Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
83883a2e
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
83883a2e
编写于
7月 10, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into refine/infer/api/dynamic
上级
b065522d
938920c8
变更
40
显示空白变更内容
内联
并排
Showing
40 changed file
with
583 addition
and
347 deletion
+583
-347
CMakeLists.txt
CMakeLists.txt
+5
-0
cmake/external/anakin.cmake
cmake/external/anakin.cmake
+11
-1
cmake/version.cmake
cmake/version.cmake
+7
-2
doc/v2/howto/capi/workflow_of_capi_cn.md
doc/v2/howto/capi/workflow_of_capi_cn.md
+9
-9
paddle/contrib/inference/CMakeLists.txt
paddle/contrib/inference/CMakeLists.txt
+2
-0
paddle/contrib/inference/test_paddle_inference_api_impl.cc
paddle/contrib/inference/test_paddle_inference_api_impl.cc
+1
-1
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-0
paddle/fluid/framework/op_info.cc
paddle/fluid/framework/op_info.cc
+2
-2
paddle/fluid/framework/reader.cc
paddle/fluid/framework/reader.cc
+46
-14
paddle/fluid/framework/reader.h
paddle/fluid/framework/reader.h
+76
-20
paddle/fluid/framework/reader_test.cc
paddle/fluid/framework/reader_test.cc
+52
-0
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass_tester.cc
...nference/analysis/fluid_to_data_flow_graph_pass_tester.cc
+1
-1
paddle/fluid/inference/analysis/subgraph_splitter_tester.cc
paddle/fluid/inference/analysis/subgraph_splitter_tester.cc
+1
-1
paddle/fluid/memory/detail/buddy_allocator.cc
paddle/fluid/memory/detail/buddy_allocator.cc
+3
-2
paddle/fluid/memory/detail/buddy_allocator.h
paddle/fluid/memory/detail/buddy_allocator.h
+4
-3
paddle/fluid/memory/malloc.cc
paddle/fluid/memory/malloc.cc
+42
-27
paddle/fluid/operators/batch_norm_op.cc
paddle/fluid/operators/batch_norm_op.cc
+17
-4
paddle/fluid/operators/batch_norm_op.cu.cc
paddle/fluid/operators/batch_norm_op.cu.cc
+45
-32
paddle/fluid/operators/conditional_block_op.cc
paddle/fluid/operators/conditional_block_op.cc
+4
-3
paddle/fluid/operators/cross_entropy_op.cc
paddle/fluid/operators/cross_entropy_op.cc
+1
-2
paddle/fluid/operators/merge_lod_tensor_op.cc
paddle/fluid/operators/merge_lod_tensor_op.cc
+20
-10
paddle/fluid/operators/reader/CMakeLists.txt
paddle/fluid/operators/reader/CMakeLists.txt
+0
-1
paddle/fluid/operators/reader/create_batch_reader_op.cc
paddle/fluid/operators/reader/create_batch_reader_op.cc
+18
-6
paddle/fluid/operators/reader/create_custom_reader_op.cc
paddle/fluid/operators/reader/create_custom_reader_op.cc
+6
-6
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
.../fluid/operators/reader/create_double_buffer_reader_op.cc
+16
-12
paddle/fluid/operators/reader/create_multi_pass_reader_op.cc
paddle/fluid/operators/reader/create_multi_pass_reader_op.cc
+10
-10
paddle/fluid/operators/reader/create_py_reader_op.cc
paddle/fluid/operators/reader/create_py_reader_op.cc
+13
-8
paddle/fluid/operators/reader/create_random_data_generator_op.cc
...fluid/operators/reader/create_random_data_generator_op.cc
+5
-7
paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
.../fluid/operators/reader/create_recordio_file_reader_op.cc
+5
-16
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
+14
-4
paddle/fluid/operators/reader/create_threaded_reader_op.cc
paddle/fluid/operators/reader/create_threaded_reader_op.cc
+0
-79
paddle/fluid/operators/reader/open_files_op.cc
paddle/fluid/operators/reader/open_files_op.cc
+13
-16
paddle/fluid/operators/reader/reader_op_registry.cc
paddle/fluid/operators/reader/reader_op_registry.cc
+2
-2
paddle/fluid/operators/reader/reader_op_registry.h
paddle/fluid/operators/reader/reader_op_registry.h
+5
-6
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+1
-1
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+0
-11
python/paddle/fluid/tests/test_if_else_op.py
python/paddle/fluid/tests/test_if_else_op.py
+72
-12
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
...n/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
+0
-1
python/paddle/fluid/tests/unittests/test_parallel_op.py
python/paddle/fluid/tests/unittests/test_parallel_op.py
+3
-1
python/setup.py.in
python/setup.py.in
+50
-14
未找到文件。
CMakeLists.txt
浏览文件 @
83883a2e
...
...
@@ -103,6 +103,11 @@ if(ANDROID OR IOS)
add_definitions
(
-DPADDLE_MOBILE_INFERENCE
)
endif
()
if
(
APPLE OR WIN32
)
set
(
WITH_MKL OFF CACHE STRING
"Disable MKL for building on mac and windows"
FORCE
)
endif
()
set
(
THIRD_PARTY_PATH
"
${
CMAKE_BINARY_DIR
}
/third_party"
CACHE STRING
"A path setting third party libraries download & build directories."
)
...
...
cmake/external/anakin.cmake
浏览文件 @
83883a2e
...
...
@@ -7,7 +7,17 @@ set(ANAKIN_INSTALL_DIR "${THIRD_PARTY_PATH}/install/anakin" CACHE PATH
set
(
ANAKIN_INCLUDE
"
${
ANAKIN_INSTALL_DIR
}
"
CACHE STRING
"root of Anakin header files"
)
set
(
ANAKIN_LIBRARY
"
${
ANAKIN_INSTALL_DIR
}
"
CACHE STRING
"path of Anakin library"
)
set
(
ANAKIN_COMPILE_EXTRA_FLAGS -Wno-error=unused-variable -Wno-error=format-extra-args -Wno-error=comment -Wno-error=format -Wno-error=switch -Wno-error=return-type -Wno-error=non-virtual-dtor -Wno-reorder -Wno-error=cpp
)
set
(
ANAKIN_COMPILE_EXTRA_FLAGS
-Wno-error=unused-variable -Wno-unused-variable
-Wno-error=format-extra-args -Wno-format-extra-args
-Wno-error=comment -Wno-comment
-Wno-error=format -Wno-format
-Wno-error=switch -Wno-switch
-Wno-error=return-type -Wno-return-type
-Wno-error=non-virtual-dtor -Wno-non-virtual-dtor
-Wno-sign-compare
-Wno-reorder
-Wno-error=cpp
)
set
(
ANAKIN_LIBRARY_URL
"https://github.com/pangge/Anakin/releases/download/3.0/anakin_release_simple.tar.gz"
)
...
...
cmake/version.cmake
浏览文件 @
83883a2e
# Get the latest git tag.
set
(
PADDLE_VERSION $ENV{PADDLE_VERSION}
)
set
(
tmp_version
"HEAD"
)
set
(
TAG_VERSION_REGEX
"[0-9]+
\\
.[0-9]+
\\
.[0-9]+(
\\
.(a|b|rc)
\\
.[0-9]+)?"
)
set
(
COMMIT_VERSION_REGEX
"[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+"
)
while
(
"
${
PADDLE_VERSION
}
"
STREQUAL
""
)
execute_process
(
COMMAND
${
GIT_EXECUTABLE
}
describe --tags --abbrev=0
${
tmp_version
}
COMMAND
${
GIT_EXECUTABLE
}
describe --tags --abbrev=0
--always
${
tmp_version
}
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
OUTPUT_VARIABLE GIT_TAG_NAME
RESULT_VARIABLE GIT_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE
)
if
(
NOT
${
GIT_RESULT
}
)
# Check the tag is a correct version
if
(
${
GIT_TAG_NAME
}
MATCHES
"v[0-9]+
\\
.[0-9]+
\\
.[0-9]+(
\\
.(a|b|rc)
\\
.[0-9]+)?"
)
if
(
${
GIT_TAG_NAME
}
MATCHES
"
${
COMMIT_VERSION_REGEX
}
"
)
# if no tag was found, set PADDLE_VERSION to latest
set
(
PADDLE_VERSION
"latest"
)
elseif
(
${
GIT_TAG_NAME
}
MATCHES
"v
${
TAG_VERSION_REGEX
}
"
)
string
(
REPLACE
"v"
""
PADDLE_VERSION
${
GIT_TAG_NAME
}
)
else
()
# otherwise, get the previous git tag name.
set
(
tmp_version
"
${
GIT_TAG_NAME
}
~1"
)
...
...
doc/v2/howto/capi/workflow_of_capi_cn.md
浏览文件 @
83883a2e
...
...
@@ -28,9 +28,9 @@
### 准备预测模型
准备预测模型部分,我们以手写数字识别任务为例进行介绍。手写数字识别任务定义了一个含有
[
两个隐层的简单全连接网络
](
https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md#softmax回归softmax-regression
)
,网络接受一幅图片作为输入,将图片分类到 0 ~ 9 类别标签之一。完整代码可以查看
[
此目录
](
https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense
)
中的相关脚本。
准备预测模型部分,我们以手写数字识别任务为例进行介绍。手写数字识别任务定义了一个含有
[
两个隐层的简单全连接网络
](
https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md#softmax回归softmax-regression
)
,网络接受一幅图片作为输入,将图片分类到 0 ~ 9 类别标签之一。完整代码可以查看
[
此目录
](
https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
legacy/
capi/examples/model_inference/dense
)
中的相关脚本。
调用C-API开发预测程序需要一个训练好的模型,运行
[
MNIST手写数字识别目录
](
https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
capi/examples/model_inference/dense
)
下的
[
mnist_v2.py
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle
/capi/examples/model_inference/dense/mnist_v2.py
)
脚本,在终端执行
`python mnist_v2.py`
,会使用 PaddlePaddle 内置的
[
MNIST 数据集
](
http://yann.lecun.com/exdb/mnist/
)
进行训练。训练好的模型默认保存在当前运行目录下的
`models`
目录中。
调用C-API开发预测程序需要一个训练好的模型,运行
[
MNIST手写数字识别目录
](
https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
legacy/capi/examples/model_inference/dense
)
下的
[
mnist_v2.py
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy
/capi/examples/model_inference/dense/mnist_v2.py
)
脚本,在终端执行
`python mnist_v2.py`
,会使用 PaddlePaddle 内置的
[
MNIST 数据集
](
http://yann.lecun.com/exdb/mnist/
)
进行训练。训练好的模型默认保存在当前运行目录下的
`models`
目录中。
下面,我们将训练结束后存储下来的模型转换成预测模型。
...
