未验证 提交 812cf151 编写于 作者: F fengjiayi 提交者: GitHub

Merge pull request #8009 from JiayiFeng/dev_reader

Fundamental Data Reading in C++
...@@ -24,6 +24,8 @@ cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto) ...@@ -24,6 +24,8 @@ cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto)
cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor paddle_memory) cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor paddle_memory)
nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor init) nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor init)
cc_library(reader SRCS reader.cc DEPS lod_tensor ddim)
cc_test(variable_test SRCS variable_test.cc) cc_test(variable_test SRCS variable_test.cc)
cc_library(threadpool SRCS threadpool.cc DEPS enforce) cc_library(threadpool SRCS threadpool.cc DEPS enforce)
......
...@@ -22,6 +22,7 @@ limitations under the License. */ ...@@ -22,6 +22,7 @@ limitations under the License. */
#include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/reader.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/platform/profiler.h" #include "paddle/platform/profiler.h"
...@@ -52,11 +53,13 @@ static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) { ...@@ -52,11 +53,13 @@ static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) {
var->GetMutable<LoDTensorArray>(); var->GetMutable<LoDTensorArray>();
} else if (var_type == proto::VarDesc::PLACE_LIST) { } else if (var_type == proto::VarDesc::PLACE_LIST) {
var->GetMutable<platform::PlaceList>(); var->GetMutable<platform::PlaceList>();
} else if (var_type == proto::VarDesc::READER) {
var->GetMutable<ReaderHolder>();
} else { } else {
PADDLE_THROW( PADDLE_THROW(
"Variable type %d is not in " "Variable type %d is not in "
"[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE," "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
" PLACE_LIST]", "LOD_RANK_TABLE, PLACE_LIST, READER]",
var_type); var_type);
} }
} }
......
...@@ -116,7 +116,7 @@ message LoDTensorArrayDesc { ...@@ -116,7 +116,7 @@ message LoDTensorArrayDesc {
optional int32 lod_level = 2 [ default = 0 ]; optional int32 lod_level = 2 [ default = 0 ];
} }
message Reader { repeated LoDTensorDesc lod_tensor = 1; } message ReaderDesc { repeated LoDTensorDesc lod_tensor = 1; }
message VarDesc { message VarDesc {
enum VarType { enum VarType {
...@@ -136,7 +136,7 @@ message VarDesc { ...@@ -136,7 +136,7 @@ message VarDesc {
optional LoDTensorDesc lod_tensor = 4; optional LoDTensorDesc lod_tensor = 4;
optional TensorDesc selected_rows = 5; optional TensorDesc selected_rows = 5;
optional LoDTensorArrayDesc tensor_array = 6; optional LoDTensorArrayDesc tensor_array = 6;
optional Reader reader = 7; optional ReaderDesc reader = 7;
} }
message BlockDesc { message BlockDesc {
......
...@@ -72,6 +72,11 @@ class CompileTimeInferShapeContext : public InferShapeContext { ...@@ -72,6 +72,11 @@ class CompileTimeInferShapeContext : public InferShapeContext {
void SetDim(const std::string &name, const DDim &dim) override; void SetDim(const std::string &name, const DDim &dim) override;
std::vector<DDim> GetRepeatedDims(const std::string &name) const override;
void SetRepeatedDims(const std::string &name,
const std::vector<DDim> &dims) override;
const OpDesc &op_; const OpDesc &op_;
const BlockDesc &block_; const BlockDesc &block_;
}; };
...@@ -457,23 +462,48 @@ const std::vector<std::string> &CompileTimeInferShapeContext::Outputs( ...@@ -457,23 +462,48 @@ const std::vector<std::string> &CompileTimeInferShapeContext::Outputs(
DDim CompileTimeInferShapeContext::GetDim(const std::string &name) const { DDim CompileTimeInferShapeContext::GetDim(const std::string &name) const {
auto var = block_.FindVarRecursive(name); auto var = block_.FindVarRecursive(name);
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name); PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name);
DDim res;
try { try {
auto shape = var->GetShape(); auto shape = var->GetShape();
if (shape.empty()) { res = shape.empty() ? make_ddim({0UL}) : make_ddim(shape);
return framework::make_ddim({0UL});
} else {
return framework::make_ddim(var->GetShape());
}
} catch (...) { } catch (...) {
VLOG(5) << "GetDim of variable " << name << " error"; VLOG(5) << "GetDim of variable " << name << " error";
std::rethrow_exception(std::current_exception()); std::rethrow_exception(std::current_exception());
} }
return res;
}
std::vector<DDim> CompileTimeInferShapeContext::GetRepeatedDims(
const std::string &name) const {
auto var = block_.FindVarRecursive(name);
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name);
std::vector<DDim> res;
try {
auto shapes = var->GetShapes();
for (const auto &s : shapes) {
res.push_back(s.empty() ? make_ddim({0UL}) : make_ddim(s));
}
} catch (...) {
VLOG(5) << "GetRepeatedDim of variable " << name << " error.";
std::rethrow_exception(std::current_exception());
}
return res;
} }
void CompileTimeInferShapeContext::SetDim(const std::string &name, void CompileTimeInferShapeContext::SetDim(const std::string &name,
const DDim &dim) { const DDim &dim) {
block_.FindVarRecursive(name)->SetShape(framework::vectorize(dim)); block_.FindVarRecursive(name)->SetShape(vectorize(dim));
} }
void CompileTimeInferShapeContext::SetRepeatedDims(
const std::string &name, const std::vector<DDim> &dims) {
auto var = block_.FindVarRecursive(name);
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name);
std::vector<std::vector<int64_t>> dim_vec(dims.size());
std::transform(dims.begin(), dims.end(), dim_vec.begin(), vectorize);
var->SetShapes(dim_vec);
}
bool CompileTimeInferShapeContext::IsRuntime() const { return false; } bool CompileTimeInferShapeContext::IsRuntime() const { return false; }
proto::VarDesc::VarType CompileTimeInferShapeContext::GetVarType( proto::VarDesc::VarType CompileTimeInferShapeContext::GetVarType(
......
