
<
platform
::
GPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
)
{
PoolProcess
pool_process
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_height
=
input
.
dims
()[
2
];
...
...
@@ -319,10 +319,10 @@ __global__ void KernelPool3DBackward(
template
<
typename
PoolProcess
,
class
T
>
class
Pool3dForwardFunctor
<
platform
::
GPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
)
{
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_depth
=
input
.
dims
()[
2
];
...
...
@@ -369,12 +369,12 @@ class Pool3dForwardFunctor<platform::GPUPlace, PoolProcess, T> {
template
<
typename
PoolProcess
,
class
T
>
class
Pool3dBackwardFunctor
<
platform
::
GPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
)
{
PoolProcess
pool_process
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_depth
=
input
.
dims
()[
2
];
...
...
paddle/operators/math/pooling.h
浏览文件 @
84a2512b
...
...
@@ -59,41 +59,41 @@ class avePool {
template
<
typename
Place
,
typename
PoolProcess
,
typename
T
>
class
Pool2dForwardFunctor
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
);
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
);
};
template
<
typename
Place
,
typename
PoolProcess
,
typename
T
>
class
Pool2dBackwardFunctor
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
);
PoolProcess
pool_process
);
};
template
<
typename
Place
,
typename
PoolProcess
,
typename
T
>
class
Pool3dForwardFunctor
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
);
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
);
};
template
<
typename
Place
,
typename
PoolProcess
,
typename
T
>
class
Pool3dBackwardFunctor
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
platform
::
DeviceContext
&
context
);
PoolProcess
pool_process
);
};
}
// namespace math
...
...
paddle/operators/pool_op.cc
浏览文件 @
84a2512b
...
...
@@ -28,18 +28,18 @@ class PoolOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"
Input
"
),
"
Input
(Input) of Pooling should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out
put
"
),
"Out
put
(Output) of Pooling should not be null."
);
// PADDLE_ENFORCE_NOT_NULL(Attr<std::string>("pooling
_t
ype"),
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"
X
"
),
"
X
(Input) of Pooling should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out"
),
"Out(Output) of Pooling should not be null."
);
// PADDLE_ENFORCE_NOT_NULL(Attr<std::string>("pooling
T
ype"),
// "pooling_type should not be null.");
// PADDLE_ENFORCE_NOT_NULL(Attr<std::vector<int>>("ksize"), "ksize should
// not be null.");
auto
in
put
=
ctx
.
Input
<
Tensor
>
(
"Input
"
);
auto
out
put
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Outp
ut"
);
int
global_pooling
=
Attr
<
int
>
(
"global
_p
ooling"
);
std
::
string
pooling_type
=
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
auto
in
_X
=
ctx
.
Input
<
Tensor
>
(
"X
"
);
auto
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"O
ut"
);
int
global_pooling
=
Attr
<
int
>
(
"global
P
ooling"
);
std
::
string
pooling_type
=
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
vector
<
int
>
ksize
=
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
...
...
@@ -50,25 +50,25 @@ class PoolOp : public framework::OperatorWithKernel {
"Pooling ksize should be 2-D or 3-D"
);
if
(
global_pooling
==
1
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
ksize
[
i
]
=
in
put
->
dims
()[
i
+
2
];
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
ksize
[
i
]
=
in
_X
->
dims
()[
i
+
2
];
}
if
(
ksize
.
size
()
==
2
)
{
PADDLE_ENFORCE_EQ
(
in
put
->
dims
().
size
(),
4
,
PADDLE_ENFORCE_EQ
(
in
_X
->
dims
().
size
(),
4
,
"Pool2DOp intput should be 4-D."
);
PADDLE_ENFORCE_EQ
(
strides
.
size
(),
2
,
"Pool2DOp strides should be 2-D."
);
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
2
,
"Pool2DOp paddings should be 2-D."
);
}
else
{
PADDLE_ENFORCE_EQ
(
in
put
->
dims
().
size
(),
5
,
PADDLE_ENFORCE_EQ
(
in
_X
->
dims
().
size
(),
5
,
"Pool3DOp intput should be 5-D."