...
@@ -48,7 +48,7 @@
dump_v2_config(predict, "trainer_config.bin", True)
```
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
capi/examples/model_inference/dense)这个示例,[`mnist_v2.py`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle
/capi/examples/model_inference/dense/mnist_v2.py)脚本集成了序列化神经网络结构的过程,可以直接运行 `python mnist_v2.py --task dump_config` 对神经网络结构进行序列化,结果会写入当前运行目录下的`trainer_config.bin`文件中。
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
legacy/capi/examples/model_inference/dense)这个示例,[`mnist_v2.py`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy
/capi/examples/model_inference/dense/mnist_v2.py)脚本集成了序列化神经网络结构的过程,可以直接运行 `python mnist_v2.py --task dump_config` 对神经网络结构进行序列化,结果会写入当前运行目录下的`trainer_config.bin`文件中。
使用这种方式,需要**在运行时将神经网络的多个可学习参数放在同一个目录中**,C-API可以通过分别指定序列化后的网络结构文件和参数目录来加载训练好的模型。
...
...
@@ -68,7 +68,7 @@
merge_v2_model(net, param_file, output_file)
```
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
capi/examples/model_inference/dense)这个示例,可直接运行 `python` [merge_v2_model.py](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle
/capi/examples/model_inference/dense/merge_v2_model.py)。序列化结果会写入当前运行目录下的`output.paddle.model`文件中。使用这种方式,运行时C-API可以通过指定`output.paddle.model`文件的路径来加载预测模型。
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
legacy/capi/examples/model_inference/dense)这个示例,可直接运行 `python` [merge_v2_model.py](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy
/capi/examples/model_inference/dense/merge_v2_model.py)。序列化结果会写入当前运行目录下的`output.paddle.model`文件中。使用这种方式,运行时C-API可以通过指定`output.paddle.model`文件的路径来加载预测模型。
#### 注意事项
1.
为使用C-API,在调用
`dump_v2_config`
序列化神经网络结构时,参数
`binary`
必须指定为
`True`
。
...
...
@@ -77,10 +77,10 @@
### 编写预测代码
预测代码更多详细示例代码请参考
[
C-API使用示例
](
https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference
)
目录下的代码示例。这一节对图1中预测代码编写的5个步骤进行介绍和说明。
预测代码更多详细示例代码请参考
[
C-API使用示例
](
https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
legacy/
capi/examples/model_inference
)
目录下的代码示例。这一节对图1中预测代码编写的5个步骤进行介绍和说明。
#### step 1. 初始化PaddlePaddle运行环境
第一步需调用
[
`paddle_init`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/main.h#L27
)
初始化PaddlePaddle运行环境,该接口接受两个参数:参数的个数和参数列表。
第一步需调用
[
`paddle_init`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/
legacy/
capi/main.h#L27
)
初始化PaddlePaddle运行环境,该接口接受两个参数:参数的个数和参数列表。
#### step2. 加载模型
...
...
@@ -88,8 +88,8 @@
概念上,在 PaddlePaddle 内部,一个GradientMachine类的对象管理着一组计算层(PaddlePaddle Layers)来完成前向和反向计算,并处理与之相关的所有细节。在调用C-API预测时,只需进行前向计算而无需调用反向计算。这篇文档之后部分会使用
`gradient machine`
来特指调用PaddlePaddle C-API创建的GradientMachine类的对象。每一个
`gradient machine`
都会管理维护一份训练好的模型,下面是C-API提供的,两种常用的模型加载方式:
1.
调用
[
`paddle_gradient_machine_load_parameter_from_disk`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L61
)
接口,从磁盘加载预测模型。这时
`gradient machine`
会独立拥有一份训练好的模型;
1.
调用
[
`paddle_gradient_machine_create_shared_param`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/
capi/gradient_machine.h#L88
)
接口,与其它
`gradient machine`
的共享已经加载的预测模型。这种情况多出现在使用多线程预测时,通过多个线程共享同一个模型来减少内存开销。可参考
[
此示例
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle
/capi/examples/model_inference/multi_thread/main.c
)
。
1.
调用
[
`paddle_gradient_machine_load_parameter_from_disk`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/
legacy/
capi/gradient_machine.h#L61
)
接口,从磁盘加载预测模型。这时
`gradient machine`
会独立拥有一份训练好的模型;
1.
调用
[
`paddle_gradient_machine_create_shared_param`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/
legacy/capi/gradient_machine.h#L88
)
接口,与其它
`gradient machine`
的共享已经加载的预测模型。这种情况多出现在使用多线程预测时,通过多个线程共享同一个模型来减少内存开销。可参考
[
此示例
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy
/capi/examples/model_inference/multi_thread/main.c
)
。
-
注意事项
...
...
@@ -117,7 +117,7 @@ C-API支持的所有输入数据类型和他们的组织方式,请参考“输
#### step 4. 前向计算
完成上述准备之后,通过调用
[
`paddle_gradient_machine_forward`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L73
)
接口完成神经网络的前向计算。
完成上述准备之后,通过调用
[
`paddle_gradient_machine_forward`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/
legacy/
capi/gradient_machine.h#L73
)
接口完成神经网络的前向计算。
#### step 5. 清理
...
...
paddle/contrib/inference/CMakeLists.txt
浏览文件 @
83883a2e
...
...
@@ -49,7 +49,9 @@ cc_library(paddle_inference_api
# Here the shared library doesn't depend on other fluid libraries, or double free will occur.
cc_library
(
paddle_inference_api_shared SHARED
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc
)
add_dependencies
(
paddle_inference_api_shared
${
FLUID_CORE_MODULES
}
${
GLOB_OP_LIB
}
)
set_target_properties
(
paddle_inference_api_shared PROPERTIES OUTPUT_NAME paddle_inference_api
)
if
(
NOT APPLE
)
set
(
LINK_FLAGS
"-Wl,--version-script
${
CMAKE_CURRENT_SOURCE_DIR
}
/paddle_inference_api.map"
)
set_target_properties
(
paddle_inference_api_shared PROPERTIES LINK_FLAGS
"
${
LINK_FLAGS
}
"
)
...
...
paddle/contrib/inference/test_paddle_inference_api_impl.cc
浏览文件 @
83883a2e
...
...
@@ -249,7 +249,7 @@ void MainThreadsImageClassification(bool use_gpu) {
const
size_t
len
=
local_outputs
[
0
].
data
.
length
();
float
*
data
=
static_cast
<
float
*>
(
local_outputs
[
0
].
data
.
data
());
float
*
ref_data
=
refs
[
tid
].
data
<
float
>
();
EXPECT_EQ
(
refs
[
tid
].
numel
(),
len
/
sizeof
(
float
));
EXPECT_EQ
(
(
size_t
)
refs
[
tid
].
numel
(),
len
/
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
refs
[
tid
].
numel
();
++
i
)
{
EXPECT_NEAR
(
ref_data
[
i
],
data
[
i
],
1e-3
);
}
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
83883a2e
...
...
@@ -27,6 +27,7 @@ cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory)
nv_test
(
lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor
)
cc_library
(
reader SRCS reader.cc DEPS lod_tensor ddim
)
cc_test
(
reader_test SRCS reader_test.cc DEPS reader
)
cc_test
(
variable_test SRCS variable_test.cc
)
...
...
paddle/fluid/framework/op_info.cc
浏览文件 @
83883a2e
...
...
@@ -21,8 +21,8 @@ namespace framework {
// a static local variable is already being initialized.
// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex
OpInfoMap
&
OpInfoMap
::
Instance
()
{
static
OpInfoMap
*
g_op_info_map
=
new
OpInfoMap
()
;
return
*
g_op_info_map
;
static
OpInfoMap
g_op_info_map
;
return
g_op_info_map
;
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/reader.cc
浏览文件 @
83883a2e
...
...
@@ -13,29 +13,61 @@
// limitations under the License.
#include "paddle/fluid/framework/reader.h"
#include <deque>
namespace
paddle
{
namespace
framework
{
ReaderBase
::~
ReaderBase
()
{}
FileReader
::
FileReader
(
const
std
::
vector
<
DDim
>
&
dims
)
:
dims_
(
dims
)
{}
void
FileReader
::
ReadNext
(
std
::
vector
<
LoDTensor
>
*
out
)
{
void
ReaderBase
::
ReadNext
(
std
::
vector
<
LoDTensor
>
*
out
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
PADDLE_ENFORCE_EQ
(
status_
,
ReaderStatus
::
kRunning
);
ReadNextImpl
(
out
);
if
(
out
->
empty
())
{
return
;
}
void
ReaderBase
::
InsertDecoratedReader
(
const
std
::
shared_ptr
<
ReaderBase
>
&
decorated_reader
)
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mu_
);
decorated_readers_
.
emplace_back
(
decorated_reader
);
}
std
::
unordered_set
<
ReaderBase
*>
ReaderBase
::
GetEndPoints
()
{
std
::
unordered_set
<
ReaderBase
*>
result
;
std
::
deque
<
ReaderBase
*>
queue
;
queue
.
emplace_back
(
this
);
while
(
!
queue
.
empty
())
{
// BFS search
auto
*
front
=
queue
.
front
();
queue
.
pop_front
();
if
(
front
->
decorated_readers_
.
empty
())
{
result
.
emplace
(
front
);
}
else
{
for
(
auto
&
reader
:
front
->
decorated_readers_
)
{
if
(
auto
*
reader_ptr
=
reader
.
lock
().
get
())
{
queue
.
emplace_back
(
reader_ptr
);
}
}
}
}
PADDLE_ENFORCE_EQ
(
out
->
size
(),
dims_
.
size
());
for
(
size_t
i
=
0
;
i
<
dims_
.
size
();
++
i
)
{
auto
&
actual
=
(
*
out
)[
i
].
dims
();
auto
&
expect
=
dims_
[
i
];
return
result
;
}
PADDLE_ENFORCE_EQ
(
actual
.
size
(),
expect
.
size
());
for
(
int
j
=
0
;
j
<
actual
.
size
();
++
j
)
{
// PADDLE_ENFORCE(actual[i] == expect[i] || expect[i] == -1);
void
ReaderBase
::
Shutdown
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
if
(
status_
!=
ReaderStatus
::
kStopped
)
{
ShutdownImpl
();
status_
=
ReaderStatus
::
kStopped
;
}
}
void
ReaderBase
::
Start
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
if
(
status_
!=
ReaderStatus
::
kRunning
)
{
StartImpl
();
status_
=
ReaderStatus
::
kRunning
;
}
}
ReaderBase
::~
ReaderBase
()
{
Shutdown
();
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/reader.h
浏览文件 @
83883a2e
...