...@@ -320,8 +320,8 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -320,8 +320,8 @@ class RuntimeInferShapeContext : public InferShapeContext {
if (length == 0) { if (length == 0) {
return false; return false;
} }
PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs", PADDLE_ENFORCE_EQ(length, 1UL,
name); "Input %s should not have more than one inputs", name);
auto ipt = ins[0]; auto ipt = ins[0];
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr; return var != nullptr;
...@@ -333,8 +333,8 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -333,8 +333,8 @@ class RuntimeInferShapeContext : public InferShapeContext {
if (length == 0) { if (length == 0) {
return false; return false;
} }
PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs", PADDLE_ENFORCE_EQ(length, 1UL,
name); "Output %s should not have more than one inputs", name);
auto ipt = outs[0]; auto ipt = outs[0];
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr; return var != nullptr;
...@@ -421,7 +421,21 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -421,7 +421,21 @@ class RuntimeInferShapeContext : public InferShapeContext {
} else if (var->IsType<SelectedRows>()) { } else if (var->IsType<SelectedRows>()) {
return var->Get<SelectedRows>().GetCompleteDims(); return var->Get<SelectedRows>().GetCompleteDims();
} else { } else {
PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.", PADDLE_THROW(
"Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
"type_id is %s.",
name, var->Type().name());
}
}
std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Variable* var = scope_.FindVar(name);
if (var->IsType<ReaderHolder>()) {
return var->Get<ReaderHolder>().shapes();
} else {
PADDLE_THROW(
"Only ReaderHolder support 'GetRepeatedDims', but Variable %s's "
"type_id is %s.",
name, var->Type().name()); name, var->Type().name());
} }
} }
...@@ -438,6 +452,19 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -438,6 +452,19 @@ class RuntimeInferShapeContext : public InferShapeContext {
} }
} }
void SetRepeatedDims(const std::string& name,
const std::vector<DDim>& dims) override {
Variable* var = scope_.FindVar(name);
if (var->IsType<ReaderHolder>()) {
var->GetMutable<ReaderHolder>()->set_shapes(dims);
} else {
PADDLE_THROW(
"Only ReaderHolder support 'SetRepeatedDims', but Variable %s's "
"type_id is %s.",
name, var->Type().name());
}
}
proto::VarDesc::VarType GetVarType(const std::string& name) const override { proto::VarDesc::VarType GetVarType(const std::string& name) const override {
auto* var = scope_.FindVar(name); auto* var = scope_.FindVar(name);
return ToVarType(var->Type()); return ToVarType(var->Type());
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/framework/reader.h"
namespace paddle {
namespace framework {
DDim ReaderBase::shape(size_t idx) const {
PADDLE_ENFORCE_LT(
idx, shapes_.size(),
"Cannot get the %d'th shape, 'shapes_' only has %d elements.", idx,
shapes_.size());
return shapes_[idx];
}
void ShuffleReader::ReadNext(std::vector<LoDTensor>* out) {
if (iteration_pos_ >= buffer_.size()) {
// Reload buffer with new data
buffer_.clear();
buffer_.reserve(buffer_size_);
for (int i = 0; i < buffer_size_; ++i) {
if (reader_->HasNext()) {
buffer_.push_back(std::vector<LoDTensor>());
reader_->ReadNext(&buffer_.back());
} else {
break;
}
}
// TODO(fengjiayi): 'std::random_shuffle' can be very slow. It needs to be
// optimize.
std::random_shuffle(buffer_.begin(), buffer_.end());
iteration_pos_ = 0;
}
out->clear();
if (!buffer_.empty()) {
std::swap(*out, buffer_[iteration_pos_++]);
}
// if buffer_ is empty, the 'out' will return as an empty vector.
}
void BatchReader::ReadNext(std::vector<LoDTensor>* out) {
buffer_.clear();
buffer_.reserve(batch_size_);
for (int i = 0; i < batch_size_; ++i) {
if (reader_->HasNext()) {
buffer_.push_back(std::vector<LoDTensor>());
reader_->ReadNext(&buffer_.back());
} else {
break;
}
}
// Concat instances
out->clear();
if (buffer_.empty()) {
// if buffer_ is empty, the 'out' will return as an empty vector.