);
PADDLE_ENFORCE_EQ
(
strides
.
size
(),
3
,
"Pool3DOp strides should be 3-D."
);
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
3
,
"Pool3DOp paddings should be 3-D."
);
}
std
::
vector
<
int64_t
>
output_shape
({
in
put
->
dims
()[
0
],
input
->
dims
()[
1
]});
std
::
vector
<
int64_t
>
output_shape
({
in
_X
->
dims
()[
0
],
in_X
->
dims
()[
1
]});
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
outputSize_pool
(
in
put
->
dims
()[
i
+
2
],
ksize
[
i
],
output_shape
.
push_back
(
outputSize_pool
(
in
_X
->
dims
()[
i
+
2
],
ksize
[
i
],
paddings
[
i
],
strides
[
i
]));
}
out
put
->
Resize
(
framework
::
make_ddim
(
output_shape
));
out
->
Resize
(
framework
::
make_ddim
(
output_shape
));
}
};
...
...
@@ -78,9 +78,8 @@ class PoolOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
in
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
d_in
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
d_in
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_in
)
d_in
->
Resize
(
in
->
dims
());
}
};
...
...
@@ -90,27 +89,36 @@ class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
Pool3dOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"
Input
"
,
"
X
"
,
"The input tensor of pooling operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is the "
"number of channels, D, H and W is the depth, height and width of "
"image."
);
AddOutput
(
"Out
put
"
,
AddOutput
(
"Out"
,
"The output tensor of pooling operator."
"The format of output tensor is also NCDHW."
);
AddAttr
<
std
::
string
>
(
"pooling_type"
,
"pooling_type of pooling operator.['max' or 'ave']"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"strides of pooling operator."
);
AddAttr
<
int
>
(
"global_pooling"
,
"whether to use the global_pooling."
)
AddAttr
<
std
::
string
>
(
"poolingType"
,
"poolingType of pooling operator.['max' or 'ave']"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"pooling size(depth, height, width) of pooling operator."
);
AddAttr
<
int
>
(
"globalPooling"
,
"default 0"
"whether to use the globalPooling."
)
.
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of pooling operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"default {1,1,1}"
"strides(depth, height, width) of pooling operator."
)
.
SetDefault
({
1
,
1
,
1
});
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of pooling operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"default {0,0,0}"
"paddings(depth, height, width) of pooling operator."
)
.
SetDefault
({
0
,
0
,
0
});
AddComment
(
R"DOC(
The pooling3d operation calculates the output based on
the input, pooling
_t
ype and ksize, strides, paddings parameters.
the input, pooling
T
ype and ksize, strides, paddings parameters.
)DOC"
);
}
};
...
...
@@ -120,26 +128,33 @@ class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
Pool2dOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"
Input
"
,
"
X
"
,
"The input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image."
);
AddOutput
(
"Out
put
"
,
AddOutput
(
"Out"
,
"The output tensor of pooling operator."
"The format of output tensor is also NCHW."
);
AddAttr
<
std
::
string
>
(
"pooling_type"
,
"pooling_type of pooling operator.['max' or 'ave']"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"strides of pooling operator."
);
AddAttr
<
int
>
(
"global_pooling"
,
"whether to use the global_pooling."
)
AddAttr
<
std
::
string
>
(
"poolingType"
,
"poolingType of pooling operator.['max' or 'ave']"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"pooling size(height, width) of pooling operator."
);
AddAttr
<
int
>
(
"globalPooling"
,
"default 0"
"whether to use the globalPooling.[0 or 1]"
)
.
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of pooling operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"default {1, 1}"
"strides(height, width) of pooling operator."
)
.
SetDefault
({
1
,
1
});
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of pooling operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"default {0, 0}"
"paddings(height, width) of pooling operator."
)
.
