From 810a33c8bdebb9c3e3064a4997b43ecf4e47e7f0 Mon Sep 17 00:00:00 2001 From: Youwei Song Date: Wed, 11 Sep 2019 12:51:45 +0800 Subject: [PATCH] fix dygraph partitial backward problem (#19625) * fix dygraph partitial backward problem, test=develop * add unittest, fix ClearGradient. test=develop * add filter and error in python side, test=develop * rebase develop, test=develop * bug fix for list equals in py3.5, test=develop * bug fix for list equals, test=develop --- .../test_imperative_partitial_backward.py | 53 +++++++++++++++++++ 1 file changed, 53 insertions(+) create mode 100644 python/paddle/fluid/tests/unittests/test_imperative_partitial_backward.py diff --git a/python/paddle/fluid/tests/unittests/test_imperative_partitial_backward.py b/python/paddle/fluid/tests/unittests/test_imperative_partitial_backward.py new file mode 100644 index 00000000000..c6a2ad9e3d5 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_imperative_partitial_backward.py @@ -0,0 +1,53 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import paddle.fluid as fluid +import numpy as np + + +class TestImperativePartitialBackward(unittest.TestCase): + def test_partitial_backward(self): + with fluid.dygraph.guard(): + x = np.random.randn(2, 4, 5).astype("float32") + x = fluid.dygraph.to_variable(x) + fc1 = fluid.dygraph.FC("fc1", 10, num_flatten_dims=2) + fc2 = fluid.dygraph.FC("fc2", 10, num_flatten_dims=2) + + y = fc1(x[:, :2]) + z = fc2(x[:, 2:]) + loss = fluid.layers.reduce_mean(y) + loss.backward() + + for param in fc1.parameters(): + self.assertIsNotNone(param._ivar._grad_ivar()) + + for param in fc2.parameters(): + self.assertIsNone(param._ivar._grad_ivar()) + + optimizer = fluid.optimizer.AdamOptimizer() + _, params_grads = optimizer.minimize(loss) + + self.assertListEqual( + sorted([p.name for p in fc1.parameters()]), + sorted([p_g[0].name for p_g in params_grads])) + + fc1.clear_gradients() + fc2.clear_gradients() + + +if __name__ == '__main__': + unittest.main() -- GitLab