return;
}
int out_num = buffer_[0].size();
out->reserve(out_num);
for (int j = 0; j < out_num; ++j) {
// Merge shape and check date type
std::type_index batch_type = buffer_[0][j].type();
DDim batch_shape = buffer_[0][j].dims();
for (size_t i = 1; i < buffer_.size(); ++i) {
std::type_index ins_type = buffer_[i][j].type();
DDim ins_shape = buffer_[i][j].dims();
PADDLE_ENFORCE_EQ(batch_type, ins_type);
PADDLE_ENFORCE_EQ(slice_ddim(batch_shape, 1, batch_shape.size()),
slice_ddim(ins_shape, 1, ins_shape.size()));
PADDLE_ENFORCE_GT(ins_shape[0], 0);
batch_shape[0] += ins_shape[0];
}
LoDTensor out_tensor;
out_tensor.Resize(batch_shape);
out_tensor.mutable_data(platform::CPUPlace(), batch_type);
int64_t dst_offset = 0;
// Merge lod and data
LoD batch_lod;
std::vector<size_t> top_level_lod({0});
for (size_t i = 0; i < buffer_.size(); ++i) {
DDim ins_shape = buffer_[i][j].dims();
LoD ins_lod = buffer_[i][j].lod();
if (i == 0) {
batch_lod = ins_lod;
} else {
PADDLE_ENFORCE_EQ(batch_lod.size(), ins_lod.size());
for (size_t level_idx = 0; level_idx < batch_lod.size(); ++level_idx) {
auto& lod_level = batch_lod[level_idx];
for (size_t k = 1; k < ins_lod[level_idx].size(); ++k) {
lod_level.push_back(ins_lod[level_idx][k] + lod_level.back());
}
}
}
top_level_lod.push_back(
top_level_lod.back() +
(ins_lod.empty() ? ins_shape[0] : (ins_lod[0].size() - 1)));
Tensor dst = out_tensor.Slice(dst_offset, dst_offset + ins_shape[0]);
Copy(buffer_[i][j], platform::CPUPlace(), &dst);
dst_offset += ins_shape[0];
}
batch_lod.insert(batch_lod.begin(), top_level_lod);
out_tensor.set_lod(batch_lod);
out->push_back(out_tensor);
}
}
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/framework/ddim.h"
#include "paddle/framework/lod_tensor_array.h"
namespace paddle {
namespace framework {
class ReaderBase {
public:
explicit ReaderBase(const std::vector<DDim>& shapes) : shapes_(shapes) {
PADDLE_ENFORCE(!shapes_.empty());
}
virtual void ReadNext(std::vector<LoDTensor>* out) = 0;
virtual bool HasNext() const = 0;
virtual void ReInit() = 0;
DDim shape(size_t idx) const;
std::vector<DDim> shapes() const { return shapes_; }
void set_shapes(const std::vector<DDim>& shapes) { shapes_ = shapes; }
virtual ~ReaderBase() {}
protected:
std::vector<DDim> shapes_;
};
class FileReader : public ReaderBase {
public:
explicit FileReader(const std::vector<DDim>& shapes) : ReaderBase(shapes) {}
};
class DecoratedReader : public ReaderBase {
public:
explicit DecoratedReader(ReaderBase* reader)
: ReaderBase(reader->shapes()), reader_(reader) {
PADDLE_ENFORCE_NOT_NULL(reader_);
}
bool HasNext() const override { return reader_->HasNext(); }
void ReInit() override { reader_->ReInit(); }
protected:
ReaderBase* reader_;
};
// file readers
template <typename T>
class RandomDataGenerator : public FileReader {
public:
RandomDataGenerator(const std::vector<DDim>& shapes, float min, float max)
: FileReader(shapes), min_(min), max_(max) {
PADDLE_ENFORCE_LE(
min, max, "'min' shouldn't be greater than 'max'.(%f vs %f)", min, max);
unsigned int seed = std::random_device()();
engine_.seed(seed);
dist_ = std::uniform_real_distribution<float>(min_, max_);
}
void ReadNext(std::vector<LoDTensor>* out) override {
out->clear();
out->reserve(shapes_.size());
for (const DDim& shape : shapes_) {
PADDLE_ENFORCE_GE(
shape.size(), 2,
"The rank of reader's output data should be 2 at least.(Now it's %d)",
shape.size());
LoDTensor out_tensor;
out_tensor.Resize(shape);
T* data = out_tensor.mutable_data<T>(platform::CPUPlace());
int64_t numel = product(shape);
for (int64_t i = 0; i < numel; ++i) {
data[i] = dist_(engine_);
}
out->push_back(out_tensor);
}
}
bool HasNext() const override { return true; }
void ReInit() override { return; }
private:
float min_;
float max_;
std::minstd_rand engine_;
std::uniform_real_distribution<float> dist_;
};
// decorated readers
class ShuffleReader : public DecoratedReader {
public:
ShuffleReader(ReaderBase* reader, int buffer_size)
: DecoratedReader(reader), buffer_size_(buffer_size), iteration_pos_(0) {
buffer_.reserve(buffer_size);
}
void ReadNext(std::vector<LoDTensor>* out) override;
private:
int buffer_size_;
std::vector<std::vector<LoDTensor>> buffer_;
size_t iteration_pos_;
};
class BatchReader : public DecoratedReader {
public:
BatchReader(ReaderBase* reader, int batch_size)
: DecoratedReader(reader), batch_size_(batch_size) {
buffer_.reserve(batch_size_);
}
void ReadNext(std::vector<LoDTensor>* out) override;
private:
int batch_size_;
std::vector<std::vector<LoDTensor>> buffer_;
};
// The ReaderHolder is used as readers' unified wrapper,
// making it easier to access different type readers in Variables.
