Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
82aa01c3
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
82aa01c3
编写于
12月 22, 2020
作者:
T
TTerror
提交者:
GitHub
12月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add nearest_interp_v2 on kunlun (#29725)
* add nearest_interp_v2 on kunlun * add nearest_interp_v2 on kunlun
上级
0f97ff03
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
709 addition
and
0 deletion
+709
-0
paddle/fluid/operators/interpolate_v2_op_xpu.cc
paddle/fluid/operators/interpolate_v2_op_xpu.cc
+294
-0
python/paddle/fluid/tests/unittests/xpu/test_nearest_interp_v2_op_xpu.py
...luid/tests/unittests/xpu/test_nearest_interp_v2_op_xpu.py
+415
-0
未找到文件。
paddle/fluid/operators/interpolate_v2_op_xpu.cc
0 → 100644
浏览文件 @
82aa01c3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/interpolate_op.h"
#ifdef PADDLE_WITH_XPU
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
using
DataLayout
=
framework
::
DataLayout
;
inline
std
::
vector
<
int
>
get_new_shape_xpu
(
const
std
::
vector
<
const
Tensor
*>&
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
PADDLE_ENFORCE_EQ
(
tensor
->
dims
(),
framework
::
make_ddim
({
1
}),
platform
::
errors
::
InvalidArgument
(
"shape of dim tensor should be [1]"
));
framework
::
Tensor
temp
;
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
temp
.
data
<
int32_t
>
()));
}
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor_xpu
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
framework
::
Tensor
cpu_starts_tensor
;
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
auto
*
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
numel
());
return
vec_new_data
;
}
template
<
typename
T
>
class
InterpolateV2XPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
input_dims
=
input
->
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
4
,
platform
::
errors
::
External
(
"XPU Interpolate kernel only support 2d"
));
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
int
n
,
c
,
in_d
,
in_h
,
in_w
;
ExtractNCDWH
(
input_dims
,
data_layout
,
&
n
,
&
c
,
&
in_d
,
&
in_h
,
&
in_w
);
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale_h
=
-
1
;
float
scale_w
=
-
1
;
auto
list_new_size_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"SizeTensor"
);
if
(
list_new_size_tensor
.
size
()
>
0
)
{
// have size tensor
auto
new_size
=
get_new_shape_xpu
(
list_new_size_tensor
);
out_h
=
new_size
[
0
];
out_w
=
new_size
[
1
];
}
else
{
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor_xpu
<
float
>
(
scale_tensor
);
if
(
scale_data
.
size
()
>
1
)
{
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
1
];
}
else
{
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
0
];
}
PADDLE_ENFORCE_EQ
(
scale_w
>
0
&&
scale_h
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"scale of Op(interpolate) "
"should be greater than 0."
));
}
else
{
if
(
scale
.
size
()
>
1
)
{
scale_h
=
scale
[
0
];
scale_w
=
scale
[
1
];
PADDLE_ENFORCE_EQ
(
scale_w
>
0
&&
scale_h
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"scale of Op(interpolate) "
"should be greater than 0."
));
}
}
if
(
scale_h
>
0.
&&
scale_w
>
0.
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale_h
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale_w
);
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
}
PADDLE_ENFORCE_GT
(
out_h
,
0
,
platform
::
errors
::
InvalidArgument
(
"out_h in Attr(out_shape) of "
"Op(interpolate) "
"should be greater than 0."
));
PADDLE_ENFORCE_GT
(
out_w
,
0
,
platform
::
errors
::
InvalidArgument
(
"out_w in Attr(out_shape) of "
"Op(interpolate) "
"should be greater than 0."
));
framework
::
DDim
dim_out
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
dim_out
=
{
n
,
c
,
out_h
,
out_w
};
}
else
{
dim_out
=
{
n
,
out_h
,
out_w
,
c
};
}
output
->
mutable_data
<
T
>
(
dim_out
,
ctx
.
GetPlace
());
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
framework
::
TensorCopy
(
*
input
,
ctx
.
GetPlace
(),
output
);
return
;
}
bool
nearest
=
"nearest"
==
interp_method
;
int
trans_mode
=
(
align_corners
)
?
(
0
)
:
((
align_mode
==
0
)
?
(
1
)
:
(
2
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
if
(
nearest
)
{
PADDLE_ENFORCE_EQ
((
data_layout
==
DataLayout
::
kNCHW
),
true
,
platform
::
errors
::
InvalidArgument
(
"XPU nearest is only support NCHW"
));
}
int
r
=
xpu
::
interpolate2d
<
T
>
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
output
->
data
<
T
>
(),
n
,
c
,
in_h
,
in_w
,
out_h
,
out_w
,
nearest
,
trans_mode
,
(
data_layout
==
DataLayout
::
kNCHW
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU interpolate2d kernel "
"return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
template
<
typename
T
>
class
InterpolateV2GradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
output_grad_dims
=
output_grad
->
dims
();
PADDLE_ENFORCE_EQ
(
output_grad_dims
.
