Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
845618e2
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
845618e2
编写于
7月 05, 2018
作者:
Y
Yancey
提交者:
GitHub
7月 05, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #9068 from Yancey1989/large_model_design_doc
Add design doc for lookup remote table in Fluid
上级
a0fefc27
e343afb1
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
26 addition
and
0 deletion
+26
-0
doc/fluid/design/dist_train/distributed_lookup_table_design.md
...luid/design/dist_train/distributed_lookup_table_design.md
+26
-0
doc/fluid/design/dist_train/src/fluid_lookup_remote_table.graffle
...d/design/dist_train/src/fluid_lookup_remote_table.graffle
+0
-0
doc/fluid/design/dist_train/src/fluid_lookup_remote_table.png
...fluid/design/dist_train/src/fluid_lookup_remote_table.png
+0
-0
未找到文件。
doc/fluid/design/dist_train/distributed_lookup_table_design.md
浏览文件 @
845618e2
...
...
@@ -119,6 +119,32 @@ optimization algorithm $f$ runs on the storage service.
-
Con: the storage service needs to be able to run the optimization
algorithm.
## Distributed Sparse Table in Fluid
For another design, we can implement a distributed sparse table in Fluid,
and don't need to maintain an external storage component while training.
You may need to read Fluid
[
Distributed Training Architecture
](
./distributed_architecture.md
)
and
[
Parameter Server
](
./parameter_server.md
)
before going on.
![
fluid lookup remote table
](
./src/fluid_lookup_remote_table.png
)
Partition a large table into multiple pserver instances
1.
`DistributeTranspiler`
would split the table partitioned into some small
table blocks with some partitioned algorithms such as
[
RoundRobin
](
https://en.wikipedia.org/wiki/Round-robin_scheduling
)
,
[
Hash
](
https://en.wikipedia.org/wiki/Hash
)
and etc...
1.
For some cases, the range of input
`Ids`
is very wide and unpredictable, so the sparse
table would be able to fill a new value for the id that didn't appear before with
zero, uniform random or Gaussian distribution.
For each Trainer's training process:
1.
In the forward pass, we use
`pre-fetch`
op to pre-fetch parameter blocks according to the
input
`Ids`
from PServers instead of the local
`lookup_table`
op, and then merge the blocks
into a parameter
`W`
.
1.
Compute
`GRAD@W'`
in the backward pass using the pre-fetched
`W`
and send it to PServer to
execute the optimize pass.
## Conclusion
Let us do the "storage service does not optimize" solution first, as a
...
...
doc/fluid/design/dist_train/src/fluid_lookup_remote_table.graffle
0 → 100644
浏览文件 @
845618e2
文件已添加
doc/fluid/design/dist_train/src/fluid_lookup_remote_table.png
0 → 100644
浏览文件 @
845618e2
316.8 KB
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录