class ReaderHolder {
public:
void Reset(ReaderBase* reader) { reader_.reset(reader); }
ReaderBase* Get() const { return reader_.get(); }
void ReadNext(std::vector<LoDTensor>* out) { reader_->ReadNext(out); }
bool HasNext() const { return reader_->HasNext(); }
void ReInit() { reader_->ReInit(); }
DDim shape(size_t idx) const { return reader_->shape(idx); }
std::vector<DDim> shapes() const { return reader_->shapes(); }
void set_shapes(const std::vector<DDim>& shapes) {
reader_->set_shapes(shapes);
}
private:
std::unique_ptr<ReaderBase> reader_;
};
} // namespace framework
} // namespace paddle
...@@ -32,6 +32,16 @@ std::vector<DDim> InferShapeContext::GetInputsDim( ...@@ -32,6 +32,16 @@ std::vector<DDim> InferShapeContext::GetInputsDim(
return GetDims(arg_names); return GetDims(arg_names);
} }
std::vector<DDim> InferShapeContext::GetReaderDims(
const std::string &name) const {
const std::vector<std::string> &arg_names = Inputs(name);
PADDLE_ENFORCE_EQ(
arg_names.size(), 1UL,
"Reader input '%s' should hold one element, but now it holds %d", name,
arg_names.size());
return this->GetRepeatedDims(arg_names[0]);
}
DDim InferShapeContext::GetInputsElementDim(const std::string &name, DDim InferShapeContext::GetInputsElementDim(const std::string &name,
int idx) const { int idx) const {
const std::vector<std::string> &names = Inputs(name); const std::vector<std::string> &names = Inputs(name);
...@@ -52,6 +62,16 @@ void InferShapeContext::SetOutputsDim(const std::string &name, ...@@ -52,6 +62,16 @@ void InferShapeContext::SetOutputsDim(const std::string &name,
SetDims(names, dims); SetDims(names, dims);
} }
void InferShapeContext::SetReaderDims(const std::string &name,
const std::vector<DDim> &dims) {
const std::vector<std::string> &arg_names = Outputs(name);
PADDLE_ENFORCE_EQ(
arg_names.size(), 1UL,
"Reader output '%s' should hold one element, but now it holds %d", name,
arg_names.size());
return this->SetRepeatedDims(arg_names[0], dims);
}
std::vector<DDim> InferShapeContext::GetDims( std::vector<DDim> InferShapeContext::GetDims(
const std::vector<std::string> &names) const { const std::vector<std::string> &names) const {
std::vector<DDim> ret; std::vector<DDim> ret;
...@@ -61,6 +81,7 @@ std::vector<DDim> InferShapeContext::GetDims( ...@@ -61,6 +81,7 @@ std::vector<DDim> InferShapeContext::GetDims(
[this](const std::string &name) { return this->GetDim(name); }); [this](const std::string &name) { return this->GetDim(name); });
return ret; return ret;
} }
void InferShapeContext::SetDims(const std::vector<std::string> &names, void InferShapeContext::SetDims(const std::vector<std::string> &names,
const std::vector<DDim> &dims) { const std::vector<DDim> &dims) {
size_t length = names.size(); size_t length = names.size();
...@@ -72,14 +93,17 @@ void InferShapeContext::SetDims(const std::vector<std::string> &names, ...@@ -72,14 +93,17 @@ void InferShapeContext::SetDims(const std::vector<std::string> &names,
SetDim(names[i], dims[i]); SetDim(names[i], dims[i]);
} }
} }
std::vector<proto::VarDesc::VarType> InferShapeContext::GetInputsVarType( std::vector<proto::VarDesc::VarType> InferShapeContext::GetInputsVarType(
const std::string &name) const { const std::string &name) const {
return GetVarTypes(Inputs(name)); return GetVarTypes(Inputs(name));
} }
std::vector<proto::VarDesc::VarType> InferShapeContext::GetOutputsVarType( std::vector<proto::VarDesc::VarType> InferShapeContext::GetOutputsVarType(
const std::string &name) const { const std::string &name) const {
return GetVarTypes(Outputs(name)); return GetVarTypes(Outputs(name));
} }
std::vector<proto::VarDesc::VarType> InferShapeContext::GetVarTypes( std::vector<proto::VarDesc::VarType> InferShapeContext::GetVarTypes(
const std::vector<std::string> &names) const { const std::vector<std::string> &names) const {
std::vector<proto::VarDesc::VarType> retv; std::vector<proto::VarDesc::VarType> retv;
......
...@@ -36,12 +36,13 @@ class InferShapeContext { ...@@ -36,12 +36,13 @@ class InferShapeContext {
virtual bool HasOutputs(const std::string &name) const = 0; virtual bool HasOutputs(const std::string &name) const = 0;
DDim GetInputDim(const std::string &name) const; DDim GetInputDim(const std::string &name) const;
std::vector<DDim> GetInputsDim(const std::string &name) const; std::vector<DDim> GetInputsDim(const std::string &name) const;
std::vector<DDim> GetReaderDims(const std::string &name) const;
DDim GetInputsElementDim(const std::string &name, int idx) const; DDim GetInputsElementDim(const std::string &name, int idx) const;
void SetOutputDim(const std::string &name, const DDim &dim); void SetOutputDim(const std::string &name, const DDim &dim);
void SetOutputsDim(const std::string &name, const std::vector<DDim> &dims); void SetOutputsDim(const std::string &name, const std::vector<DDim> &dims);
void SetReaderDims(const std::string &name, const std::vector<DDim> &dims);
virtual AttrReader Attrs() const = 0; virtual AttrReader Attrs() const = 0;
virtual const std::vector<std::string> &Inputs( virtual const std::vector<std::string> &Inputs(
...@@ -61,6 +62,9 @@ class InferShapeContext { ...@@ -61,6 +62,9 @@ class InferShapeContext {
protected: protected:
virtual DDim GetDim(const std::string &name) const = 0; virtual DDim GetDim(const std::string &name) const = 0;
virtual void SetDim(const std::string &name, const DDim &dim) = 0; virtual void SetDim(const std::string &name, const DDim &dim) = 0;
virtual std::vector<DDim> GetRepeatedDims(const std::string &name) const = 0;
virtual void SetRepeatedDims(const std::string &name,
const std::vector<DDim> &dims) = 0;
std::vector<DDim> GetDims(const std::vector<std::string> &names) const; std::vector<DDim> GetDims(const std::vector<std::string> &names) const;
std::vector<proto::VarDesc::VarType> GetVarTypes( std::vector<proto::VarDesc::VarType> GetVarTypes(
......