...
@@ -15,6 +15,7 @@
#pragma once
#include <memory>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
...
...
@@ -24,61 +25,116 @@
namespace
paddle
{
namespace
framework
{
enum
ReaderStatus
{
kRunning
,
kStopped
};
class
ReaderBase
{
public:
virtual
void
ReadNext
(
std
::
vector
<
LoDTensor
>*
out
)
=
0
;
void
ReadNext
(
std
::
vector
<
LoDTensor
>*
out
);
void
Shutdown
();
void
Start
();
virtual
void
ReInit
()
=
0
;
// Return the readers which are the end of decorating chain. Basically
// they are readers just before read op.
std
::
unordered_set
<
ReaderBase
*>
GetEndPoints
();
virtual
~
ReaderBase
();
protected:
virtual
void
ReadNextImpl
(
std
::
vector
<
LoDTensor
>*
out
)
=
0
;
virtual
void
ShutdownImpl
()
{}
virtual
void
StartImpl
()
{}
ReaderStatus
status_
{
kRunning
};
mutable
std
::
mutex
mu_
;
private:
friend
class
DecoratedReader
;
// These methods can be only invoked inside DecoratedReader to record the
// decorating chain.
void
InsertDecoratedReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
decorated_reader
);
// A set of which readers that decorated this reader.
std
::
vector
<
std
::
weak_ptr
<
ReaderBase
>>
decorated_readers_
;
};
class
DecoratedReader
:
public
ReaderBase
{
class
DecoratedReader
:
public
ReaderBase
,
public
std
::
enable_shared_from_this
<
DecoratedReader
>
{
public:
explicit
DecoratedReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
)
:
ReaderBase
(),
reader_
(
reader
)
{
PADDLE_ENFORCE_NOT_NULL
(
reader_
);
}
void
ReInit
()
override
{
reader_
->
ReInit
();
}
void
RegisterDecorateChain
()
{
reader_
->
InsertDecoratedReader
(
shared_from_this
());
}
protected:
std
::
shared_ptr
<
ReaderBase
>
reader_
;
};
class
FileReader
:
public
ReaderBase
{
public:
explicit
FileReader
(
const
std
::
vector
<
DDim
>&
dims
);
void
ShutdownImpl
()
override
{
reader_
->
Shutdown
();
}
void
ReadNext
(
std
::
vector
<
LoDTensor
>*
out
)
override
;
void
StartImpl
()
override
{
reader_
->
Start
();
}
protected:
virtual
void
ReadNextImpl
(
std
::
vector
<
LoDTensor
>*
out
)
=
0
;
private:
std
::
vector
<
DDim
>
dims_
;
std
::
shared_ptr
<
ReaderBase
>
reader_
;
};
// FileReader is just a conceptual class.
class
FileReader
:
public
ReaderBase
{};
// The ReaderHolder is used as reader' unified wrapper,
// making it easier to access different type reader in Variables.
class
ReaderHolder
{
public:
void
Reset
(
ReaderBase
*
reader
)
{
reader_
.
reset
(
reader
);
}
template
<
typename
T
>
void
Reset
(
const
std
::
shared_ptr
<
T
>&
reader
)
{
auto
reader_base
=
std
::
dynamic_pointer_cast
<
ReaderBase
>
(
reader
);
PADDLE_ENFORCE_NOT_NULL
(
reader_base
);
reader_
=
reader_base
;
}
std
::
shared_ptr
<
ReaderBase
>
Get
()
const
{
return
reader_
;
}
const
std
::
shared_ptr
<
ReaderBase
>&
Get
()
const
{
return
reader_
;
}
void
ReadNext
(
std
::
vector
<
LoDTensor
>*
out
)
{
PADDLE_ENFORCE_NOT_NULL
(
reader_
);
reader_
->
ReadNext
(
out
);
}
void
ReInit
()
{
void
ResetAll
()
{
auto
end_readers
=
reader_
->
GetEndPoints
();
for
(
auto
*
reader
:
end_readers
)
{
reader
->
Shutdown
();
}
for
(
auto
*
reader
:
end_readers
)
{
reader
->
Start
();
}
}
void
Shutdown
()
{
PADDLE_ENFORCE_NOT_NULL
(
reader_
);
reader_
->
Shutdown
();
}
void
Start
()
{
PADDLE_ENFORCE_NOT_NULL
(
reader_
);
reader_
->
ReIni
t
();
reader_
->
Star
t
();
}
operator
const
std
::
shared_ptr
<
ReaderBase
>&
()
const
{
return
this
->
reader_
;
}
private:
std
::
shared_ptr
<
ReaderBase
>
reader_
;
};
template
<
typename
T
,
typename
...
ARGS
>
inline
std
::
shared_ptr
<
DecoratedReader
>
MakeDecoratedReader
(
ARGS
&&
...
args
)
{
std
::
shared_ptr
<
DecoratedReader
>
reader
(
new
T
(
std
::
forward
<
ARGS
>
(
args
)...));
reader
->
RegisterDecorateChain
();
return
reader
;
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/reader_test.cc
0 → 100644
浏览文件 @
83883a2e
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/reader.h"
#include <memory>
#include "gtest/gtest.h"
class
StubDecoratedReader
:
public
paddle
::
framework
::
DecoratedReader
{
public:
explicit
StubDecoratedReader
(
const
std
::
shared_ptr
<
ReaderBase
>
&
reader
)
:
DecoratedReader
(
reader
)
{}
void
ReadNextImpl
(
std
::
vector
<
paddle
::
framework
::
LoDTensor
>
*
out
)
override
{}
};
class
StubRootReader
:
public
paddle
::
framework
::
ReaderBase
{
public:
void
ReadNextImpl
(
std
::
vector
<
paddle
::
framework
::
LoDTensor
>
*
out
)
override
{}
};
TEST
(
READER
,
decorate_chain
)
{
auto
root
=
std
::
make_shared
<
StubRootReader
>
();
auto
end_point1
=
paddle
::
framework
::
MakeDecoratedReader
<
StubDecoratedReader
>
(
root
);
auto
end_point2
=
paddle
::
framework
::
MakeDecoratedReader
<
StubDecoratedReader
>
(
root
);
{
auto
endpoints
=
root
->
GetEndPoints
();
ASSERT_EQ
(
endpoints
.
size
(),
2U
);
ASSERT_NE
(
endpoints
.
count
(
end_point1
.
get
()),
0
);
ASSERT_NE
(
endpoints
.
count
(
end_point2
.
get
()),
0
);
}
{
auto
end_point3
=
paddle
::
framework
::
MakeDecoratedReader
<
StubDecoratedReader
>
(
root
);
ASSERT_EQ
(
root
->
GetEndPoints
().
size
(),
3U
);
}
{
ASSERT_EQ
(
root
->
GetEndPoints
().
size
(),
2U
);
}
}
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass_tester.cc
浏览文件 @
83883a2e
...
...
@@ -27,7 +27,7 @@ TEST_F(DFG_Tester, Init) {
DataFlowGraph
graph
;
pass
.
Run
(
&
graph
);
// Analysis is sensitive to ProgramDesc, careful to change the original model.
ASSERT_EQ
(
graph
.
nodes
.
size
(),
37
);
ASSERT_EQ
(
graph
.
nodes
.
size
(),
37
UL
);
pass
.
Finalize
();
LOG
(
INFO
)
<<
'\n'
<<
graph
.
DotString
();
}
...
...
paddle/fluid/inference/analysis/subgraph_splitter_tester.cc
浏览文件 @
83883a2e
...
...
@@ -82,7 +82,7 @@ TEST_F(DFG_Tester, Fuse) {
// At least one nodes should be deleted.
ASSERT_EQ
(
dfg
.
nodes
.
size
(),
count0
+
1
);
// added a new FunctionBlock
ASSERT_EQ
(
6
UL
,
count1
);
ASSERT_EQ
(
6
,
count1
);
}
}
// namespace analysis
...
...
paddle/fluid/memory/detail/buddy_allocator.cc
浏览文件 @
83883a2e
...
...
@@ -19,8 +19,9 @@ namespace paddle {
namespace
memory
{
namespace
detail
{
BuddyAllocator
::
BuddyAllocator
(
SystemAllocator
*
system_allocator
,
size_t
min_chunk_size
,
size_t
max_chunk_size
)
BuddyAllocator
::
BuddyAllocator
(
std
::
unique_ptr
<
SystemAllocator
>
system_allocator
,
size_t
min_chunk_size
,
size_t
max_chunk_size
)
:
min_chunk_size_
(
min_chunk_size
),
max_chunk_size_
(
max_chunk_size
),
cache_
(
system_allocator
->
UseGpu
()),
...
...
paddle/fluid/memory/detail/buddy_allocator.h
浏览文件 @
83883a2e
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <memory>
#include <mutex> // NOLINT
#include <set>
#include <tuple>
...
...
@@ -32,8 +33,8 @@ namespace detail {
class
BuddyAllocator
{
public:
BuddyAllocator
(
SystemAllocator
*
system_allocator
,
size_t
min_chunk_size
,
size_t
max_chunk_size
);
BuddyAllocator
(
std
::
unique_ptr
<
SystemAllocator
>
system_allocator
,
size_t
m
in_chunk_size
,
size_t
m
ax_chunk_size
);
~
BuddyAllocator
();
...
...
@@ -103,7 +104,7 @@ class BuddyAllocator {
private:
/*! Allocate CPU/GPU memory from system */
SystemAllocator
*
system_allocator_
;
std
::
unique_ptr
<
SystemAllocator
>
system_allocator_
;
std
::
mutex
mutex_
;
};
...