size
(),
4
,
platform
::
errors
::
External
(
"XPU Interpolategrad kernel only support 2d"
));
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
int
n
,
c
,
in_d
,
in_h
,
in_w
;
ExtractNCDWH
(
input
->
dims
(),
data_layout
,
&
n
,
&
c
,
&
in_d
,
&
in_h
,
&
in_w
);
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale_h
=
-
1
;
float
scale_w
=
-
1
;
auto
list_new_size_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"SizeTensor"
);
if
(
list_new_size_tensor
.
size
()
>
0
)
{
// have size tensor
auto
new_size
=
get_new_shape_xpu
(
list_new_size_tensor
);
out_h
=
new_size
[
0
];
out_w
=
new_size
[
1
];
}
else
{
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor_xpu
<
float
>
(
scale_tensor
);
if
(
scale_data
.
size
()
>
1
)
{
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
1
];
}
else
{
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
0
];
}
PADDLE_ENFORCE_EQ
(
scale_w
>
0
&&
scale_h
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"scale of Op(interpolate) "
"should be greater than 0."
));
}
else
{
if
(
scale
.
size
()
>
1
)
{
scale_h
=
scale
[
0
];
scale_w
=
scale
[
1
];
PADDLE_ENFORCE_EQ
(
scale_w
>
0
&&
scale_h
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"scale of Op(interpolate) "
"should be greater than 0."
));
}
}
if
(
scale_h
>
0.
&&
scale_w
>
0.
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale_h
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale_w
);
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
}
framework
::
DDim
dim_grad
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
dim_grad
=
{
n
,
c
,
in_h
,
in_w
};
}
else
{
dim_grad
=
{
n
,
in_h
,
in_w
,
c
};
}
input_grad
->
mutable_data
<
T
>
(
dim_grad
,
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
int
r
=
XPU_SUCCESS
;
r
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
input_grad
->
data
<
T
>
(),
input_grad
->
numel
(),
static_cast
<
T
>
(
0.0
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU constant in interpolate2d_grad kernel return "
"wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
framework
::
TensorCopy
(
*
output_grad
,
ctx
.
GetPlace
(),
input_grad
);
return
;
}
bool
nearest
=
"nearest"
==
interp_method
;
int
trans_mode
=
(
align_corners
)
?
(
0
)
:
((
align_mode
==
0
)
?
(
1
)
:
(
2
));
if
(
nearest
)
{
trans_mode
=
(
align_corners
)
?
(
0
)
:
(
2
);
}
r
=
xpu
::
interpolate2d_grad
<
T
>
(
dev_ctx
.
x_context
(),
output_grad
->
data
<
T
>
(),
input_grad
->
data
<
T
>
(),
n
,
c
,
in_h
,
in_w
,
out_h
,
out_w
,
nearest
,
trans_mode
,
(
data_layout
==
DataLayout
::
kNCHW
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU interpolate2d_grad kernel return "
"wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
bilinear_interp_v2
,
ops
::
InterpolateV2XPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
nearest_interp_v2
,
ops
::
InterpolateV2XPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
bilinear_interp_v2_grad
,
ops
::
InterpolateV2GradXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
nearest_interp_v2_grad
,
ops
::
InterpolateV2GradXPUKernel
<
float
>
);
#endif
python/paddle/fluid/tests/unittests/xpu/test_nearest_interp_v2_op_xpu.py
0 → 100644
浏览文件 @
82aa01c3
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
sys
sys
.
path
.
append
(
".."
)
from
op_test_xpu
import
XPUOpTest
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
paddle
.
enable_static
()
def
nearest_neighbor_interp_np
(
X
,
out_h
,
out_w
,
scale_h
=
0
,
scale_w
=
0
,
out_size
=
None
,
actual_shape
=
None
,
align_corners
=
True
,
data_layout
=
'NCHW'
):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if
data_layout
==
"NHWC"
:
X
=
np
.
transpose
(
X
,
(
0
,
3
,
1
,
2
))
# NHWC => NCHW
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
n
,
c
,
in_h
,
in_w
=
X
.
shape
ratio_h
=
ratio_w
=
0.0
if
(
out_h
>
1
):
if
(
align_corners
):
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
else
:
if
scale_h
>
0
:
ratio_h
=
1.0
/
scale_h
else
:
ratio_h
=
1.0
*
in_h
/
out_h
if
(
out_w
>
1
):
if
(
align_corners
):
ratio_w
=
(
in_w
-
1.0
)
/
(
out_w
-
1.0
)
else
:
if
scale_w
>
0
:
ratio_w
=
1.0
/
scale_w
else
:
ratio_w
=
1.0
*
in_w
/
out_w
out
=
np
.
zeros
((
n
,
c
,
out_h
,
out_w
))
if
align_corners
:
for
i
in
range
(
out_h
):
in_i
=
int
(
ratio_h
*
i
+
0.5
)
for
j
in
range
(
out_w
):
in_j
=
int
(
ratio_w
*
j
+
0.5
)
out
[:,
:,
i
,
j
]
=
X
[:,
:,
in_i
,
in_j
]
else
:
for
i
in
range
(
out_h
):
in_i
=
int
(
ratio_h
*
i
)
for
j
in
range
(
out_w
):
in_j
=
int
(
ratio_w
*
j
)
out
[:,
:,
i
,
j
]
=
X
[:,
:,
in_i
,
in_j
]
if
data_layout
==
"NHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
# NCHW => NHWC
return
out
.
