From 7f1d6c5a7500bc590936a94a18cc3e6bf1a4fe8a Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Thu, 1 Sep 2016 02:34:42 +0000 Subject: [PATCH] Fix some documentations. ISSUE=4611579 git-svn-id: https://svn.baidu.com/idl/trunk/paddle@1473 1ad973e4-5ce8-4261-8a94-b56d1f490c56 --- doc/CMakeLists.txt | 4 +- .../image_classification.md | 2 +- doc/demo/imagenet_model/resnet_model.md | 9 +- doc/ui/data_provider/index.rst | 2 +- doc/ui/data_provider/pydataprovider2.rst | 19 ++- .../paddle/trainer_config_helpers/layers.py | 130 +++++++++--------- 6 files changed, 83 insertions(+), 83 deletions(-) diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt index b8ccfc6be5d..770fb01b2a3 100644 --- a/doc/CMakeLists.txt +++ b/doc/CMakeLists.txt @@ -45,5 +45,5 @@ sphinx_add_target(paddle_docs ${SPHINX_HTML_DIR}) add_dependencies(paddle_docs - gen_proto_py - paddle_doxygen_docs) \ No newline at end of file + gen_proto_py) + #paddle_doxygen_docs) diff --git a/doc/demo/image_classification/image_classification.md b/doc/demo/image_classification/image_classification.md index 44cf50dc20c..29cfc99702c 100644 --- a/doc/demo/image_classification/image_classification.md +++ b/doc/demo/image_classification/image_classification.md @@ -173,7 +173,7 @@ python -m paddle.utils.plotcurve -i $log > plot.png - The script `plotcurve.py` requires the python module of `matplotlib`, so if it fails, maybe you need to install `matplotlib`. -After training finishes, the training and testing error curve will be saved to `plot.png` using `plotcurve.py` script. An example of the plot is shown below: +After training finishes, the training and testing error curves will be saved to `plot.png` using `plotcurve.py` script. An example of the plot is shown below:
![Training and testing curves.](./plot.png)
diff --git a/doc/demo/imagenet_model/resnet_model.md b/doc/demo/imagenet_model/resnet_model.md index 76dddd1ec06..2e5c7f32443 100644 --- a/doc/demo/imagenet_model/resnet_model.md +++ b/doc/demo/imagenet_model/resnet_model.md @@ -1,6 +1,6 @@ # Model Zoo - ImageNet # -[ImageNet](http://www.image-net.org/) is a popular dataset for generic object classification. This tutorial provided convolutional neural network(CNN) models for ImageNet. +[ImageNet](http://www.image-net.org/) is a popular dataset for generic object classification. This tutorial provides convolutional neural network(CNN) models for ImageNet. ## ResNet Introduction @@ -48,11 +48,11 @@ We present three ResNet models, which are converted from the models provided by ## ResNet Model -See ```demo/model_zoo/resnet/resnet.py```. This confgiure contains network of 50, 101 and 152 layers. You can specify layer number by adding argument like this ```--config_args=layer_num=50``` in command line arguments. +See ```demo/model_zoo/resnet/resnet.py```. This config contains network of 50, 101 and 152 layers. You can specify layer number by adding argument like ```--config_args=layer_num=50``` in command line arguments. ### Network Visualization -You can get a diagram of ResNet network by running the following command. The script generates dot file and then converts dot file to PNG file, which uses installed draw_dot tool in our server. If you can not access the server, just install graphviz to convert dot file. +You can get a diagram of ResNet network by running the following commands. The script generates dot file and then converts dot file to PNG file, which uses installed draw_dot tool in our server. If you can not access the server, just install graphviz to convert dot file. ``` cd demo/model_zoo/resnet @@ -190,8 +190,7 @@ Second, specify layers to extract features in `Outputs()` of `resnet.py`. For ex Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn") ``` -Third, specify model path and output directory in `extract_fea_c++.sh -`, and then run following commands +Third, specify model path and output directory in `extract_fea_c++.sh`, and then run the following commands. ``` cd demo/model_zoo/resnet diff --git a/doc/ui/data_provider/index.rst b/doc/ui/data_provider/index.rst index db890c2ab1c..e702b1a7e92 100644 --- a/doc/ui/data_provider/index.rst +++ b/doc/ui/data_provider/index.rst @@ -10,7 +10,7 @@ customized, with sacrificing the efficiency only a little. This is extremly useful when you have to dynamically generate certain kinds of data according to, for example, the training performance. -Besides, users also can also customize a C++ :code:`DataProvider` for a more +Besides, users also can customize a C++ :code:`DataProvider` for a more complex usage, or for a higher efficiency. The following parameters are required to define in the PaddlePaddle network diff --git a/doc/ui/data_provider/pydataprovider2.rst b/doc/ui/data_provider/pydataprovider2.rst index c4897a7bfc9..94472ad0d8c 100644 --- a/doc/ui/data_provider/pydataprovider2.rst +++ b/doc/ui/data_provider/pydataprovider2.rst @@ -17,10 +17,10 @@ how to write a simple PyDataProvider. MNIST is a handwriting classification data set. It contains 70,000 digital grayscale images. Labels of the training sample range from 0 to 9. All the -images have been size-normalized and centered into images with a same size +images have been size-normalized and centered into images with the same size of 28 x 28 pixels. -A small part of the original data as an example can be found in the path below: +A small part of the original data as an example is shown as below: .. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_train.txt @@ -31,10 +31,9 @@ Just write path of the above data into train.list. It looks like this: .. literalinclude:: ../../../doc_cn/ui/data_provider/train.list -The corresponding dataprovider can be found in the path below: +The corresponding dataprovider is shown as below: .. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_provider.py - : linenos: The first line imports PyDataProvider2 package. The main function is the process function, that has two parameters. @@ -45,8 +44,8 @@ This parameter is passed to the process function by PaddlePaddle. :code:`@provider` is a Python `Decorator `_ . It sets some properties to DataProvider, and constructs a real PaddlePaddle -DataProvider from a very sample user implemented python function. It does not -matter if you are not familiar with `Decorator`_. You can keep it sample by +DataProvider from a very simple user implemented python function. It does not +matter if you are not familiar with `Decorator`_. You can keep it simple by just taking :code:`@provider` as a fixed mark above the provider function you implemented. @@ -59,9 +58,9 @@ document of `input_types`_ for more details. The process method is the core part to construct a real DataProvider in PaddlePaddle. It implements how to open the text file, how to read one sample -from the original text file, converted them into `input_types`_, and give them +from the original text file, convert them into `input_types`_, and give them back to PaddlePaddle process at line 23. -Note that data yields by the process function must follow a same order that +Note that data yielded by the process function must follow the same order that `input_types`_ are defined. @@ -111,7 +110,7 @@ The corresponding data provider can be found in the path below: .. literalinclude:: ../../../doc_cn/ui/data_provider/sentimental_provider.py -This data provider for sequential model is a little bit complex than that +This data provider for sequential model is a little more complex than that for MINST dataset. A new initialization method is introduced here. The method :code:`on_init` is configured to DataProvider by :code:`@provider`'s @@ -243,7 +242,7 @@ parameters which your init_hook does not use. cache +++++ DataProvider provides two simple cache strategy. They are -* CacheType.NO_CACHE means do not cache any data, then data is read runtime by +* CacheType.NO_CACHE means do not cache any data, then data is read at runtime by the user implemented python module every pass. * CacheType.CACHE_PASS_IN_MEM means the first pass reads data by the user implemented python module, and the rest passes will directly read data from diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 6e7964c12c1..44e6a31364c 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -613,7 +613,7 @@ def data_layer(name, size, layer_attr=None): :type size: int :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute. - :return: Layer Output Object. + :return: LayerOutput object. :rtype: LayerOutput """ Layer(type=LayerType.DATA, name=name, size=size, @@ -640,7 +640,7 @@ def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None): :type param_attr: ParameterAttribute|None :param layer_attr: Extra layer Config. Default is None. :type layer_attr: ExtraLayerAttribute|None - :return: Embedding Layer output + :return: LayerOutput object. :rtype: LayerOutput """ with mixed_layer(name=name, size=size, act=LinearActivation(), @@ -692,7 +692,7 @@ def fc_layer(input, size, act=None, name=None, :type bias_attr: ParameterAttribute|None|Any :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None - :return: Layer Name. + :return: LayerOutput object. :rtype: LayerOutput """ if isinstance(input, LayerOutput): @@ -756,7 +756,7 @@ def pooling_layer(input, pooling_type=None, name=None, bias_attr=None, :type bias_attr: ParameterAttribute|None|False :param layer_attr: The Extra Attributes for layer, such as dropout. :type layer_attr: ExtraLayerAttribute|None - :return: layer name. + :return: LayerOutput object. :rtype: LayerType """ extra_dict = dict() @@ -842,7 +842,7 @@ def lstmemory(input, name=None, reverse=False, act=None, :type param_attr: ParameterAttribute|None|False :param layer_attr: Extra Layer attribute :type layer_attr: ExtraLayerAttribute|None - :return: Layer name. + :return: LayerOutput object. :rtype: LayerOutput """ @@ -943,7 +943,7 @@ def grumemory(input, name=None, reverse=False, act=None, :type param_attr: ParameterAttribute|None|False :param layer_attr: Extra Layer attribute :type layer_attr: ExtraLayerAttribute|None - :return: Layer name. + :return: LayerOutput object. :rtype: LayerOutput """ @@ -977,7 +977,7 @@ def last_seq(input, name=None, agg_level=AggregateLevel.EACH_TIMESTEP, :type input: LayerOutput :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ Layer( @@ -1005,7 +1005,7 @@ def first_seq(input, name=None, agg_level=AggregateLevel.EACH_TIMESTEP, :type input: LayerOutput :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ Layer( @@ -1055,7 +1055,7 @@ def expand_layer(input, expand_as, :type expand_level: ExpandLevel :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name + :return: LayerOutput object. :rtype: LayerOutput """ @@ -1102,7 +1102,7 @@ def interpolation_layer(input, weight, name=None, layer_attr=None): :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, list) or isinstance(input, tuple) @@ -1147,7 +1147,7 @@ def power_layer(input, weight, name=None, layer_attr=None): :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ assert weight.size == 1 @@ -1187,7 +1187,7 @@ def scaling_layer(input, weight, name=None, layer_attr=None): :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ assert weight.size == 1 @@ -1224,7 +1224,7 @@ def trans_layer(input, name=None, layer_attr=None): :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ Layer( @@ -1244,8 +1244,8 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None): Cosine Similarity Layer. The cosine similarity equation is here. .. math:: - similarity = cos(\\theta) = {\\mathbf{A} \\cdot \\mathbf{B} - \\over \\|\\mathbf{A}\\| \\|\\mathbf{B}\\|} + similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b} + \\over \\|\\mathbf{b}\\| \\|\\mathbf{b}\\|} And the input dimension is :math:`a \in R^M`, :math:`b \in R^{MN}`. The similarity will be calculated N times by step M. The output dimension is @@ -1263,7 +1263,7 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None): :type size: int :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ Layer( @@ -1308,7 +1308,7 @@ def hsigmoid(input, label, num_classes, name=None, bias_attr=None, layer_attr=No :type bias_attr: ParameterAttribute|False :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ if isinstance(input, LayerOutput): @@ -1400,7 +1400,7 @@ def img_conv_layer(input, filter_size, num_filters, :type shared_biases: bool :param layer_attr: Layer Extra Attribute. :type layer_attr: ExtraLayerAttribute - :return: Layer output. + :return: LayerOutput object. :rtype: LayerOutput """ if num_channels is None: @@ -1464,7 +1464,8 @@ def img_pool_layer(input, pool_size, name=None, :type start: int :param layer_attr: Extra Layer attribute. :type layer_attr: ExtraLayerAttribute - :return: LayerOutput + :return: LayerOutput object. + :rtype: LayerOutput """ if num_channels is None: assert input.num_filters is not None @@ -1514,29 +1515,30 @@ def __img_norm_layer__(name, input, size, norm_type, scale, power, @wrap_name_default("crmnorm") @layer_support() -def img_cmrnorm_layer(input, size, scale, power, name=None, num_channels=None, +def img_cmrnorm_layer(input, size, scale=0.0128, power=0.75, + name=None, num_channels=None, blocked=0, layer_attr=None): """ Convolution cross-map-response-normalize layer. - - TODO(yuyang18): Add reference and equations, to explain why cmr is work? + The details please refer to + `Alex's paper `_. :param name: layer name. - :type name: basestring + :type name: None|basestring :param input: layer's input. :type input: LayerOutput :param size: cross map response size. :type size: int - :param