...
paddle/fluid/memory/malloc.cc
浏览文件 @
83883a2e
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <vector>
#include "paddle/fluid/memory/malloc.h"
#include "glog/logging.h"
...
...
@@ -34,12 +36,15 @@ namespace memory {
using
BuddyAllocator
=
detail
::
BuddyAllocator
;
BuddyAllocator
*
GetCPUBuddyAllocator
()
{
static
std
::
once_flag
init_flag
;
static
detail
::
BuddyAllocator
*
a
=
nullptr
;
if
(
a
==
nullptr
)
{
a
=
new
detail
::
BuddyAllocator
(
new
detail
::
CPUAllocator
,
platform
::
CpuMinChunkSize
(),
platform
::
CpuMaxChunkSize
());
}
std
::
call_once
(
init_flag
,
[]()
{
a
=
new
detail
::
BuddyAllocator
(
std
::
unique_ptr
<
detail
::
SystemAllocator
>
(
new
detail
::
CPUAllocator
),
platform
::
CpuMinChunkSize
(),
platform
::
CpuMaxChunkSize
());
});
return
a
;
}
...
...
@@ -68,19 +73,22 @@ size_t Used<platform::CPUPlace>(platform::CPUPlace place) {
#ifdef PADDLE_WITH_CUDA
BuddyAllocator
*
GetGPUBuddyAllocator
(
int
gpu_id
)
{
static
BuddyAllocator
**
as
=
NULL
;
if
(
as
==
NULL
)
{
static
std
::
once_flag
init_flag
;
static
detail
::
BuddyAllocator
**
a_arr
=
nullptr
;
std
::
call_once
(
init_flag
,
[
gpu_id
]()
{
int
gpu_num
=
platform
::
GetCUDADeviceCount
();
as
=
new
BuddyAllocator
*
[
gpu_num
];
for
(
int
gpu
=
0
;
gpu
<
gpu_num
;
gpu
++
)
{
as
[
gpu
]
=
nullptr
;
}
}
platform
::
SetDeviceId
(
gpu_id
);
if
(
!
as
[
gpu_id
])
{
as
[
gpu_id
]
=
new
BuddyAllocator
(
new
detail
::
GPUAllocator
(
gpu_id
),
platform
::
GpuMinChunkSize
(),
platform
::
GpuMaxChunkSize
());
PADDLE_ENFORCE
(
gpu_id
<
gpu_num
,
"gpu_id:%d should < gpu_num:%d"
,
gpu_id
,
gpu_num
);
a_arr
=
new
BuddyAllocator
*
[
gpu_num
];
for
(
int
i
=
0
;
i
<
gpu_num
;
i
++
)
{
a_arr
[
i
]
=
nullptr
;
platform
::
SetDeviceId
(
i
);
a_arr
[
i
]
=
new
BuddyAllocator
(
std
::
unique_ptr
<
detail
::
SystemAllocator
>
(
new
detail
::
GPUAllocator
(
i
)),
platform
::
GpuMinChunkSize
(),
platform
::
GpuMaxChunkSize
());
VLOG
(
10
)
<<
"
\n\n
NOTE: each GPU device use "
<<
FLAGS_fraction_of_gpu_memory_to_use
*
100
<<
"% of GPU memory.
\n
"
...
...
@@ -88,7 +96,10 @@ BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
<<
"FLAGS_fraction_of_gpu_memory_to_use"
<<
"' to change the fraction of GPU usage.
\n\n
"
;
}
return
as
[
gpu_id
];
});
platform
::
SetDeviceId
(
gpu_id
);
return
a_arr
[
gpu_id
];
}
template
<
>
...
...
@@ -125,12 +136,16 @@ void Free<platform::CUDAPlace>(platform::CUDAPlace place, void* p) {
}
BuddyAllocator
*
GetCUDAPinnedBuddyAllocator
()
{
static
BuddyAllocator
*
ba
=
NULL
;
if
(
ba
==
NULL
)
{
ba
=
new
BuddyAllocator
(
new
detail
::
CUDAPinnedAllocator
,
static
std
::
once_flag
init_flag
;
static
BuddyAllocator
*
ba
=
nullptr
;
std
::
call_once
(
init_flag
,
[]()
{
ba
=
new
BuddyAllocator
(
std
::
unique_ptr
<
detail
::
SystemAllocator
>
(
new
detail
::
CUDAPinnedAllocator
),
platform
::
CUDAPinnedMinChunkSize
(),
platform
::
CUDAPinnedMaxChunkSize
());
}
});
return
ba
;
}
...
...
paddle/fluid/operators/batch_norm_op.cc
浏览文件 @
83883a2e
...
...
@@ -216,6 +216,18 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
saved_mean_e
.
setZero
();
saved_variance_e
.
setZero
();
EigenVectorArrayMap
<
T
>
running_mean_arr
(
mean_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
EigenVectorArrayMap
<
T
>
running_var_arr
(
variance_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
if
((
N
*
sample_size
)
==
1
)
{
LOG
(
WARNING
)
<<
"Only 1 element in normalization dimension, "
<<
"we skip the batch norm calculation, let y = x."
;
framework
::
TensorCopySync
(
*
x
,
ctx
.
GetPlace
(),
y
);
return
;
}
switch
(
data_layout
)
{
case
DataLayout
::
kNCHW
:
{
ConstEigenArrayMap
<
T
>
x_arr
(
x
->
data
<
T
>
(),
sample_size
,
N
*
C
);
...
...
@@ -247,10 +259,6 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
PADDLE_THROW
(
"Unknown storage order: %s"
,
data_layout_str
);
}
EigenVectorArrayMap
<
T
>
running_mean_arr
(
mean_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
EigenVectorArrayMap
<
T
>
running_var_arr
(
variance_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
running_mean_arr
=
running_mean_arr
*
momentum
+
saved_mean_e
*
(
1.
-
momentum
);
running_var_arr
=
...
...
@@ -427,6 +435,11 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
d_bias_arr
.
setZero
();
d_scale_arr
.
setZero
();
if
((
N
*
sample_size
)
==
1
)
{
framework
::
TensorCopySync
(
*
d_y
,
ctx
.
GetPlace
(),
d_x
);
return
;
}
const
auto
scale_inv_var_nhw
=
scale_arr
*
inv_var_arr
/
(
N
*
sample_size
);
switch
(
data_layout
)
{
...
...
paddle/fluid/operators/batch_norm_op.cu.cc
浏览文件 @
83883a2e
...
...
@@ -72,6 +72,9 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
data_layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// ------------------- cudnn descriptors ---------------------
cudnnTensorDescriptor_t
data_desc_
;
cudnnTensorDescriptor_t
bn_param_desc_
;
...
...
@@ -93,7 +96,7 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
mode_
=
CUDNN_BATCHNORM_SPATIAL
;
#endif
VLOG
(
1
)
<<
"Setting descriptors."
;
VLOG
(
3
)
<<
"Setting descriptors."
;
std
::
vector
<
int
>
dims
;
std
::
vector
<
int
>
strides
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
...
...
@@ -113,11 +116,6 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
// alloc memory
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
...
...
@@ -162,6 +160,11 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
functor
(
dev_ctx
,
saved_mean
,
static_cast
<
BatchNormParamType
<
T
>>
(
0
));
functor
(
dev_ctx
,
saved_variance
,
static_cast
<
BatchNormParamType
<
T
>>
(
0
));
if
((
N
*
H
*
W
*
D
)
==
1
)
{
LOG
(
WARNING
)
<<
"Only 1 element in normalization dimension, "
<<
"we skip the batch norm calculation, let y = x."
;
framework
::
TensorCopySync
(
*
x
,
ctx
.
GetPlace
(),
y
);
}
else
{
double
this_factor
=
1.
-
momentum
;
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnBatchNormalizationForwardTraining
(
...
...
@@ -179,6 +182,7 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
saved_variance
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
())));
}
}
// clean when exit.
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
data_desc_
));
...
...
@@ -209,6 +213,25 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
data_layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
if
((
N
*
H
*
W
*
D
)
==
1
)
{
framework
::
TensorCopySync
(
*
d_y
,
ctx
.
GetPlace
(),
d_x
);
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
BatchNormParamType
<
T
>>
functor
;
functor
(
dev_ctx
,
d_scale
,
static_cast
<
BatchNormParamType
<
T
>>
(
0
));
functor
(
dev_ctx
,
d_bias
,
static_cast
<
BatchNormParamType
<
T
>>
(
0
));
return
;
}
PADDLE_ENFORCE_EQ
(
scale
->
dims
().
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
scale
->
dims
()[
0
],
C
);
...
...
@@ -247,21 +270,11 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDeriveBNTensorDescriptor
(
bn_param_desc_
,
data_desc_
,
mode_
));
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
saved_var
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
void
*
saved_mean_data
=
saved_mean
->
template
data
<
T
>();
const
void
*
saved_var_data
=
saved_var
->
template
data
<
T
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnBatchNormalizationBackward
(
dev_ctx
.
cudnn_handle
(),
mode_
,
CudnnDataType
<
T
>::
kOne
(),
CudnnDataType
<
T
>::
kZero
(),
CudnnDataType
<
T
>::
kOne
(),
...
...
paddle/fluid/operators/conditional_block_op.cc
浏览文件 @
83883a2e
...
...
@@ -205,10 +205,11 @@ class ConditionalBlockGradInferShape : public framework::InferShapeBase {
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"Params"
),
context
->
GetInputsDim
(
"Params"
));
}
PADDLE_ENFORCE
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"X"
)));
if
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"X"
)))
{
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
context
->
GetInputsDim
(
"X"
));
}
}
};
class
ConditionalBlockGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
...
...
paddle/fluid/operators/cross_entropy_op.cc
浏览文件 @
83883a2e
...
...
@@ -124,8 +124,7 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
"Tensor<float/double> with shape [N x D]."
);
AddOutput
(
"Y"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape "
"[N x 1]. The cross entropy loss."
)
.
Reuse
(
"X"
);
"[N x 1]. The cross entropy loss."
);
AddAttr
<
bool
>
(
"soft_label"
,
"(bool, default false), a flag indicating whether to "
"interpretate the given labels as soft labels."
)
...
