From 8307b0cbc5d0567a40fc12f37af35798f1e1352d Mon Sep 17 00:00:00 2001 From: wangxinxin08 <69842442+wangxinxin08@users.noreply.github.com> Date: Tue, 7 Sep 2021 19:28:09 +0800 Subject: [PATCH] add conv op check for illegal input or attributes (#35337) * add conv op check for illegal input or attributes --- paddle/fluid/operators/conv_op.cc | 4 + python/paddle/fluid/layers/nn.py | 22 ++++++ .../tests/unittests/test_functional_conv1d.py | 70 +++++++++++++++++ .../test_functional_conv1d_transpose.py | 70 +++++++++++++++++ .../tests/unittests/test_functional_conv2d.py | 76 ++++++++++++++++++ .../test_functional_conv2d_transpose.py | 76 ++++++++++++++++++ .../tests/unittests/test_functional_conv3d.py | 76 ++++++++++++++++++ .../test_functional_conv3d_transpose.py | 77 +++++++++++++++++++ python/paddle/nn/functional/conv.py | 48 ++++++++++++ 9 files changed, 519 insertions(+) create mode 100644 python/paddle/fluid/tests/unittests/test_functional_conv1d.py create mode 100644 python/paddle/fluid/tests/unittests/test_functional_conv1d_transpose.py diff --git a/paddle/fluid/operators/conv_op.cc b/paddle/fluid/operators/conv_op.cc index bef3826e728..a28f32b6abb 100644 --- a/paddle/fluid/operators/conv_op.cc +++ b/paddle/fluid/operators/conv_op.cc @@ -116,6 +116,10 @@ std::vector ConvOp::ComputeOutputShape( "the output channels is %d, the filter's shape is [%s], " "the groups is %d.", filter_dims[0], filter_dims, groups)); + PADDLE_ENFORCE_GT( + filter_dims[0], 0, + platform::errors::InvalidArgument( + "the size of filter at axis 0 should be greater than 0")); framework::DDim in_data_dims; if (channel_last) { diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 87b7b28f900..12a7ca2e441 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -1816,6 +1816,10 @@ def conv3d(input, "Attr(data_format): %s." % str(data_format)) channel_last = (data_format == "NDHWC") + if len(input.shape) != 5: + raise ValueError( + "Input should be 5D tensor, but received input with the shape of {}". + format(input.shape)) num_channels = input.shape[4] if channel_last else input.shape[1] if num_channels < 0: raise ValueError( @@ -1824,6 +1828,10 @@ def conv3d(input, if groups is None: num_filter_channels = num_channels + elif groups <= 0: + raise ValueError( + "the groups of conv3d should be greater than 0. Received groups: {}". + format(groups)) else: if num_channels % groups != 0: raise ValueError( @@ -4244,10 +4252,15 @@ def conv3d_transpose(input, raise ValueError( "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received " + data_format + " but only NCDHW or NDHWC supported.") + l_type = "conv3d_transpose" helper = LayerHelper(l_type, **locals()) if not isinstance(input, Variable): raise TypeError("Input of conv3d_transpose must be Variable") + if len(input.shape) != 5: + raise ValueError( + "Input should be 5D tensor, but received input with the shape of {}". + format(input.shape)) input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[ -1] @@ -4339,6 +4352,15 @@ def conv3d_transpose(input, raise ValueError("output_size should be int, list[int] or tuple[int]") groups = 1 if groups is None else groups + if groups <= 0: + raise ValueError( + "the groups of conv3d_transpose should be greater than 0. Received groups: {}". + format(groups)) + if num_filters % groups != 0: + raise ValueError("Attr(num_filters) must be divisible by groups," + "Received: Attr(num_filters) is {}, the groups is {}". + format(num_filters, groups)) + filter_shape = [input_channel, num_filters // groups] + filter_size img_filter = helper.create_parameter( dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) diff --git a/python/paddle/fluid/tests/unittests/test_functional_conv1d.py b/python/paddle/fluid/tests/unittests/test_functional_conv1d.py new file mode 100644 index 00000000000..b803835d107 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_functional_conv1d.py @@ -0,0 +1,70 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle +import paddle.nn.functional as F +from paddle import fluid +import paddle.fluid.dygraph as dg +import