scale: TODO(yuyang18) + :param scale: The hyper-parameter. :type scale: float - :param power: TODO(yuyang18) + :param power: The hyper-parameter. :type power: float :param num_channels: input layer's filers number or channels. If num_channels is None, it will be set automatically. - :param blocked: TODO(yuyang18) + :param blocked: namely normalize in number of blocked feature maps. :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute - :return: Layer's output + :return: LayerOutput object. :rtype: LayerOutput """ return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale, @@ -1548,19 +1550,19 @@ def img_cmrnorm_layer(input, size, scale, power, name=None, num_channels=None, def img_rnorm_layer(input, size, scale, power, name=None, num_channels=None, layer_attr=None): """ - TODO(yuyang18): add comments - - TODO(yuyang18): Why it is always not implemented whenever use_gpu or not? + Normalize the input in local region, namely response normalization + across feature maps. - - :param name: - :param input: + :param name: The name of this layer. + :rtype name: None|basestring + :param input: The input of this layer. :param size: :param scale: :param power: :param num_channels: :param layer_attr: - :return: + :return: LayerOutput object. + :rtype: LayerOutput """ return __img_norm_layer__(name, input, size, 'rnorm', scale, power, num_channels, 0, layer_attr) @@ -1637,7 +1639,7 @@ def batch_norm_layer(input, act=None, name=None, num_channels=None, :math:`runningMean = newMean*(1-factor) + runningMean*factor` :type moving_average_fraction: float. - :return: Layer's output + :return: LayerOutput object. :rtype: LayerOutput """ if not isinstance(act, ReluActivation): @@ -1701,7 +1703,7 @@ def sum_to_one_norm_layer(input, name=None, layer_attr=None): :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ Layer( @@ -1761,7 +1763,7 @@ def addto_layer(input, act=None, name=None, bias_attr=None, :type bias_attr: ParameterAttribute|bool :param layer_attr: Extra Layer attribute. :type layer_attr: ExtraLayerAttribute - :return: layer's output + :return: LayerOutput object. :rtype: LayerOutput """ num_filters = None @@ -1803,7 +1805,7 @@ def concat_layer(input, act=None, name=None, layer_attr=None): :type act: BaseActivation :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute - :return: layer's output + :return: LayerOutput object. :rtype: LayerOutput """ @@ -1901,7 +1903,7 @@ def memory(name, size, is_seq=False, boot_layer=None, :type boot_bias_active_type: BaseActivation :param boot_with_const_id: boot layer's id. :type boot_with_const_id: int - :return: Memory layer's output + :return: LayerOutput object which is a memory. :rtype: LayerOutput """ if boot_bias_active_type is None: @@ -1993,7 +1995,7 @@ def lstm_step_layer(input, state, size, act=None, :type bias_attr: ParameterAttribute :param layer_attr: layer's extra attribute. :type layer_attr: ExtraLayerAttribute - :return: lstm step's layer output + :return: LayerOutput object. :rtype: LayerOutput """ Layer( @@ -2032,7 +2034,7 @@ def gru_step_layer(input, output_mem, size=None, act=None, :param gate_act: :param bias_attr: :param layer_attr: - :return: + :return: LayerOutput object. :rtype: LayerOutput """ assert input.size % 3 == 0 @@ -2073,7 +2075,7 @@ def get_output_layer(input, arg_name, name=None, layer_attr=None): :param arg_name: Output name from input. :type arg_name: basestring :param layer_attr: Layer's extra attribute. - :return: Layer's output + :return: LayerOutput object. :rtype: LayerOutput """ # GetOutputLayer @@ -2107,7 +2109,7 @@ def recurrent_layer(input, act=None, bias_attr=None, :param param_attr: :param name: :param layer_attr: - :return: + :return: LayerOutput object. """ Layer(name=name, type=LayerType.RECURRENT_LAYER, @@ -2201,7 +2203,7 @@ def recurrent_group(step, input, reverse=False, name=None): :param reverse: If reverse is set true, the recurrent unit will process the input sequence in a reverse order. :type reverse: bool - :return: Layer output object + :return: LayerOutput object. :rtype: LayerOutput """ model_type('recurrent_nn') @@ -2319,7 +2321,7 @@ def maxid_layer(input, name=None, layer_attr=None): :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ @@ -2356,7 +2358,7 @@ def eos_layer(input, eos_id, name=None, layer_attr=None): :type eos_id: int :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ Layer(name=name, @@ -2528,7 +2530,7 @@ def regression_cost(input, label, cost='square_error', name=None): :param input: Network