...
paddle/fluid/operators/merge_lod_tensor_op.cc
浏览文件 @
83883a2e
...
...
@@ -44,8 +44,10 @@ class MergeLoDTensorOp : public framework::OperatorBase {
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
level
=
static_cast
<
size_t
>
(
Attr
<
int
>
(
"level"
));
auto
&
mask_dim
=
mask
.
dims
();
PADDLE_ENFORCE
(
in_true
.
numel
()
||
in_false
.
numel
(),
"Input(InTrue) or Input(InFalse) should be initialized."
);
auto
&
mask_dim
=
mask
.
dims
();
std
::
unique_ptr
<
framework
::
LoDTensor
>
cpu_mask
{
new
framework
::
LoDTensor
()};
if
(
platform
::
is_cpu_place
(
mask
.
place
()))
{
cpu_mask
->
ShareDataWith
(
mask
);
...
...
@@ -59,19 +61,27 @@ class MergeLoDTensorOp : public framework::OperatorBase {
}
auto
*
mask_data
=
cpu_mask
->
data
<
bool
>
();
int
rank
=
in_true
.
dims
().
size
();
platform
::
Place
place
=
in_true
.
place
();
std
::
type_index
data_type
=
in_true
.
type
();
framework
::
DDim
in_true_dims
=
framework
::
slice_ddim
(
in_true
.
dims
(),
1
,
rank
);
platform
::
Place
place
=
dev_place
;
int64_t
batch_size
=
in_true
.
dims
()[
0
]
+
in_false
.
dims
()[
0
];
auto
in_true_dim_vec
=
framework
::
vectorize
(
in_true_dims
);
in_true_dim_vec
.
insert
(
in_true_dim_vec
.
begin
(),
batch_size
);
std
::
type_index
data_type
=
in_true
.
IsInitialized
()
?
in_true
.
type
()
:
in_false
.
type
();
int
rank
;
framework
::
DDim
in_dims
;
if
(
in_true
.
IsInitialized
())
{
rank
=
in_true
.
dims
().
size
();
in_dims
=
framework
::
slice_ddim
(
in_true
.
dims
(),
1
,
rank
);
}
else
{
rank
=
in_false
.
dims
().
size
();
in_dims
=
framework
::
slice_ddim
(
in_false
.
dims
(),
1
,
rank
);
}
auto
in_dim_vec
=
framework
::
vectorize
(
in_dims
);
in_dim_vec
.
insert
(
in_dim_vec
.
begin
(),
batch_size
);
framework
::
DDim
out_dims
=
framework
::
make_ddim
(
in_
true_
dim_vec
);
framework
::
DDim
out_dims
=
framework
::
make_ddim
(
in_dim_vec
);
out
->
Resize
(
out_dims
);
out
->
mutable_data
(
place
,
data_type
);
auto
*
out_lod
=
out
->
mutable_lod
();
...
...
paddle/fluid/operators/reader/CMakeLists.txt
浏览文件 @
83883a2e
...
...
@@ -22,7 +22,6 @@ reader_library(create_batch_reader_op SRCS create_batch_reader_op.cc)
reader_library
(
create_recordio_file_reader_op SRCS create_recordio_file_reader_op.cc
)
reader_library
(
create_double_buffer_reader_op SRCS create_double_buffer_reader_op.cc
)
reader_library
(
create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc
)
reader_library
(
create_threaded_reader_op SRCS create_threaded_reader_op.cc
)
reader_library
(
create_custom_reader_op SRCS create_custom_reader_op.cc
)
reader_library
(
create_py_reader_op SRCS create_py_reader_op.cc
)
...
...
paddle/fluid/operators/reader/create_batch_reader_op.cc
浏览文件 @
83883a2e
...
...
@@ -20,15 +20,19 @@ namespace reader {
class
BatchReader
:
public
framework
::
DecoratedReader
{
public:
BatchReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
int
batch_size
)
:
DecoratedReader
(
reader
),
batch_size_
(
batch_size
)
{
BatchReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
int
batch_size
,
bool
discard_leftover
)
:
DecoratedReader
(
reader
),
batch_size_
(
batch_size
),
discard_leftover_
(
discard_leftover
)
{
buffer_
.
reserve
(
batch_size_
);
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
void
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
private:
int
batch_size_
;
bool
discard_leftover_
;
std
::
vector
<
std
::
vector
<
framework
::
LoDTensor
>>
buffer_
;
};
...
...
@@ -46,8 +50,9 @@ class CreateBatchReaderOp : public framework::OperatorBase {
}
const
auto
&
underlying_reader
=
scope
.
FindVar
(
Input
(
"UnderlyingReader"
))
->
Get
<
framework
::
ReaderHolder
>
();
out
->
Reset
(
new
BatchReader
(
underlying_reader
.
Get
(),
Attr
<
int
>
(
"batch_size"
)));
out
->
Reset
(
framework
::
MakeDecoratedReader
<
BatchReader
>
(
underlying_reader
,
Attr
<
int
>
(
"batch_size"
),
Attr
<
bool
>
(
"discard_leftover"
)));
}
};
...
...
@@ -57,6 +62,10 @@ class CreateBatchReaderOpMaker : public DecoratedReaderMakerBase {
AddAttr
<
int
>
(
"batch_size"
,
"How many instances the batch reader yields each time."
)
.
GreaterThan
(
0
);
AddAttr
<
bool
>
(
"discard_leftover"
,
"If true, the leftover instances that are not enough for a "
"new batch will be discarded."
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
CreateBatchReader Operator
...
...
@@ -66,7 +75,7 @@ class CreateBatchReaderOpMaker : public DecoratedReaderMakerBase {
}
};
void
BatchReader
::
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
void
BatchReader
::
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
buffer_
.
clear
();
buffer_
.
reserve
(
batch_size_
);
for
(
int
i
=
0
;
i
<
batch_size_
;
++
i
)
{
...
...
@@ -77,6 +86,9 @@ void BatchReader::ReadNext(std::vector<framework::LoDTensor>* out) {
break
;
}
}
if
(
discard_leftover_
&&
buffer_
.
size
()
<
batch_size_
)
{
buffer_
.
clear
();
}
// Concat instances
out
->
clear
();
if
(
buffer_
.
empty
())
{
...
...
paddle/fluid/operators/reader/create_custom_reader_op.cc
浏览文件 @
83883a2e
...
...
@@ -33,7 +33,7 @@ class CustomReader : public framework::DecoratedReader {
source_var_names_
(
source_var_names
),
sink_var_names_
(
sink_var_names
)
{}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
void
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
private:
const
framework
::
ProgramDesc
program_
;
...
...
@@ -60,8 +60,8 @@ class CreateCustomReaderOp : public framework::OperatorBase {
}
const
auto
&
underlying_reader
=
scope
.
FindVar
(
Input
(
"UnderlyingReader"
))
->
Get
<
framework
::
ReaderHolder
>
();
out
->
Reset
(
new
CustomReader
(
underlying_reader
.
Get
()
,
*
sub_block
,
out
->
Reset
(
framework
::
MakeDecoratedReader
<
CustomReader
>
(
underlying_reader
,
*
sub_block
,
Attr
<
std
::
vector
<
std
::
string
>>
(
"source_var_names"
),
Attr
<
std
::
vector
<
std
::
string
>>
(
"sink_var_names"
)));
}
...
...
@@ -143,7 +143,7 @@ class CustomReaderInferVarType : public framework::VarTypeInference {
}
};
void
CustomReader
::
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
void
CustomReader
::
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
out
->
clear
();
std
::
vector
<
framework
::
LoDTensor
>
underlying_outs
;
reader_
->
ReadNext
(
&
underlying_outs
);
...
...
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
浏览文件 @
83883a2e
...
...
@@ -23,13 +23,13 @@ namespace reader {
// 'Double buffer' means we shall maintain two batches of input data at the same
// time. So the kCacheSize shoul be at least 2.
static
constexpr
size_t
kCacheSize
=
5
;
static
constexpr
size_t
kCacheSize
=
3
;
// There will be two bacthes out of the channel during training:
// 1. the one waiting to be sent to the channel
// 2. the one just be received from the channel, which is also being used by
// subsequent operators.
// So the channel size should be kChacheSize - 2
static
constexpr
size_t
kChannelSize
=
3
;
// kCacheSize - 2
static
constexpr
size_t
kChannelSize
=
1
;
// kCacheSize - 2
class
DoubleBufferReader
:
public
framework
::
DecoratedReader
{
public:
...
...
@@ -50,12 +50,21 @@ class DoubleBufferReader : public framework::DecoratedReader {
StartPrefetcher
();
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
void
ReInit
()
override
;
void
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
~
DoubleBufferReader
()
{
EndPrefetcher
();
}
private:
void
ShutdownImpl
()
override
{
EndPrefetcher
();
reader_
->
Shutdown
();
}
void
StartImpl
()
override
{
reader_
->
Start
();
StartPrefetcher
();
}
void
StartPrefetcher
()
{
channel_
=
new
reader
::
BlockingQueue
<
size_t
>
(
kChannelSize
);
prefetcher_
=
std
::
thread
([
this
]
{
PrefetchThreadFunc
();
});
...
...
@@ -109,7 +118,8 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase {
place
=
platform
::
CUDAPlace
(
static_cast
<
int
>
(
num
));
}
out
->
Reset
(
new
DoubleBufferReader
(
underlying_reader
.
Get
(),
place
));
out
->
Reset
(
framework
::
MakeDecoratedReader
<
DoubleBufferReader
>
(
underlying_reader
,
place
));
}
};
...
...
@@ -136,7 +146,7 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase {
}
};
void
DoubleBufferReader
::
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
void
DoubleBufferReader
::
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
size_t
cached_tensor_id
;
if
(
channel_
->
Receive
(
&
cached_tensor_id
))
{
if
(
platform
::
is_gpu_place
(
place_
))
{
...
...
@@ -150,12 +160,6 @@ void DoubleBufferReader::ReadNext(std::vector<framework::LoDTensor>* out) {
}
}
void
DoubleBufferReader
::
ReInit
()
{
reader_
->
ReInit
();
EndPrefetcher
();
StartPrefetcher
();
}
void
DoubleBufferReader
::
PrefetchThreadFunc
()
{
VLOG
(
5
)
<<
"A new prefetch thread starts."