...@@ -57,10 +57,13 @@ size_t VarDesc::GetTensorDescNum() const { ...@@ -57,10 +57,13 @@ size_t VarDesc::GetTensorDescNum() const {
void VarDesc::SetShapes( void VarDesc::SetShapes(
const std::vector<std::vector<int64_t>> &multiple_dims) { const std::vector<std::vector<int64_t>> &multiple_dims) {
PADDLE_ENFORCE_EQ(multiple_dims.size(), GetTensorDescNum(), if (multiple_dims.size() != GetTensorDescNum()) {
"The number of given shapes(%d) doesn't equal to the " VLOG(3) << "WARNING: The number of given shapes(" << multiple_dims.size()
"number of sub tensor.", << ") doesn't match the existing tensor number("
multiple_dims.size(), GetTensorDescNum()); << GetTensorDescNum()
<< "). The Reader is going to be reinitialized.";
SetTensorDescNum(multiple_dims.size());
}
std::vector<proto::TensorDesc *> tensors = mutable_tensor_descs(); std::vector<proto::TensorDesc *> tensors = mutable_tensor_descs();
for (size_t i = 0; i < multiple_dims.size(); ++i) { for (size_t i = 0; i < multiple_dims.size(); ++i) {
VectorToRepeated(multiple_dims[i], tensors[i]->mutable_dims()); VectorToRepeated(multiple_dims[i], tensors[i]->mutable_dims());
...@@ -87,10 +90,14 @@ void VarDesc::SetDataType(proto::DataType data_type) { ...@@ -87,10 +90,14 @@ void VarDesc::SetDataType(proto::DataType data_type) {
void VarDesc::SetDataTypes( void VarDesc::SetDataTypes(
const std::vector<proto::DataType> &multiple_data_type) { const std::vector<proto::DataType> &multiple_data_type) {
PADDLE_ENFORCE_EQ(multiple_data_type.size(), GetTensorDescNum(), if (multiple_data_type.size() != GetTensorDescNum()) {
"The number of given data types(%d) doesn't equal to the " VLOG(3) << "WARNING: The number of given data types("
"number of sub tensor.", << multiple_data_type.size()
multiple_data_type.size(), GetTensorDescNum()); << ") doesn't match the existing tensor number("
<< GetTensorDescNum()
<< "). The Reader is going to be reinitialized.";
SetTensorDescNum(multiple_data_type.size());
}
std::vector<proto::TensorDesc *> tensor_descs = mutable_tensor_descs(); std::vector<proto::TensorDesc *> tensor_descs = mutable_tensor_descs();
for (size_t i = 0; i < multiple_data_type.size(); ++i) { for (size_t i = 0; i < multiple_data_type.size(); ++i) {
tensor_descs[i]->set_data_type(multiple_data_type[i]); tensor_descs[i]->set_data_type(multiple_data_type[i]);
...@@ -127,10 +134,14 @@ void VarDesc::SetLoDLevel(int32_t lod_level) { ...@@ -127,10 +134,14 @@ void VarDesc::SetLoDLevel(int32_t lod_level) {
} }
void VarDesc::SetLoDLevels(const std::vector<int32_t> &multiple_lod_level) { void VarDesc::SetLoDLevels(const std::vector<int32_t> &multiple_lod_level) {
PADDLE_ENFORCE_EQ(multiple_lod_level.size(), GetTensorDescNum(), if (multiple_lod_level.size() != GetTensorDescNum()) {
"The number of given data types(%d) doesn't equal to the " VLOG(3) << "WARNING: The number of given lod_levels("
"number of sub tensor.", << multiple_lod_level.size()
multiple_lod_level.size(), GetTensorDescNum()); << ") doesn't match the existing tensor number("
<< GetTensorDescNum()
<< "). The Reader is going to be reinitialized.";
SetTensorDescNum(multiple_lod_level.size());
}
switch (desc_.type()) { switch (desc_.type()) {
case proto::VarDesc::READER: { case proto::VarDesc::READER: {
size_t i = 0; size_t i = 0;
......