astype
(
X
.
dtype
)
class
TestNearestInterpOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
use_xpu
=
True
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
self
.
op_type
=
"nearest_interp_v2"
self
.
shape_by_1Dtensor
=
False
self
.
scale_by_1Dtensor
=
False
self
.
attrs
=
{
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
}
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
scale_by_1Dtensor
:
self
.
inputs
[
'Scale'
]
=
np
.
array
([
self
.
scale
]).
astype
(
"float32"
)
elif
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
scale_h
=
scale_w
=
float
(
self
.
scale
)
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
scale_w
=
scale_h
=
self
.
scale
[
0
]
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
out_h
=
int
(
self
.
input_shape
[
2
]
*
scale_h
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
scale_w
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
if
self
.
shape_by_1Dtensor
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
elif
self
.
out_size
is
not
None
:
size_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
out_size
):
size_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
[
'SizeTensor'
]
=
size_tensor
self
.
attrs
[
'out_h'
]
=
self
.
out_h
self
.
attrs
[
'out_w'
]
=
self
.
out_w
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
self
.
scale
=
[
self
.
scale
]
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
self
.
scale
=
[
self
.
scale
[
0
],
self
.
scale
[
0
]]
self
.
attrs
[
'scale'
]
=
self
.
scale
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
0
,
0
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
)
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
in_place
=
True
)
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
5
,
4
,
4
]
self
.
out_h
=
3
self
.
out_w
=
3
self
.
scale
=
0.
self
.
out_size
=
[
3
,
3
]
self
.
align_corners
=
True
class
TestNearestNeighborInterpCase1
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
align_corners
=
True
class
TestNearestNeighborInterpCase2
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
align_corners
=
True
class
TestNearestNeighborInterpCase3
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
align_corners
=
True
class
TestNearestNeighborInterpCase4
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpCase5
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpCase6
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpSame
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
3
,
32
,
64
]
self
.
out_h
=
32
self
.
out_w
=
64
self
.
scale
=
0.
self
.
align_corners
=
True
class
TestNearestNeighborInterpActualShape
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpDataLayout
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
4
,
4
,
5
]
self
.
out_h
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
3
,
8
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
data_layout
=
"NHWC"
class
TestNearestInterpWithoutCorners
(
TestNearestInterpOp
):
def
set_align_corners
(
self
):
self
.
align_corners
=
False
class
TestNearestNeighborInterpScale1
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
7
,
5
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
2.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpScale2
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
5
,
7
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
1.5
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpScale3
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
7
,
5
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
[
2.0
,
3.0
]
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestInterpOp_attr_tensor
(
XPUOpTest
):
def
setUp
(
self
):
self
.
use_xpu
=
True
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
self
.
op_type
=
"nearest_interp_v2"
self
.
shape_by_1Dtensor
=
False
self
.
scale_by_1Dtensor
=
False
self
.
attrs
=
{
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
}
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
scale_by_1Dtensor
:
self
.
inputs
[
'Scale'
]
=
np
.
array
([
self
.
scale
]).
astype
(
"float32"
)
elif
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
scale_h
=
scale_w
=
float
(
self
.
scale
)
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
scale_w
=
scale_h
=
self
.
scale
[
0
]
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
out_h
=
int
(
self
.
input_shape
[
2
]
*
scale_h
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
scale_w
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
if
self
.
shape_by_1Dtensor
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
elif
self
.
out_size
is
not
None
:
size_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
out_size
):
size_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
[
'SizeTensor'
]
=
size_tensor
self
.
attrs
[
'out_h'
]
=
self
.
out_h
self
.
attrs
[
'out_w'
]
=
self
.
out_w
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
self
.
scale
=
[
self
.
scale
]
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
self
.
scale
=
[
self
.
scale
[
0
],
self
.
scale
[
0
]]
self
.
attrs
[
'scale'
]
=
self
.
scale
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
0
,
0
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
)
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
in_place
=
True
)
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
5
,
4
,
4
]
self
.
out_h
=
3
self
.
out_w
=
3
self
.
scale
=
0.
self
.
out_size
=
[
3
,
3
]
self
.
align_corners
=
True
# out_size is a tensor list
class
TestNearestInterp_attr_tensor_Case1
(
TestNearestInterpOp_attr_tensor
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
[
8
,
12
]
self
.
align_corners
=
True
# out_size is a 1-D tensor
class
TestNearestInterp_attr_tensor_Case2
(
TestNearestInterpOp_attr_tensor
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
shape_by_1Dtensor
=
True
# scale is a 1-D tensor
class
TestNearestInterp_attr_tensor_Case3
(
TestNearestInterpOp_attr_tensor
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
2.0
self
.
out_size
=
None
self
.
align_corners
=
True
self
.
scale_by_1Dtensor
=
True
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录