;
size_t
cached_tensor_id
=
0
;
...
...
paddle/fluid/operators/reader/create_multi_pass_reader_op.cc
浏览文件 @
83883a2e
...
...
@@ -24,23 +24,22 @@ class MultiPassReader : public framework::DecoratedReader {
MultiPassReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
int
pass_num
)
:
DecoratedReader
(
reader
),
pass_num_
(
pass_num
),
pass_count_
(
0
)
{}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
void
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
reader_
->
ReadNext
(
out
);
if
(
out
->
empty
())
{
++
pass_count_
;
if
(
pass_count_
<
pass_num_
)
{
reader_
->
ReInit
();
if
(
out
->
empty
()
&&
pass_count_
<
pass_num_
-
1
)
{
reader_
->
Shutdown
();
reader_
->
Start
();
reader_
->
ReadNext
(
out
);
}
++
pass_count_
;
}
}
void
ReInit
()
override
{
private:
void
StartImpl
()
override
{
pass_count_
=
0
;
reader_
->
ReIni
t
();
reader_
->
Star
t
();
}
private:
int
pass_num_
;
mutable
int
pass_count_
;
};
...
...
@@ -60,7 +59,8 @@ class CreateMultiPassReaderOp : public framework::OperatorBase {
const
auto
&
underlying_reader
=
scope
.
FindVar
(
Input
(
"UnderlyingReader"
))
->
Get
<
framework
::
ReaderHolder
>
();
int
pass_num
=
Attr
<
int
>
(
"pass_num"
);
out
->
Reset
(
new
MultiPassReader
(
underlying_reader
.
Get
(),
pass_num
));
out
->
Reset
(
framework
::
MakeDecoratedReader
<
MultiPassReader
>
(
underlying_reader
,
pass_num
));
}
};
...
...
paddle/fluid/operators/reader/create_py_reader_op.cc
浏览文件 @
83883a2e
...
...
@@ -19,22 +19,27 @@ namespace paddle {
namespace
operators
{
namespace
reader
{
class
PyReader
:
public
framework
::
ReaderBase
{
class
PyReader
:
public
framework
::
FileReader
{
public:
explicit
PyReader
(
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
queue
)
{
explicit
PyReader
(
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
queue
)
:
framework
::
FileReader
()
{
PADDLE_ENFORCE
(
queue
!=
nullptr
,
"LoDTensorBlockingQueue must not be null"
);
queue_
=
queue
;
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
void
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
bool
success
;
*
out
=
queue_
->
Pop
(
&
success
);
if
(
!
success
)
out
->
clear
();
}
void
ReInit
()
override
{}
private:
void
ShutdownImpl
()
override
{
/* TODO */
}
void
StartImpl
()
override
{
/* TODO */
}
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue_
;
};
...
...
@@ -51,14 +56,14 @@ class CreatePyReaderOp : public framework::OperatorBase {
const
std
::
string
&
queue_name
=
Input
(
"blocking_queue"
);
auto
*
queue_holder_var
=
scope
.
FindVar
(
queue_name
);
PADDLE_ENFORCE
(
queue_holder_var
!=
nullptr
,
PADDLE_ENFORCE
_NOT_NULL
(
queue_holder_var
,
"No LoDTensorBlockingQueueHolder variable with name %s found"
,
queue_name
);
auto
*
queue_holder
=
queue_holder_var
->
template
GetMutable
<
LoDTensorBlockingQueueHolder
>();
out
->
Reset
(
new
PyReader
(
queue_holder
->
GetQueue
()));
out
->
Reset
(
std
::
make_shared
<
PyReader
>
(
queue_holder
->
GetQueue
()));
}
};
...
...
paddle/fluid/operators/reader/create_random_data_generator_op.cc
浏览文件 @
83883a2e
...
...
@@ -19,11 +19,11 @@ namespace operators {
namespace
reader
{
template
<
typename
T
>
class
RandomDataGenerator
:
public
framework
::
ReaderBase
{
class
RandomDataGenerator
:
public
framework
::
FileReader
{
public:
RandomDataGenerator
(
const
std
::
vector
<
framework
::
DDim
>&
shapes
,
float
low
,
float
high
)
:
framework
::
ReaderBase
(),
low_
(
low
),
high_
(
high
),
shapes_
(
shapes
)
{
:
framework
::
FileReader
(),
low_
(
low
),
high_
(
high
),
shapes_
(
shapes
)
{
PADDLE_ENFORCE_LE
(
low
,
high
,
"'low' shouldn't be greater than 'high'.(%f vs %f)"
,
low
,
high
);
...
...
@@ -32,7 +32,7 @@ class RandomDataGenerator : public framework::ReaderBase {
dist_
=
std
::
uniform_real_distribution
<
float
>
(
low_
,
high_
);
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
void
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
out
->
clear
();
out
->
reserve
(
shapes_
.
size
());
for
(
const
framework
::
DDim
&
shape
:
shapes_
)
{
...
...
@@ -51,8 +51,6 @@ class RandomDataGenerator : public framework::ReaderBase {
}
}
void
ReInit
()
override
{
return
;
}
private:
float
low_
;
float
high_
;
...
...
@@ -79,8 +77,8 @@ class CreateRandomDataGeneratorOp : public framework::OperatorBase {
std
::
vector
<
framework
::
DDim
>
shapes
=
RestoreShapes
(
shape_concat
,
ranks
);
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
template
GetMutable
<
framework
::
ReaderHolder
>();
out
->
Reset
(
new
RandomDataGenerator
<
T
>
(
shapes
,
Attr
<
float
>
(
"low"
),
Attr
<
float
>
(
"high"
)));
out
->
Reset
(
std
::
make_shared
<
RandomDataGenerator
<
T
>>
(
shapes
,
Attr
<
float
>
(
"low"
),
Attr
<
float
>
(
"high"
)));
}
};
...
...
paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
浏览文件 @
83883a2e
...
...
@@ -21,10 +21,8 @@ namespace reader {
template
<
bool
ThreadSafe
>
class
RecordIOFileReader
:
public
framework
::
FileReader
{
public:
explicit
RecordIOFileReader
(
const
std
::
string
&
filename
,
const
std
::
vector
<
framework
::
DDim
>&
dims
)
:
FileReader
(
dims
),
scanner_
(
filename
),
explicit
RecordIOFileReader
(
const
std
::
string
&
filename
)
:
scanner_
(
filename
),
dev_ctx_
(
*
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CPUPlace
()))
{
if
(
ThreadSafe
)
{
...
...
@@ -33,8 +31,6 @@ class RecordIOFileReader : public framework::FileReader {
LOG
(
INFO
)
<<
"Creating file reader"
<<
filename
;
}
void
ReInit
()
override
{
scanner_
.
Reset
();
}
protected:
void
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
if
(
ThreadSafe
)
{
...
...
@@ -45,6 +41,8 @@ class RecordIOFileReader : public framework::FileReader {
}
}
void
StartImpl
()
override
{
scanner_
.
Reset
();
}
private:
std
::
unique_ptr
<
std
::
mutex
>
mutex_
;
recordio
::
Scanner
scanner_
;
...
...
@@ -58,20 +56,11 @@ class CreateRecordIOReaderOp : public framework::OperatorBase {
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
const
auto
&
shape_concat
=
Attr
<
std
::
vector
<
int
>>
(
"shape_concat"
);
const
auto
&
ranks
=
Attr
<
std
::
vector
<
int
>>
(
"ranks"
);
PADDLE_ENFORCE
(
!
shape_concat
.
empty
()
&&
!
ranks
.
empty
());
PADDLE_ENFORCE_EQ
(
std
::
accumulate
(
ranks
.
begin
(),
ranks
.
end
(),
0
),
static_cast
<
int
>
(
shape_concat
.
size
()),
"The accumulate of all ranks should be equal to the "
"shape concat's length."
);
std
::
string
filename
=
Attr
<
std
::
string
>
(
"filename"
);
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
template
GetMutable
<
framework
::
ReaderHolder
>();
out
->
Reset
(
new
RecordIOFileReader
<
true
>
(
filename
,
RestoreShapes
(
shape_concat
,
ranks
)));
out
->
Reset
(
std
::
make_shared
<
RecordIOFileReader
<
true
>>
(
filename
));
}
};
...
...
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
浏览文件 @
83883a2e
...
...
@@ -34,7 +34,7 @@ class ShuffleReader : public framework::DecoratedReader {
ReloadBuffer
();
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
void
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
out
->
clear
();
if
(
iteration_pos_
>=
buffer_
.
size
())
{
VLOG
(
10
)
<<
"Resetting shuffle buffer"
;
...
...
@@ -47,6 +47,17 @@ class ShuffleReader : public framework::DecoratedReader {
}
private:
void
ShutdownImpl
()
override
{
buffer_
.
clear
();
iteration_pos_
=
0
;
reader_
->
Shutdown
();
}
void
StartImpl
()
override
{
reader_
->
Start
();
ReloadBuffer
();
}
void
ReloadBuffer
()
{
buffer_
.
clear
();
buffer_
.
reserve
(
buffer_size_
);
...
...
@@ -86,9 +97,8 @@ class CreateShuffleReaderOp : public framework::OperatorBase {
}
const
auto
&
underlying_reader
=
scope
.
FindVar
(
Input
(
"UnderlyingReader"
))
->
Get
<
framework
::
ReaderHolder
>
();
out
->
Reset
(
new
ShuffleReader
(
underlying_reader
.
Get
(),
static_cast
<
size_t
>
(
Attr
<
int
>
(
"buffer_size"
))));
out
->
Reset
(
framework
::
MakeDecoratedReader
<
ShuffleReader
>
(
underlying_reader
,
static_cast
<
size_t
>
(
Attr
<
int
>
(
"buffer_size"
))));
}
};
...
...
paddle/fluid/operators/reader/create_threaded_reader_op.cc
已删除
100644 → 0
浏览文件 @
b065522d
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
class
ThreadedReader
:
public
framework
::
DecoratedReader
{
public:
explicit
ThreadedReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
)
:
DecoratedReader
(
reader
)
{}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
reader_
->
ReadNext
(
out
);
}
void
ReInit
()
override
{
reader_
->
ReInit
();
}
private:
std
::
mutex
mutex_
;
};
class
CreateThreadedReaderOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
*
out
=
detail
::
Ref
(
scope
.