...@@ -17,6 +17,7 @@ limitations under the License. */ ...@@ -17,6 +17,7 @@ limitations under the License. */
#include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/reader.h"
#include "paddle/framework/selected_rows.h" #include "paddle/framework/selected_rows.h"
#include "paddle/framework/variable.h" #include "paddle/framework/variable.h"
...@@ -31,6 +32,8 @@ inline proto::VarDesc::VarType ToVarType(std::type_index type) { ...@@ -31,6 +32,8 @@ inline proto::VarDesc::VarType ToVarType(std::type_index type) {
return proto::VarDesc_VarType_LOD_TENSOR_ARRAY; return proto::VarDesc_VarType_LOD_TENSOR_ARRAY;
} else if (type.hash_code() == typeid(SelectedRows).hash_code()) { } else if (type.hash_code() == typeid(SelectedRows).hash_code()) {
return proto::VarDesc_VarType_SELECTED_ROWS; return proto::VarDesc_VarType_SELECTED_ROWS;
} else if (type.hash_code() == typeid(ReaderHolder).hash_code()) {
return proto::VarDesc_VarType_READER;
} else { } else {
PADDLE_THROW("ToVarType:Unsupported type %s", type.name()); PADDLE_THROW("ToVarType:Unsupported type %s", type.name());
} }
...@@ -40,7 +43,7 @@ template <typename Visitor> ...@@ -40,7 +43,7 @@ template <typename Visitor>
inline void VisitVarType(const framework::Variable& var, Visitor visitor) { inline void VisitVarType(const framework::Variable& var, Visitor visitor) {
switch (ToVarType(var.Type())) { switch (ToVarType(var.Type())) {
case proto::VarDesc_VarType_LOD_TENSOR: case proto::VarDesc_VarType_LOD_TENSOR:
visitor(var.Get<framework::LoDTensor>()); visitor(var.Get<LoDTensor>());
return; return;
case proto::VarDesc_VarType_LOD_RANK_TABLE: case proto::VarDesc_VarType_LOD_RANK_TABLE:
visitor(var.Get<LoDRankTable>()); visitor(var.Get<LoDRankTable>());
...@@ -51,6 +54,9 @@ inline void VisitVarType(const framework::Variable& var, Visitor visitor) { ...@@ -51,6 +54,9 @@ inline void VisitVarType(const framework::Variable& var, Visitor visitor) {
case proto::VarDesc_VarType_SELECTED_ROWS: case proto::VarDesc_VarType_SELECTED_ROWS:
visitor(var.Get<SelectedRows>()); visitor(var.Get<SelectedRows>());
return; return;
case proto::VarDesc_VarType_READER:
visitor(var.Get<ReaderHolder>());
return;
default: default:
PADDLE_THROW("Not supported visit type, %d", ToVarType(var.Type())); PADDLE_THROW("Not supported visit type, %d", ToVarType(var.Type()));
} }
......
...@@ -62,7 +62,7 @@ function(op_library TARGET) ...@@ -62,7 +62,7 @@ function(op_library TARGET)
endif() endif()
# Define operators that don't need pybind here. # Define operators that don't need pybind here.
foreach(manual_pybind_op "net_op" "compare_op" "logical_op" "nccl_op" "tensor_array_read_write_op") foreach(manual_pybind_op "net_op" "compare_op" "logical_op" "nccl_op" "tensor_array_read_write_op" "create_reader_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}") if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1) set(pybind_flag 1)
endif() endif()
...@@ -155,6 +155,7 @@ op_library(recurrent_op DEPS executor) ...@@ -155,6 +155,7 @@ op_library(recurrent_op DEPS executor)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale math_function) op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale math_function)
op_library(cos_sim_op DEPS cos_sim_functor) op_library(cos_sim_op DEPS cos_sim_functor)
op_library(parallel_do_op DEPS executor) op_library(parallel_do_op DEPS executor)
op_library(create_reader_op DEPS reader)
# Regist multiple Kernel to pybind # Regist multiple Kernel to pybind
if (WITH_GPU) if (WITH_GPU)
...@@ -185,7 +186,7 @@ list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) ...@@ -185,7 +186,7 @@ list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS}) foreach(src ${GENERAL_OPS})
op_library(${src}) op_library(${src})
endforeach() endforeach()
file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n") file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\nUSE_NO_KERNEL_OP(create_random_data_generator);\n")
set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/framework/op_registry.h"
#include "paddle/framework/reader.h"
namespace paddle {
namespace operators {
static std::vector<framework::DDim> RestoreShapes(
const std::vector<int>& shape_concat, const std::vector<int>& ranks) {
std::vector<framework::DDim> res;
int offset = 0;
for (int len : ranks) {
auto start_it = shape_concat.begin() + offset;
auto end_it = start_it + len;
res.push_back(framework::make_ddim(std::vector<int>(start_it, end_it)));
offset += len;
}
return res;
}
// general infershape for file readers
class CreateFileReaderInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"The output file reader should not be null.");
const auto shape_concat =
ctx->Attrs().Get<std::vector<int>>("shape_concat");
const auto ranks = ctx->Attrs().Get<std::vector<int>>("ranks");
std::vector<framework::DDim> shapes = RestoreShapes(shape_concat, ranks);
ctx->SetReaderDims("Out", shapes);
}
};
// general infershape for decorated readers
class CreateDecoratedReaderInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("UnderlyingReader"),
"Input(UnderlyingReader) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"The output decorated reader should not be null.");
ctx->SetReaderDims("Out", ctx->GetReaderDims("UnderlyingReader"));
}
};
// general var type inference for all readers
class CreateReaderInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
std::string reader_name = op_desc.Output("Out")[0];
framework::VarDesc* reader = block->FindVarRecursive(reader_name);
reader->SetType(framework::proto::VarDesc::READER);
}
};
template <typename T>
class CreateRandomDataGeneratorOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
void Run(const framework::Scope& scope,
const platform::Place& dev_place) const override {
const auto& shape_concat = Attr<std::vector<int>>("shape_concat");
const auto& ranks = Attr<std::vector<int>>("ranks");
PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty());
PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0),
int(shape_concat.size()),
"The accumulate of all ranks should be equal to the "
"shape concat's length.");
std::vector<framework::DDim> shapes = RestoreShapes(shape_concat, ranks);
auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>();
out->Reset(new framework::RandomDataGenerator<T>(shapes, Attr<float>("min"),
Attr<float>("max")));
}
};
class CreateRandomDataGeneratorOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
CreateRandomDataGeneratorOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(op_proto, op_checker) {
AddOutput("Out", "(ReaderHolder) The created random reader.");
AddAttr<std::vector<int>>("shape_concat",
"The concat of all data's shapes.");
AddAttr<std::vector<int>>(
"ranks",
"The ranks of each data."