SetDefault
({
0
,
0
});
AddComment
(
R"DOC(
The pooling2d operation calculates the output based on
the input, pooling
_t
ype and ksize, strides, paddings parameters.
the input, pooling
T
ype and ksize, strides, paddings parameters.
)DOC"
);
}
};
...
...
paddle/operators/pool_op.h
浏览文件 @
84a2512b
...
...
@@ -28,17 +28,17 @@ template <typename Place, typename T>
class
PoolKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in
put
=
context
.
Input
<
Tensor
>
(
"Input
"
);
Tensor
*
out
put
=
context
.
Output
<
Tensor
>
(
"Outp
ut"
);
const
Tensor
*
in
_X
=
context
.
Input
<
Tensor
>
(
"X
"
);
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"O
ut"
);
int
global_pooling
=
context
.
Attr
<
int
>
(
"global
_p
ooling"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
int
global_pooling
=
context
.
Attr
<
int
>
(
"global
P
ooling"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
global_pooling
==
1
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
ksize
[
i
]
=
in
put
->
dims
()[
i
+
2
];
ksize
[
i
]
=
in
_X
->
dims
()[
i
+
2
];
}
}
...
...
@@ -49,16 +49,16 @@ class PoolKernel : public framework::OpKernel {
Place
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
pool_process
;
pool2d_forward
(
*
input
,
*
output
,
ksize
,
strides
,
padding
s
,
p
ool_process
,
context
.
device_context
()
);
pool2d_forward
(
context
.
device_context
(),
*
in_X
,
*
out
,
ksize
,
stride
s
,
p
addings
,
pool_process
);
}
else
if
(
pooling_type
==
"ave"
)
{
paddle
::
operators
::
math
::
Pool2dForwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
pool_process
;
pool2d_forward
(
*
input
,
*
output
,
ksize
,
strides
,
padding
s
,
p
ool_process
,
(
context
.
device_context
())
);
pool2d_forward
(
context
.
device_context
(),
*
in_X
,
*
out
,
ksize
,
stride
s
,
p
addings
,
pool_process
);
}
}
break
;
case
3
:
{
...
...
@@ -67,15 +67,15 @@ class PoolKernel : public framework::OpKernel {
Place
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
,
T
>
pool3d_forward
;
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
pool_process
;
pool3d_forward
(
*
input
,
*
output
,
ksize
,
strides
,
padding
s
,
p
ool_process
,
context
.
device_context
()
);
pool3d_forward
(
context
.
device_context
(),
*
in_X
,
*
out
,
ksize
,
stride
s
,
p
addings
,
pool_process
);
}
else
if
(
pooling_type
==
"ave"
)
{
paddle
::
operators
::
math
::
Pool3dForwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
,
T
>
pool3d_forward
;
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
pool_process
;
pool3d_forward
(
*
input
,
*
output
,
ksize
,
strides
,
padding
s
,
p
ool_process
,
context
.
device_context
()
);
pool3d_forward
(
context
.
device_context
(),
*
in_X
,
*
out
,
ksize
,
stride
s
,
p
addings
,
pool_process
);
}
}
break
;
}
...
...
@@ -86,26 +86,26 @@ template <typename Place, typename T>
class
PoolGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in
put
=
context
.
Input
<
Tensor
>
(
"Input
"
);
const
Tensor
*
out
put
=
context
.
Input
<
Tensor
>
(
"Outp
ut"
);
const
Tensor
*
out
put
_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out
put
"
));
Tensor
*
in
put
_grad
=
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"
Input
"
));
int
global_pooling
=
context
.
Attr
<
int
>
(
"global
_p
ooling"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
const
Tensor
*
in
_X
=
context
.
Input
<
Tensor
>
(
"X
"
);
const
Tensor
*
out
=
context
.
Input
<
Tensor
>
(
"O
ut"
);
const
Tensor
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
in
_X
_grad
=
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"
X
"
));
int
global_pooling
=
context
.