prediction. :param label: Data label. :param cost: Cost method. - :return: layer name. + :return: LayerOutput object. """ Layer(inputs=[Input(input.name), Input(label.name)], type=cost, name=name) return LayerOutput( @@ -2552,7 +2554,7 @@ def classification_cost(input, label, name=None, :param cost: cost method. :type cost: basestring :param evaluator: Evaluator method. - :return: layer name. + :return: LayerOutput object. :rtype: LayerOutput """ assert input.layer_type != LayerType.DATA @@ -2667,7 +2669,7 @@ def conv_shift_layer(input, name=None): :type name: basestring :param input: Input layer. :type input: LayerOutput|list|tuple. - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, list) or isinstance(input, tuple) @@ -2722,7 +2724,7 @@ def tensor_layer(input, size, act=None, name=None, :type bias_attr: ParameterAttribute|None|Any :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, list) or isinstance(input, tuple) @@ -2816,7 +2818,7 @@ def selective_fc_layer(input, size, act=None, name=None, :type bias_attr: ParameterAttribute|None|Any :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ if isinstance(input, LayerOutput): @@ -2867,7 +2869,7 @@ def sampling_id_layer(input, name=None): :type input: LayerOutput :param name: The Layer Name. :type name: basestring - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ Layer( @@ -2901,7 +2903,7 @@ def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0): :type slope: float. :param intercept: the offset. :type intercept: float. - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ Layer( @@ -2946,7 +2948,7 @@ def convex_comb_layer(input, size, name=None): :type size: int :param name: The Layer Name. :type name: basestring - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ @@ -3016,7 +3018,7 @@ def block_expand_layer(input, :type padding_y: int :param name: The name of this layer, which can not specify. :type name: None|basestring. - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ Layer(name=name, @@ -3061,7 +3063,7 @@ def ctc_layer(input, label, size, name=None, norm_by_times=False): :type name: string|None :param norm_by_times: Whether to normalization by times. False by default. :type norm_by_times: bool - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) @@ -3102,7 +3104,7 @@ def crf_layer(input, label, size, weight=None, param_attr=None, name=None): :type param_attr: ParameterAttribute :param name: The name of this layers. It is not necessary. :type name: None|basestring - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) @@ -3144,7 +3146,7 @@ def crf_decoding_layer(input, size, label=None, param_attr=None, name=None): :type param_attr: ParameterAttribute :param name: The name of this layers. It is not necessary. :type name: None|basestring - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ @@ -3213,7 +3215,7 @@ def rank_cost(left, right, lable, weight=None, name=None, coeff=1.0): :type name: None|basestring :param coeff: The coefficient affects the gradient in the backward. :type coeff: float - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ assert left.size == 1 @@ -3270,7 +3272,7 @@ def lambda_cost(input, score, NDCG_num=5, max_sort_size=-1, coeff=1.0): :type name: None|basestring :param coeff: The coefficient affects the gradient in the backward. :type coeff: float - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ Layer(name=name, @@ -3302,7 +3304,7 @@ def cross_entropy(input, label, name=None, coeff=1.0): :type name: None|basestring. :param coeff: The coefficient affects the gradient in the backward. :type coeff: float. - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput. """ @@ -3335,7 +3337,7 @@ def cross_entropy_with_selfnorm(input, label, name=None, coeff=1.0, :type coeff: float. :param softmax_selfnorm_alpha: The scale factor affects the cost. :type softmax_selfnorm_alpha: float. - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput. """ Layer(name=name, @@ -3368,7 +3370,7 @@ def huber_cost(input, label, name=None, coeff=1.0): :type name: None|basestring. :param coeff: The coefficient affects the gradient in the backward. :type coeff: float. - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput. """ @@ -3398,7 +3400,7 @@ def multi_binary_label_cross_entropy(input, label, name=None, coeff=1.0): :type name: None|basestring :param coeff: The coefficient affects the gradient in the backward. :type coeff: float - :return: a object of LayerOutput. + :return: LayerOutput object. :rtype: LayerOutput """ -- GitLab