FindVar
(
Output
(
"Out"
)))
.
GetMutable
<
framework
::
ReaderHolder
>
();
if
(
out
->
Get
()
!=
nullptr
)
{
return
;
}
const
auto
&
underlying_reader
=
scope
.
FindVar
(
Input
(
"UnderlyingReader"
))
->
Get
<
framework
::
ReaderHolder
>
();
out
->
Reset
(
new
ThreadedReader
(
underlying_reader
.
Get
()));
}
};
class
CreateThreadedReaderOpMaker
:
public
DecoratedReaderMakerBase
{
protected:
void
Apply
()
override
{
AddComment
(
R"DOC(
CreateThreadedReader Operator
This operator creates a threaded reader. A threaded reader's
'ReadNext()' can be invoked by several threads at the same
time.
When the attribute 'safe_mode' is true, the threaded reader's
'ReInit()' is disabled to avoid unexpected bugs in multi-thread
environment.
)DOC"
);
}
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
namespace
reader
=
paddle
::
operators
::
reader
;
REGISTER_DECORATED_READER_OPERATOR
(
create_threaded_reader
,
reader
::
CreateThreadedReaderOp
,
reader
::
CreateThreadedReaderOpMaker
);
paddle/fluid/operators/reader/open_files_op.cc
浏览文件 @
83883a2e
...
...
@@ -23,24 +23,26 @@ namespace reader {
class
MultiFileReader
:
public
framework
::
ReaderBase
{
public:
MultiFileReader
(
const
std
::
vector
<
std
::
string
>&
file_names
,
const
std
::
vector
<
framework
::
DDim
>&
dims
,
size_t
thread_num
,
MultiFileReader
(
const
std
::
vector
<
std
::
string
>&
file_names
,
size_t
thread_num
,
size_t
buffer_size
)
:
buffer_size_
(
buffer_size
)
{
readers_
.
reserve
(
file_names
.
size
());
for
(
const
std
::
string
&
f_name
:
file_names
)
{
readers_
.
emplace_back
(
CreateReaderByFileName
(
f_name
,
dims
));
readers_
.
emplace_back
(
CreateReaderByFileName
(
f_name
));
}
prefetchers_
.
resize
(
thread_num
);
StartNewScheduler
();
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
void
ReInit
()
override
;
void
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
~
MultiFileReader
()
{
EndScheduler
();
}
private:
void
ShutdownImpl
()
override
{
EndScheduler
();
}
void
StartImpl
()
override
{
StartNewScheduler
();
}
void
StartNewScheduler
();
void
EndScheduler
();
void
ScheduleThreadFunc
();
...
...
@@ -55,17 +57,12 @@ class MultiFileReader : public framework::ReaderBase {
reader
::
BlockingQueue
<
std
::
vector
<
framework
::
LoDTensor
>>*
buffer_
;
};
void
MultiFileReader
::
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
void
MultiFileReader
::
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
if
(
!
buffer_
->
Receive
(
out
))
{
out
->
clear
();
}
}
void
MultiFileReader
::
ReInit
()
{
EndScheduler
();
StartNewScheduler
();
}
void
MultiFileReader
::
StartNewScheduler
()
{
size_t
thread_num
=
prefetchers_
.
size
();
waiting_reader_idx_
=
new
reader
::
BlockingQueue
<
size_t
>
(
readers_
.
size
());
...
...
@@ -120,7 +117,7 @@ void MultiFileReader::ScheduleThreadFunc() {
}
}
}
// If users invoke
ReInit
() when scheduler is running, it will close the
// If users invoke
Shutdown
() when scheduler is running, it will close the
// 'avaiable_thread_idx_' and prefecther threads have no way to tell scheduler
// to release their resource. So a check is needed before scheduler ends.
for
(
auto
&
p
:
prefetchers_
)
{
...
...
@@ -138,7 +135,8 @@ void MultiFileReader::PrefetchThreadFunc(size_t reader_idx, size_t thread_idx) {
std
::
vector
<
framework
::
LoDTensor
>
ins
;
reader
->
ReadNext
(
&
ins
);
if
(
ins
.
empty
())
{
reader
->
ReInit
();
reader
->
Shutdown
();
reader
->
Start
();
break
;
}
try
{
...
...
@@ -180,9 +178,8 @@ class OpenFilesOp : public framework::OperatorBase {
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
template
GetMutable
<
framework
::
ReaderHolder
>();
out
->
Reset
(
new
MultiFileReader
(
file_names
,
RestoreShapes
(
shape_concat
,
ranks
),
thread_num
,
buffer_size
));
out
->
Reset
(
std
::
make_shared
<
MultiFileReader
>
(
file_names
,
thread_num
,
buffer_size
));
}
};
...
...
paddle/fluid/operators/reader/reader_op_registry.cc
浏览文件 @
83883a2e
...
...
@@ -39,7 +39,7 @@ std::unordered_map<std::string, FileReaderCreator>& FileReaderRegistry() {
}
std
::
unique_ptr
<
framework
::
ReaderBase
>
CreateReaderByFileName
(
const
std
::
string
&
file_name
,
const
std
::
vector
<
framework
::
DDim
>&
dims
)
{
const
std
::
string
&
file_name
)
{
size_t
separator_pos
=
file_name
.
find_last_of
(
kFileFormatSeparator
);
PADDLE_ENFORCE_NE
(
separator_pos
,
std
::
string
::
npos
,
"File name illegal! A legal file name should be like: "
...
...
@@ -49,7 +49,7 @@ std::unique_ptr<framework::ReaderBase> CreateReaderByFileName(
auto
itor
=
FileReaderRegistry
().
find
(
filetype
);
PADDLE_ENFORCE
(
itor
!=
FileReaderRegistry
().
end
(),
"No file reader registered for '%s' format."
,
filetype
);
framework
::
ReaderBase
*
reader
=
(
itor
->
second
)(
file_name
,
dims
);
framework
::
ReaderBase
*
reader
=
(
itor
->
second
)(
file_name
);
return
std
::
unique_ptr
<
framework
::
ReaderBase
>
(
reader
);
}
...
...
paddle/fluid/operators/reader/reader_op_registry.h
浏览文件 @
83883a2e
...
...
@@ -25,22 +25,21 @@ namespace reader {
static
constexpr
char
kFileFormatSeparator
[]
=
"."
;
using
FileReaderCreator
=
std
::
function
<
framework
::
ReaderBase
*
(
const
std
::
string
&
,
const
std
::
vector
<
framework
::
DDim
>
&
)
>
;
using
FileReaderCreator
=
std
::
function
<
framework
::
ReaderBase
*
(
const
std
::
string
&
)
>
;
std
::
unordered_map
<
std
::
string
,
FileReaderCreator
>&
FileReaderRegistry
();
template
<
typename
Reader
>
int
RegisterFileReader
(
const
std
::
string
&
filetype
)
{
FileReaderRegistry
()[
filetype
]
=
[](
const
std
::
string
&
fn
,
const
std
::
vector
<
framework
::
DDim
>&
dims
)
{
return
new
Reader
(
fn
,
dims
);
FileReaderRegistry
()[
filetype
]
=
[](
const
std
::
string
&
fn
)
{
return
new
Reader
(
fn
);
};
return
0
;
}
std
::
unique_ptr
<
framework
::
ReaderBase
>
CreateReaderByFileName
(
const
std
::
string
&
file_name
,
const
std
::
vector
<
framework
::
DDim
>&
dims
);
const
std
::
string
&
file_name
);
extern
std
::
vector
<
framework
::
DDim
>
RestoreShapes
(
const
std
::
vector
<
int
>&
shape_concat
,
const
std
::
vector
<
int
>&
ranks
);
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
83883a2e
...
...
@@ -296,7 +296,7 @@ All parameter, weight, gradient are variables in Paddle.
py
::
return_value_policy
::
reference
);
py
::
class_
<
framework
::
ReaderHolder
>
(
m
,
"Reader"
,
""
)
.
def
(
"reset"
,
&
framework
::
ReaderHolder
::
Re
Init
);
.
def
(
"reset"
,
&
framework
::
ReaderHolder
::
Re
setAll
);
using
LoDTensorBlockingQueue
=
::
paddle
::
operators
::
reader
::
LoDTensorBlockingQueue
;
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
83883a2e
...
...
@@ -375,9 +375,6 @@ def open_recordio_file(filename,
if
pass_num
>
1
:
main_prog_var
=
multi_pass
(
reader
=
main_prog_var
,
pass_num
=
pass_num
)
if
for_parallel
:
main_prog_var
=
parallel
(
reader
=
main_prog_var
)
return
monkey_patch_reader_methods
(
main_prog_var
)
...
...
@@ -529,9 +526,6 @@ def open_files(filenames,
main_prog_reader
=
multi_pass
(
reader
=
main_prog_reader
,
pass_num
=
pass_num
)
if
for_parallel
:
main_prog_reader
=
parallel
(
reader
=
main_prog_reader
)
return
monkey_patch_reader_methods
(
main_prog_reader
)
...
...
@@ -647,11 +641,6 @@ def multi_pass(reader, pass_num):
'create_multi_pass_reader'
,
reader
,
{
'pass_num'
:
int
(
pass_num
)})
def
parallel
(
reader
):
return
__create_shared_decorated_reader__
(
'create_threaded_reader'
,
reader
,
{})
def
read_file
(
reader
):
"""
Execute the given reader and get data via it.
...
...
python/paddle/fluid/tests/test_
mnist_
if_else_op.py
→
python/paddle/fluid/tests/test_if_else_op.py
浏览文件 @
83883a2e
...
...
@@ -14,10 +14,11 @@
import
paddle
import
paddle.fluid.layers
as
layers
from
paddle.fluid.framework
import
Program
,
program_guard
,
default_main_program
,
default_startup_program
from
paddle.fluid.framework
import
Program
,
program_guard
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.optimizer
import
MomentumOptimizer
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
unittest
import
numpy
as
np
...
...
@@ -31,14 +32,13 @@ class TestMNISTIfElseOp(unittest.TestCase):
label
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'int64'
)
limit
=
layers
.
fill_constant_batch_size_like
(
input
=
label
,
dtype
=
'int64'
,
shape
=
[
1
],
value
=
5.0
)
limit
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
5
)
cond
=
layers
.
less_than
(
x
=
label
,
y
=
limit
)
true_image
,
false_image
=
layers
.
split_lod_tensor
(
input
=
image
,
mask
=
cond
)
true_out
=
layers
.
create_tensor
(
dtype
=
'float32'
)
true_cond
=
layers
.