paddle.fluid.initializer as I +import numpy as np +import unittest +from unittest import TestCase + + +class TestFunctionalConv1DError(TestCase): + def setUp(self): + self.input = [] + self.filter = [] + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 1 + self.data_format = "NCL" + + def dygraph_case(self): + with dg.guard(): + x = dg.to_variable(self.input, dtype=paddle.float32) + w = dg.to_variable(self.filter, dtype=paddle.float32) + b = None if self.bias is None else dg.to_variable( + self.bias, dtype=paddle.float32) + y = F.conv1d( + x, + w, + b, + padding=self.padding, + stride=self.stride, + dilation=self.dilation, + groups=self.groups, + data_format=self.data_format) + + def test_exception(self): + with self.assertRaises(ValueError): + self.dygraph_case() + + +class TestFunctionalConv1DErrorCase1(TestFunctionalConv1DError): + def setUp(self): + self.input = np.random.randn(1, 3, 3) + self.filter = np.random.randn(3, 3, 1) + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 0 + self.data_format = "NCL" + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_functional_conv1d_transpose.py b/python/paddle/fluid/tests/unittests/test_functional_conv1d_transpose.py new file mode 100644 index 00000000000..4284ab48827 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_functional_conv1d_transpose.py @@ -0,0 +1,70 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle +import paddle.nn.functional as F +from paddle import fluid +import paddle.fluid.dygraph as dg +import paddle.fluid.initializer as I +import numpy as np +import unittest +from unittest import TestCase + + +class TestFunctionalConv1DError(TestCase): + def setUp(self): + self.input = [] + self.filter = [] + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 1 + self.data_format = "NCL" + + def dygraph_case(self): + with dg.guard(): + x = dg.to_variable(self.input, dtype=paddle.float32) + w = dg.to_variable(self.filter, dtype=paddle.float32) + b = None if self.bias is None else dg.to_variable( + self.bias, dtype=paddle.float32) + y = F.conv1d_transpose( + x, + w, + b, + padding=self.padding, + stride=self.stride, + dilation=self.dilation, + groups=self.groups, + data_format=self.data_format) + + def test_exception(self): + with self.assertRaises(ValueError): + self.dygraph_case() + + +class TestFunctionalConv1DErrorCase1(TestFunctionalConv1DError): + def setUp(self): + self.input = np.random.randn(1, 3, 3) + self.filter = np.random.randn(3, 3, 1) + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 0 + self.data_format = "NCL" + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_functional_conv2d.py b/python/paddle/fluid/tests/unittests/test_functional_conv2d.py index 766e1bb1d34..cec48724da2 100644 --- a/python/paddle/fluid/tests/unittests/test_functional_conv2d.py +++ b/python/paddle/fluid/tests/unittests/test_functional_conv2d.py @@ -457,5 +457,81 @@ class TestFunctionalConv2DErrorCase11(TestFunctionalConv2DError): self.data_format = "NHCW" +class TestFunctionalConv2DErrorCase12(TestCase): + def setUp(self): + self.input = np.array([]) + self.filter = np.array([]) + self.num_filters = 0 + self.filter_size = 0 + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 1 + self.data_format = "NCHW" + + def static_graph_case(self): + main = fluid.Program() + start = fluid.Program() + with fluid.unique_name.guard(): + with fluid.program_guard(main, start): + x = fluid.data("input", self.input.shape, dtype=paddle.float32) + y = fluid.layers.conv2d( + x, + self.num_filters, + self.filter_size, + stride=self.stride, + padding=self.padding, + dilation=self.dilation, + groups=self.groups, + param_attr=I.NumpyArrayInitializer(self.filter), + bias_attr=False if self.bias is None else + I.NumpyArrayInitializer(self.bias), + act=None, + data_format=self.data_format) + exe = fluid.Executor() + exe.run(start) + out, = exe.run(main, feed={"input": self.input}, fetch_list=[y]) + return out + + def dygraph_case(self): + with dg.guard(): + x = dg.to_variable(self.input, dtype=paddle.float32) + w = dg.to_variable(self.filter, dtype=paddle.float32) + b = None if self.bias is None else dg.to_variable( + self.bias, dtype=paddle.float32) + y = F.conv2d( + x, + w, + b, + padding=self.padding, + stride=self.stride, + dilation=self.dilation, + groups=self.groups, + data_format=self.data_format) + + def test_dygraph_exception(self): + with self.assertRaises(ValueError): + self.dygraph_case() + + def test_static_exception(self): + with self.assertRaises(ValueError): + self.static_graph_case() + + +class TestFunctionalConv2DErrorCase13(TestFunctionalConv2DErrorCase12): + def setUp(self): + self.input = np.random.randn(1, 3, 3, 3) + self.filter = np.random.randn(3, 3, 1, 1) + self.num_filters = 3 + self.filter_size = 1 + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 0 + self.data_format = "NCHW" + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py b/python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py index e3b821a07bf..f25a15106c4 100644 --- a/python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py +++ b/python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py @@ -463,5 +463,81 @@ class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError): self.data_format = "NCHW" +class TestFunctionalConv2DErrorCase10(TestCase): + def setUp(self): + self.input = np.array([]) + self.filter = np.array([]) + self.num_filters = 0 + self.filter_size = 0 + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 1 + self.data_format = "NCHW" + + def static_graph_case(self): + main = fluid.Program() + start = fluid.Program() + with fluid.unique_name.guard(): + with fluid.program_guard(main, start): + x = fluid.data("input", self.input.shape, dtype=paddle.float32) + y = fluid.layers.conv2d( + x, + self.num_filters, + self.filter_size, + stride=self.stride, + padding=self.padding, + dilation=self.dilation, + groups=self.groups, + param_attr=I.NumpyArrayInitializer(self.filter), + bias_attr=False if self.bias is None else + I.NumpyArrayInitializer(self.bias), + act=None, + data_format=self.data_format) + exe = fluid.Executor() + exe.run(start) + out, = exe.run(main, feed={"input": self.input}, fetch_list=[y]) + return out + + def dygraph_case(self): + with dg.guard(): + x = dg.to_variable(self.input, dtype=paddle.float32) + w = dg.to_variable(self.filter, dtype=paddle.float32) + b = None if self.bias is None else dg.to_variable( + self.bias, dtype=paddle.float32) + y = F.conv2d_transpose( + x, + w, + b, + padding=self.padding, + stride=self.stride, + dilation=self.dilation, + groups=self.groups, + data_format=self.data_format) + + def test_dygraph_exception(self): + with self.assertRaises(ValueError): + self.dygraph_case() + + def test_static_exception(self): + with self.assertRaises(ValueError): + self.static_graph_case() + + +class TestFunctionalConv2DErrorCase11(TestFunctionalConv2DErrorCase10): + def setUp(self): + self.input = np.random.randn(1, 3, 3, 3) + self.filter = np.random.randn(3, 3, 1, 1) + self.num_filters = 3 + self.filter_size = 1 + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 0 + self.data_format = "NCHW" + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_functional_conv3d.py b/python/paddle/fluid/tests/unittests/test_functional_conv3d.py index b413a56c07a..8ccaf30cbdb 100644 --- a/python/paddle/fluid/tests/unittests/test_functional_conv3d.py +++ b/python/paddle/fluid/tests/unittests/test_functional_conv3d.py @@ -432,5 +432,81 @@ class TestFunctionalConv3DErrorCase10(TestFunctionalConv3DError): self.data_format = "NDHWC" +class TestFunctionalConv3DErrorCase11(TestCase): + def setUp(self): + self.input = np.array([]) + self.filter = np.array([]) + self.num_filters = 0 + self.filter_size = 0 + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 1 + self.data_format = "NCDHW" + + def static_graph_case(self): + main = fluid.Program() + start = fluid.Program() + with fluid.unique_name.guard(): + with fluid.program_guard(main, start): + x = fluid.data("input", self.input.shape, dtype=paddle.float32) + y = fluid.layers.conv3d( + x, + self.num_filters, + self.filter_size, + stride=self.stride, + padding=self.padding, + dilation=self.dilation, + groups=self.groups, + param_attr=I.NumpyArrayInitializer(self.filter), + bias_attr=False if self.bias is None else + I.NumpyArrayInitializer(self.bias), + act=None, + data_format=self.data_format) + exe = fluid.Executor() + exe.run(start) + out, = exe.run(main, feed={"input": self.input}, fetch_list=[y]) + return out + + def dygraph_case(self): + with dg.guard(): + x = dg.to_variable(self.input, dtype=paddle.float32) + w = dg.to_variable(self.filter, dtype=paddle.float32) + b = None if self.bias is None else dg.to_variable( + self.bias, dtype=paddle.float32) + y = F.conv3d( + x, + w, + b, + padding=self.padding, + stride=self.stride, + dilation=self.dilation, + groups=self.groups, + data_format=self.data_format) + + def test_dygraph_exception(self): + with self.assertRaises(ValueError): + self.dygraph_case() + + def test_static_exception(self): + with self.assertRaises(ValueError): + self.static_graph_case() + + +class TestFunctionalConv3DErrorCase12(TestFunctionalConv3DErrorCase11): + def setUp(self): + self.input = np.random.randn(1, 3, 3, 3, 3) + self.filter = np.random.randn(3, 3, 1, 1, 1) + self.num_filters = 3 + self.filter_size = 1 + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 0 + self.data_format = "NCDHW" + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py b/python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py index 910d28515b7..a003de65968 100644 --- a/python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py +++ b/python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py @@ -483,5 +483,82 @@ class TestFunctionalConv3DTransposeErrorCase9( self.data_format = "NCDHW" +class TestFunctionalConv3DTransposeErrorCase10(TestCase): + def setUp(self): + self.input = np.array([]) + self.filter = np.array([]) + self.num_filters = 0 + self.filter_size = 0 + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 1 + self.data_format = "NCDHW" + + def static_graph_case(self): + main = fluid.Program() + start = fluid.Program() + with fluid.unique_name.guard(): + with fluid.program_guard(main, start): + x = fluid.data("input", self.input.shape, dtype=paddle.float32) + y = fluid.layers.conv3d_transpose( + x, + self.num_filters, + self.filter_size, + stride=self.stride, + padding=self.padding, + dilation=self.dilation, + groups=self.groups, + param_attr=I.NumpyArrayInitializer(self.filter), + bias_attr=False if self.bias is None else + I.NumpyArrayInitializer(self.bias), + act=None, + data_format=self.data_format) + exe = fluid.Executor() + exe.run(start) + out, = exe.run(main, feed={"input": self.input}, fetch_list=[y]) + return out + + def dygraph_case(self): + with dg.guard(): + x = dg.to_variable(self.input, dtype=paddle.float32) + w = dg.to_variable(self.filter, dtype=paddle.float32) + b = None if self.bias is None else dg.to_variable( + self.bias, dtype=paddle.float32) + y = F.conv3d_transpose( + x, + w, + b, + padding=self.padding, + stride=self.stride, + dilation=self.dilation, + groups=self.groups, + data_format=self.data_format) + + def test_dygraph_exception(self): + with self.assertRaises(ValueError): + self.dygraph_case() + + def test_static_exception(self): + with self.assertRaises(ValueError): + self.static_graph_case() + + +class TestFunctionalConv3DTransposeErrorCase11( + TestFunctionalConv3DTransposeErrorCase10): + def setUp(self): + self.input = np.random.randn(1, 3, 3, 3, 3) + self.filter = np.random.randn(3, 3, 1, 1, 1) + self.num_filters = 3 + self.filter_size = 1 + self.bias = None + self.padding = 0 + self.stride = 1 + self.dilation = 1 + self.groups = 0 + self.data_format = "NCDHW" + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/nn/functional/conv.py b/python/paddle/nn/functional/conv.py index 319248dfda2..fcf6f1cdac4 100644 --- a/python/paddle/nn/functional/conv.py +++ b/python/paddle/nn/functional/conv.py @@ -299,12 +299,20 @@ def conv1d(x, channel_last = (data_format == "NLC") channel_dim = -1 if channel_last else 1 conv2d_data_format = "NHWC" if channel_last else "NCHW" + if len(x.shape) != 3: + raise