"e.g."
"shape_concat = [2,3,4,5,6]"
"ranks = [3,2]"
"It means the reader will generate two data each time,"
"whose shapes are [2,3,4] and [5,6] respectively.");
AddAttr<float>("min", "The lower bound of reader's uniform distribution.");
AddAttr<float>("max", "The upper bound of reader's uniform distribution.");
AddComment(R"DOC(
CreateRandomDataGenerator Operator
This Op creates a random reader.
The reader generates random data instead of really reading from files.
Generated data follow an uniform distribution between 'min' and 'max'.
)DOC");
}
};
class CreateShuffleReaderOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
void Run(const framework::Scope& scope,
const platform::Place& dev_place) const override {
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>();
auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>();
out->Reset(new framework::ShuffleReader(underlying_reader.Get(),
Attr<int>("buffer_size")));
}
};
class CreateShuffleReaderOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CreateShuffleReaderOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(op_proto, op_checker) {
AddInput(
"UnderlyingReader",
"(ReaderHolder) The underlying reader for creating a shuffle reader.");
AddOutput("Out", "(ReaderHolder) The created shuffle reader.");
AddAttr<int>("buffer_size", "The shuffle buffer size.").GreaterThan(0);
AddComment(R"DOC(
CreateShuffleReader Operator
A shuffle reader takes another reader as its 'underlying reader'
and yields the underlying reader's outputs in a shuffled order.
)DOC");
}
};
class CreateBatchReaderOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
void Run(const framework::Scope& scope,
const platform::Place& dev_place) const override {
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>();
auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>();
out->Reset(new framework::BatchReader(underlying_reader.Get(),
Attr<int>("batch_size")));
}
};
class CreateBatchReaderOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CreateBatchReaderOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(op_proto, op_checker) {
AddInput(
"UnderlyingReader",
"(ReaderHolder) The underlying reader for creating a batch reader.");
AddOutput("Out", "(ReaderHolder) The created batch reader.");
AddAttr<int>("batch_size",
"How many instances the batch reader yields each time.")
.GreaterThan(0);
AddComment(R"DOC(
CreateBatchReader Operator
A batch reader takes another reader as its 'underlying reader',
gathers the underlying reader's outputs and then yields them in batches.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(create_random_data_generator,
ops::CreateRandomDataGeneratorOp<float>,
ops::CreateFileReaderInferShape,
ops::CreateRandomDataGeneratorOpMaker,
paddle::framework::EmptyGradOpMaker,
ops::CreateReaderInferVarType);
REGISTER_OPERATOR(create_shuffle_reader, ops::CreateShuffleReaderOp,
ops::CreateDecoratedReaderInferShape,
ops::CreateShuffleReaderOpMaker,
paddle::framework::EmptyGradOpMaker,
ops::CreateReaderInferVarType);
REGISTER_OPERATOR(create_batch_reader, ops::CreateBatchReaderOp,
ops::CreateDecoratedReaderInferShape,
ops::CreateBatchReaderOpMaker,
paddle::framework::EmptyGradOpMaker,
ops::CreateReaderInferVarType);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/framework/op_registry.h"
#include "paddle/framework/reader.h"
namespace paddle {
namespace operators {
class ReadInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Reader"),
"The ReadOp must take a reader as input.");
PADDLE_ENFORCE(ctx->HasOutputs("Out"),
"The ReadOp should be assigned with output.");
std::vector<framework::DDim> reader_dims = ctx->GetReaderDims("Reader");
std::vector<std::string> out_names = ctx->Outputs("Out");
PADDLE_ENFORCE_EQ(
reader_dims.size(), out_names.size(),
"The reader's dim number doesn't match the output number.");
ctx->SetOutputsDim("Out", reader_dims);
}
};
class ReadInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
std::string reader_name = op_desc.Input("Reader")[0];
std::vector<std::string> out_names = op_desc.Output("Out");
framework::VarDesc* reader = block->FindVarRecursive(reader_name);
auto dtypes = reader->GetDataTypes();
PADDLE_ENFORCE_EQ(dtypes.size(), out_names.size());
for (size_t i = 0; i < dtypes.size(); ++i) {
framework::VarDesc& out = block->FindRecursiveOrCreateVar(out_names[i]);
out.SetType(framework::proto::VarDesc::LOD_TENSOR);
out.SetDataType(dtypes[i]);
}
}
};
class ReadOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
void Run(const framework::Scope& scope,
const platform::Place& dev_place) const override {