ConditionalBlock
([
true_image
])
true_cond
=
layers
.
ConditionalBlock
([
cond
])
with
true_cond
.
block
():
hidden
=
layers
.
fc
(
input
=
true_image
,
size
=
100
,
act
=
'tanh'
)
...
...
@@ -46,7 +46,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
layers
.
assign
(
input
=
prob
,
output
=
true_out
)
false_out
=
layers
.
create_tensor
(
dtype
=
'float32'
)
false_cond
=
layers
.
ConditionalBlock
([
false_image
])
false_cond
=
layers
.
ConditionalBlock
([
cond
])
with
false_cond
.
block
():
hidden
=
layers
.
fc
(
input
=
false_image
,
size
=
200
,
act
=
'tanh'
)
...
...
@@ -64,7 +64,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
8192
),
batch_size
=
20
0
)
batch_size
=
1
0
)
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
...
...
@@ -94,8 +94,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
label
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'int64'
)
limit
=
layers
.
fill_constant_batch_size_like
(
input
=
label
,
dtype
=
'int64'
,
shape
=
[
1
],
value
=
5.0
)
limit
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
5
)
cond
=
layers
.
less_than
(
x
=
label
,
y
=
limit
)
ie
=
layers
.
IfElse
(
cond
)
...
...
@@ -125,7 +124,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
kwargs
[
'startup_program'
]
)
exe
.
run
(
startup_prog
)
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_reader
():
...
...
@@ -133,7 +132,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
((
y_data
.
shape
[
0
],
1
))
outs
=
exe
.
run
(
kwargs
[
'main_program'
]
,
outs
=
exe
.
run
(
prog
,
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
avg_loss
])
...
...
@@ -143,6 +142,67 @@ class TestMNISTIfElseOp(unittest.TestCase):
self
.
assertFalse
(
True
)
class
TestIfElse
(
unittest
.
TestCase
):
def
set_test_case
(
self
):
# condiction is: self.data < self.cond_value
self
.
cond_value
=
0.5
self
.
data
=
np
.
random
.
rand
(
25
,
1
).
astype
(
np
.
float32
)
def
compare_ifelse_op_and_numpy
(
self
,
place
):
self
.
set_test_case
()
prog
=
Program
()
startup_prog
=
Program
()
with
program_guard
(
prog
,
startup_prog
):
src
=
layers
.
data
(
name
=
'data'
,
shape
=
[
1
],
dtype
=
'float32'
)
cond
=
layers
.
fill_constant
(
[
1
],
dtype
=
'float32'
,
value
=
self
.
cond_value
)
ifcond
=
layers
.
less_than
(
x
=
src
,
y
=
cond
)
ie
=
layers
.
IfElse
(
ifcond
)
with
ie
.
true_block
():
true_target
=
ie
.
input
(
src
)
ie
.
output
(
true_target
)
with
ie
.
false_block
():
false_target
=
ie
.
input
(
src
)
ie
.
output
(
false_target
)
if_out
=
ie
()
out
=
layers
.
reduce_sum
(
if_out
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
fetch_list
=
[
out
]
o1
,
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'data'
:
self
.
data
},
fetch_list
=
[
out
])
o2
=
np
.
sum
(
self
.
data
)
self
.
assertTrue
(
np
.
allclose
(
o1
,
o2
,
atol
=
1e-8
),
"IfElse result : "
+
str
(
o1
)
+
"
\n
Numpy result :"
+
str
(
o2
))
def
test_cpu
(
self
):
self
.
compare_ifelse_op_and_numpy
(
fluid
.
CPUPlace
())
def
test_cuda
(
self
):
if
not
core
.
is_compiled_with_cuda
():
return
self
.
compare_ifelse_op_and_numpy
(
fluid
.
CUDAPlace
(
0
))
class
TestIfElseTrueBranch
(
TestIfElse
):
def
set_test_case
(
self
):
# condiction is: self.data < self.cond_value
self
.
cond_value
=
10.
self
.
data
=
np
.
random
.
rand
(
25
,
1
).
astype
(
np
.
float32
)
class
TestIfElseFalseBranch
(
TestIfElse
):
def
set_test_case
(
self
):
# condiction is: self.data < self.cond_value
self
.
cond_value
=
-
10.
self
.
data
=
np
.
random
.
rand
(
25
,
1
).
astype
(
np
.
float32
)
if
__name__
==
'__main__'
:
# temp disable if else unittest since it could be buggy.
exit
(
0
)
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
浏览文件 @
83883a2e
...
...
@@ -40,7 +40,6 @@ class TestFakeDequantizeMaxAbsOp(OpTest):
self
.
op_type
=
"fake_dequantize_max_abs"
x
=
np
.
random
.
randn
(
31
,
65
).
astype
(
"float32"
)
yq
,
scale
=
quantize_max_abs
(
x
,
self
.
num_bits
)
print
'scale '
,
scale
ydq
=
dequantize_max_abs
(
yq
,
self
.
num_bits
,
scale
)
self
.
inputs
=
{
'X'
:
yq
}
...
...
python/paddle/fluid/tests/unittests/test_parallel_op.py
浏览文件 @
83883a2e
...
...
@@ -113,7 +113,9 @@ class BaseParallelForTest(unittest.TestCase):
generator
=
callback
()
# Automatically insert parallel do if use_parallel = True
if
use_parallel
:
places
=
fluid
.
layers
.
get_places
()
thread_num
=
fluid
.
core
.
get_cuda_device_count
(
)
if
use_gpu
else
8
places
=
fluid
.
layers
.
get_places
(
thread_num
)
pd
=
fluid
.
layers
.
ParallelDo
(
places
,
use_nccl
=
use_nccl
)
data
=
next
(
generator
)
...
...
python/setup.py.in
浏览文件 @
83883a2e
from setuptools import setup, Distribution, Extension
import subprocess
import shutil
import os
import re
import shutil
class BinaryDistribution(Distribution):
def has_ext_modules(foo):
return True
MAJOR = 0
MINOR = 14
PATCH = 0
RC = 0
ISTAGED = False
...
...
@@ -22,14 +19,47 @@ def git_commit():
git_commit = 'Unknown'
return git_commit
def _get_version_detail(idx):
assert idx < 3, "vesion info consists of %(major)d.%(minor)d.%(patch)d, \
so detail index must less than 3"
if re.match('@TAG_VERSION_REGEX@', '@PADDLE_VERSION@'):
version_details = '@PADDLE_VERSION@'.split('.')
if len(version_details) == 3:
return version_details[idx]
return 0
def get_major():
return int(_get_version_detail(0))
def get_minor():
return int(_get_version_detail(1))
def get_patch():
return str(_get_version_detail(2))
def is_taged():
try:
cmd = ['git', 'describe', '--exact-match', '--tags']
git_tag = subprocess.Popen(cmd, stdout = subprocess.PIPE).communicate()[0].strip()
except:
return False
if git_tag.replace('v', '') == '@PADDLE_VERSION@':
return True
else:
return False
def write_version_py(filename='paddle/version.py'):
cnt = '''
# THIS FILE IS GENERATED FROM PADDLEPADDLE SETUP.PY
#
full_version = '%(major)d.%(minor)d.%(patch)
d
'
full_version = '%(major)d.%(minor)d.%(patch)
s
'
major = '%(major)d'
minor = '%(minor)d'
patch = '%(patch)
d
'
patch = '%(patch)
s
'
rc = '%(rc)d'
istaged = %(istaged)s
commit = '%(commit)s'
...
...
@@ -51,13 +81,13 @@ def mkl():
commit = git_commit()
with open(filename, 'w') as f:
f.write(cnt % {
'major':
MAJOR
,
'minor':
MINOR
,
'patch':
PATCH
,
'major':
get_major()
,
'minor':
get_minor()
,
'patch':
get_patch()
,
'rc': RC,
'version': '${PADDLE_VERSION}',
'commit': commit,
'istaged':
ISTAGED
,
'istaged':
is_taged()
,
'with_mkl': '@WITH_MKL@'})
write_version_py(filename='@PADDLE_BINARY_DIR@/python/paddle/version.py')
...
...
@@ -126,12 +156,15 @@ if '${WITH_MKL}' == 'ON':
shutil.copy('${MKLML_IOMP_LIB}', libs_path)
package_data['paddle.libs']+=['libmklml_intel.so','libiomp5.so']
if '${WITH_MKLDNN}' == 'ON':
# TODO(typhoonzero): use install_name_tool to patch mkl libs once
# we can support mkl on mac.
#
# change rpath of libmkldnn.so.0, add $ORIGIN/ to it.
# The reason is that all thirdparty libraries in the same directory,
# thus, libmkldnn.so.0 will find libmklml_intel.so and libiomp5.so.
command = "patchelf --set-rpath '$ORIGIN/' ${MKLDNN_SHARED_LIB}"
if os.system(command) != 0:
raise Exception("patch
elf --set-rpath for libmkldnn.so.0 fails"
)
raise Exception("patch
libmkldnn.so failed, command: %s" % command
)
package_data['paddle.libs']+=['libmkldnn.so.0']
shutil.copy('${MKLDNN_SHARED_LIB}', libs_path)
# remove unused paddle/libs/__init__.py
...
...
@@ -142,9 +175,12 @@ package_dir['paddle.libs']=libs_path
# The reason is that libwarpctc.so, libiomp5.so etc are in paddle.libs, and
# core.so is in paddle.fluid, thus paddle/fluid/../libs will pointer to above libraries.
# This operation will fix https://github.com/PaddlePaddle/Paddle/issues/3213
command = "patchelf --set-rpath '$ORIGIN/../libs/' ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so"
if "@APPLE@" == "1":
command = "install_name_tool -id \"@loader_path/../libs/\" ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so"
else:
command = "patchelf --set-rpath '$ORIGIN/../libs/' ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so"
if os.system(command) != 0:
raise Exception("patch
elf --set-rpath for core.so fails"
)
raise Exception("patch
core.so failed, command: %s" % command
)
setup(name='${PACKAGE_NAME}',
version='${PADDLE_VERSION}',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录