Attr
<
int
>
(
"global
P
ooling"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
global_pooling
==
1
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
ksize
[
i
]
=
in
put
->
dims
()[
i
+
2
];
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
ksize
[
i
]
=
in
_X
->
dims
()[
i
+
2
];
}
if
(
in
put
_grad
)
{
in
put
_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
in
put
_grad
);
if
(
in
_X
_grad
)
{
in
_X
_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
in
_X
_grad
);
temp
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
temp
.
constant
(
static_cast
<
T
>
(
0
));
...
...
@@ -116,17 +116,15 @@ class PoolGradKernel : public framework::OpKernel {
Place
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
,
T
>
pool2d_backward
;
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
pool_process
;
pool2d_backward
(
*
input
,
*
input_grad
,
*
output
,
*
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
context
.
device_context
());
pool2d_backward
(
context
.
device_context
(),
*
in_X
,
*
in_X_grad
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
);
}
else
if
(
pooling_type
==
"ave"
)
{
paddle
::
operators
::
math
::
Pool2dBackwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
,
T
>
pool2d_backward
;
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
pool_process
;
pool2d_backward
(
*
input
,
*
input_grad
,
*
output
,
*
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
context
.
device_context
());
pool2d_backward
(
context
.
device_context
(),
*
in_X
,
*
in_X_grad
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
);
}
}
break
;
case
3
:
{
...
...
@@ -135,17 +133,15 @@ class PoolGradKernel : public framework::OpKernel {
Place
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
,
T
>
pool3d_backward
;
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
pool_process
;
pool3d_backward
(
*
input
,
*
input_grad
,
*
output
,
*
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
context
.
device_context
());
pool3d_backward
(
context
.
device_context
(),
*
in_X
,
*
in_X_grad
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
);
}
else
if
(
pooling_type
==
"ave"
)
{
paddle
::
operators
::
math
::
Pool3dBackwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
,
T
>
pool3d_backward
;
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
pool_process
;
pool3d_backward
(
*
input
,
*
input_grad
,
*
output
,
*
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
context
.
device_context
());
pool3d_backward
(
context
.
device_context
(),
*
in_X
,
*
in_X_grad
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
);
}
}
break
;
}
...
...
python/paddle/v2/framework/tests/test_pool2d_op.py
浏览文件 @
84a2512b
...
...
@@ -47,23 +47,23 @@ class TestPool2d_Op(OpTest):
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
=
self
.
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
)
self
.
inputs
=
{
'
Input
'
:
input
}
self
.
inputs
=
{
'
X
'
:
input
}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling
_t
ype'
:
self
.
pool_type
,
'pooling
T
ype'
:
self
.
pool_type
,
}
self
.
outputs
=
{
'Out
put
'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
if
self
.
pool_type
!=
"max"
:
self
.
check_grad
(
set
([
'
Input'
]),
'Outp
ut'
,
max_relative_error
=
0.07
)
self
.
check_grad
(
set
([
'
X'
]),
'O
ut'
,
max_relative_error
=
0.07
)
def
initTestCase
(
self
):
self
.
pool_type
=
"ave"
...
...
python/paddle/v2/framework/tests/test_pool3d_op.py
浏览文件 @
84a2512b
...
...
@@ -57,23 +57,23 @@ class TestPool3d_Op(OpTest):
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
=
self
.
pool3D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
)
self
.
inputs
=
{
'
Input
'
:
input
}
self
.
inputs
=
{
'
X
'
:
input
}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling
_t
ype'
:
self
.
pool_type
,
'pooling
T
ype'
:
self
.
pool_type
,
}
self
.
outputs
=
{
'Out
put
'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
if
self
.
pool_type
!=
"max"
:
self
.
check_grad
(
set
([
'
Input'
]),
'Outp
ut'
,
max_relative_error
=
0.07
)
self
.
check_grad
(
set
([
'
X'
]),
'O
ut'
,
max_relative_error
=
0.07
)
def
initTestCase
(
self
):
self
.
pool_type
=
"ave"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录