ValueError( + "Input x should be 3D tensor, but received x with the shape of {}". + format(x.shape)) num_channels = x.shape[channel_dim] num_filters = weight.shape[0] if num_channels < 0: raise ValueError("The channel dimension of the input({}) " "should be defined. Received: {}.".format( x.shape, num_channels)) + if groups <= 0: + raise ValueError( + "The groups of conv1d should be greater than 0. Received groups: {}". + format(groups)) if num_channels % groups != 0: raise ValueError( "the channel of input must be divisible by groups," @@ -508,12 +516,20 @@ def conv2d(x, channel_last = (data_format == "NHWC") channel_dim = -1 if channel_last else 1 + if len(x.shape) != 4: + raise ValueError( + "Input x should be 4D tensor, but received x with the shape of {}". + format(x.shape)) num_channels = x.shape[channel_dim] num_filters = weight.shape[0] if num_channels < 0: raise ValueError("The channel dimension of the input({}) " "should be defined. Received: {}.".format( x.shape, num_channels)) + if groups <= 0: + raise ValueError( + "The groups of conv2d should be greater than 0. Received groups: {}". + format(groups)) if num_channels % groups != 0: raise ValueError( "the channel of input must be divisible by groups," @@ -710,12 +726,20 @@ def conv1d_transpose(x, data_format)) channel_last = (data_format == "NLC") channel_dim = -1 if channel_last else 1 + if len(x.shape) != 3: + raise ValueError( + "Input x should be 3D tensor, but received x with the shape of {}". + format(x.shape)) num_channels = x.shape[channel_dim] if num_channels < 0: raise ValueError("The channel dimension of the input({}) " "should be defined. Received: {}.".format( x.shape, num_channels)) + if groups <= 0: + raise ValueError( + "The groups of conv1d_transpose should be greater than 0. Received groups: {}". + format(groups)) if num_channels % groups != 0: raise ValueError( "the channel of input must be divisible by groups," @@ -964,11 +988,19 @@ def conv2d_transpose(x, data_format)) channel_last = (data_format == "NHWC") channel_dim = -1 if channel_last else 1 + if len(x.shape) != 4: + raise ValueError( + "Input x should be 4D tensor, but received x with the shape of {}". + format(x.shape)) num_channels = x.shape[channel_dim] if num_channels < 0: raise ValueError("The channel dimension of the input({}) " "should be defined. Received: {}.".format( x.shape, num_channels)) + if groups <= 0: + raise ValueError( + "The groups of conv2d_transpose should be greater than 0. Received groups: {}". + format(groups)) if num_channels % groups != 0: raise ValueError( "the channel of input must be divisible by groups," @@ -1167,12 +1199,20 @@ def conv3d(x, channel_last = (data_format == "NDHWC") channel_dim = -1 if channel_last else 1 + if len(x.shape) != 5: + raise ValueError( + "Input x should be 5D tensor, but received x with the shape of {}". + format(x.shape)) num_channels = x.shape[channel_dim] num_filters = weight.shape[0] if num_channels < 0: raise ValueError( "The channel dimension of the input({}) should be defined. " "Received: {}.".format(x.shape, num_channels)) + if groups <= 0: + raise ValueError( + "The groups of conv3d should be greater than 0. Received groups: {}". + format(groups)) if num_channels % groups != 0: raise ValueError( "The number of input channels must be divisible by Attr(groups). " @@ -1358,12 +1398,20 @@ def conv3d_transpose(x, channel_last = (data_format == "NDHWC") channel_dim = -1 if channel_last else 1 + if len(x.shape) != 5: + raise ValueError( + "Input x should be 5D tensor, but received x with the shape of {}". + format(x.shape)) num_channels = x.shape[channel_dim] num_filters = weight.shape[1] if num_channels < 0: raise ValueError( "The channel dimension of the input({}) should be defined. " "Received: {}.".format(x.shape, num_channels)) + if groups <= 0: + raise ValueError( + "The groups of conv3d_transpose should be greater than 0. Received groups: {}". + format(groups)) if num_channels % groups != 0: raise ValueError( "The number of input channels must be divisible by Attr(groups). " -- GitLab