framework::ReaderHolder* reader =
scope.FindVar(Input("Reader"))->GetMutable<framework::ReaderHolder>();
if (!reader->HasNext()) {
reader->ReInit();
PADDLE_ENFORCE(
reader->HasNext(),
"Reader can not read the next data even it has been re-initialized.");
}
std::vector<std::string> out_arg_names = Outputs("Out");
std::vector<framework::LoDTensor> ins;
reader->ReadNext(&ins);
PADDLE_ENFORCE_EQ(ins.size(), out_arg_names.size());
for (size_t i = 0; i < ins.size(); ++i) {
auto* out =
scope.FindVar(out_arg_names[i])->GetMutable<framework::LoDTensor>();
out->ShareDataWith(ins[i]);
out->set_lod(ins[i].lod());
}
}
};
class ReadOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ReadOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(op_proto, op_checker) {
AddInput("Reader", "(ReaderHolder) The executed reader.");
AddOutput("Out", "(LoDTensor) The output data.").AsDuplicable();
AddComment(R"DOC(
Read Operator
Execute a given reader once and output data.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(read, ops::ReadOp, ops::ReadInferShape, ops::ReadOpMaker,
paddle::framework::EmptyGradOpMaker, ops::ReadInferVarType);
...@@ -217,8 +217,6 @@ void BindVarDsec(py::module &m) { ...@@ -217,8 +217,6 @@ void BindVarDsec(py::module &m) {
.def("set_shapes", &VarDesc::SetShapes) .def("set_shapes", &VarDesc::SetShapes)
.def("set_dtype", &VarDesc::SetDataType) .def("set_dtype", &VarDesc::SetDataType)
.def("set_dtypes", &VarDesc::SetDataTypes) .def("set_dtypes", &VarDesc::SetDataTypes)
.def("set_tensor_num", &VarDesc::SetTensorDescNum)
.def("tensor_num", &VarDesc::GetTensorDescNum)
.def("shape", &VarDesc::GetShape, py::return_value_policy::reference) .def("shape", &VarDesc::GetShape, py::return_value_policy::reference)
.def("shapes", &VarDesc::GetShapes, py::return_value_policy::reference) .def("shapes", &VarDesc::GetShapes, py::return_value_policy::reference)
.def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference) .def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import numpy as np
prog = fluid.framework.Program()
block = prog.current_block()
random_reader = block.create_var(
type=fluid.core.VarDesc.VarType.READER, name="RandomDataGenerator")
random_reader.desc.set_lod_levels([0, 0])
create_random_data_generator_op = block.append_op(
type="create_random_data_generator",
outputs={"Out": random_reader},
attrs={
"shape_concat": [1, 2, 1, 1],
"ranks": [2, 2],
"min": 0.0,
"max": 1.0
})
out1 = block.create_var(
type=fluid.core.VarDesc.VarType.LOD_TENSOR,
name="Out1",
shape=[10, 2],
dtype="float32",
lod_level=1)
out2 = block.create_var(
type=fluid.core.VarDesc.VarType.LOD_TENSOR,
name="Out2",
shape=[10, 1],
dtype="float32",
lod_level=1)
read_op = block.append_op(
type="read",
inputs={"Reader": random_reader},
outputs={"Out": [out1, out2]})
place = fluid.CPUPlace()
exe = fluid.Executor(place)
[res1, res2] = exe.run(prog, fetch_list=[out1, out2])
if len(res1) == 0 or len(res2) == 0:
exit(1)
exit(0)
...@@ -120,7 +120,6 @@ class TestVarDesc(unittest.TestCase): ...@@ -120,7 +120,6 @@ class TestVarDesc(unittest.TestCase):
block = program_desc.block(0) block = program_desc.block(0)
var = block.var('my_reader') var = block.var('my_reader')
var.set_type(core.VarDesc.VarType.READER) var.set_type(core.VarDesc.VarType.READER)
var.set_tensor_num(3)
src_shapes = [[2, 3, 3], [4, 5], [6, 7, 8, 9]] src_shapes = [[2, 3, 3], [4, 5], [6, 7, 8, 9]]
var.set_shapes(src_shapes) var.set_shapes(src_shapes)
res_shapes = var.shapes() res_shapes = var.shapes()
...@@ -141,7 +140,6 @@ class TestVarDesc(unittest.TestCase): ...@@ -141,7 +140,6 @@ class TestVarDesc(unittest.TestCase):
block = program_desc.block(0) block = program_desc.block(0)
var = block.var('my_reader') var = block.var('my_reader')
var.set_type(core.VarDesc.VarType.READER) var.set_type(core.VarDesc.VarType.READER)
var.set_tensor_num(3)
src_types = [ src_types = [
core.DataType.INT32, core.DataType.FP64, core.DataType.FP32 core.DataType.INT32, core.DataType.FP64, core.DataType.FP32
] ]
...@@ -154,7 +152,6 @@ class TestVarDesc(unittest.TestCase): ...@@ -154,7 +152,6 @@ class TestVarDesc(unittest.TestCase):
block = program_desc.block(0) block = program_desc.block(0)
var = block.var('my_reader') var = block.var('my_reader')
var.set_type(core.VarDesc.VarType.READER) var.set_type(core.VarDesc.VarType.READER)
var.set_tensor_num(3)
src_types = [3, 1, 2] src_types = [3, 1, 2]
var.set_lod_levels(src_types) var.set_lod_levels(src_types)
self.assertEqual(src_types, var.lod_levels()) self.assertEqual(src_types, var.lod_levels())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册