Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
7de3f81c
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7de3f81c
编写于
10月 28, 2021
作者:
B
Bo Liu
提交者:
GitHub
10月 28, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add lazy distributed launch with rank mapping (#36570)
上级
ff3018d7
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
205 addition
and
16 deletion
+205
-16
python/paddle/distributed/fleet/launch.py
python/paddle/distributed/fleet/launch.py
+44
-14
python/paddle/distributed/fleet/launch_utils.py
python/paddle/distributed/fleet/launch_utils.py
+95
-2
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/test_fleet_launch_rank_mapping.sh
...e/fluid/tests/unittests/test_fleet_launch_rank_mapping.sh
+64
-0
未找到文件。
python/paddle/distributed/fleet/launch.py
浏览文件 @
7de3f81c
...
...
@@ -65,6 +65,7 @@ import os
import
time
import
six
import
copy
import
argparse
from
argparse
import
ArgumentParser
,
REMAINDER
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -162,6 +163,31 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
type
=
str
,
default
=
"127.0.0.1"
,
help
=
"Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17.."
)
collective_group
.
add_argument
(
"--rank_mapping_file"
,
type
=
argparse
.
FileType
(
'r'
),
default
=
sys
.
stdin
,
help
=
"This rank mapping information in json format is used specifically "
"for lazy launch for auto parallel. Some of the ranks in each node "
"may not be used, and the indices of rank should be kept the same "
"as the indices of sub-task splited by auto parallel. "
" { "
"
\"
ip_ranks
\"
: [ "
" { "
"
\"
ip
\"
:
\"
127.0.0.1
\"
, "
"
\"
ranks
\"
: [0,1] "
" }, "
" { "
"
\"
ip
\"
:
\"
127.0.0.2
\"
, "
"
\"
ranks
\"
: [2,3,4] "
" } "
" ] "
" } "
)
collective_group
.
add_argument
(
"--enable_auto_mapping"
,
type
=
bool
,
default
=
False
,
help
=
"Set true to enable the lazy launch for auto-parallel scenario."
)
ps_group
=
parser
.
add_argument_group
(
"Parameter-Server Parameters"
)
# for parameter server
...
...
@@ -261,16 +287,20 @@ def launch_collective(args):
start_port
=
6170
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
if
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
# lazy launch for auto-parallel
if
args
.
enable_auto_mapping
==
True
:
cluster
,
pod
=
get_mapped_cluster_from_args
(
args
,
device_mode
)
else
:
# for ascend
if
device_mode
==
DeviceMode
.
ASCEND_NPU
:
cluster
,
pod
=
ascend_utils
.
get_cloud_cluster
(
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
device_mode
=
device_mode
,
start_port
=
start_port
)
elif
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
cluster
,
pod
=
get_cluster_from_args
(
args
,
device_mode
,
...
...
python/paddle/distributed/fleet/launch_utils.py
浏览文件 @
7de3f81c
...
...
@@ -27,6 +27,7 @@ import socket
import
warnings
import
six
import
struct
import
json
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -527,8 +528,9 @@ def start_local_trainers(cluster,
pretty_print_envs
(
proc_env
,
(
"Distributed Envs"
,
"Value"
))))
logger
.
info
(
"details abouts PADDLE_TRAINER_ENDPOINTS can be found in {}/endpoints.log, and detail running logs maybe found in {}/workerlog.0"
.
format
(
log_dir
,
log_dir
))
"details about PADDLE_TRAINER_ENDPOINTS can be found in "
"{}/endpoints.log, and detail running logs maybe found in "
"{}/workerlog.0"
.
format
(
log_dir
,
log_dir
))
fn
=
None
pre_fn
=
None
if
os
.
name
==
'nt'
else
os
.
setsid
if
log_dir
is
not
None
:
...
...
@@ -805,6 +807,97 @@ def cloud_ps_heter_env_set(args):
pretty_print_envs
(
environs
)))
def
get_mapped_cluster
(
node_ips
,
node_ip
,
trainer_endpoints
,
device_mode
,
node_mapping_ranks
):
assert
type
(
trainer_endpoints
)
is
list
,
"trainer_endpoints must be list"
assert
device_mode
==
DeviceMode
.
GPU
,
\
"Only support get mapped cluster for gpu now."
cluster
=
Cluster
(
hdfs
=
None
)
for
node_rank
,
ip
in
enumerate
(
node_ips
):
pod
=
Pod
()
pod
.
rank
=
node_rank
pod
.
addr
=
ip
pod
.
device_mode
=
device_mode
cur_node_endpoints
=
trainer_endpoints
[
node_rank
]
# choose rank from global mapped ranks and set it to the trainer.
ranks_per_node
=
node_mapping_ranks
[
node_rank
]
for
i
in
range
(
len
(
ranks_per_node
)):
trainer
=
Trainer
()
# change global rank(mapped) to local rank within each node.
# e.g. mapped ranks of node: 3,4,7 -> 0,1,2
local_rank
=
ranks_per_node
.
index
(
ranks_per_node
[
i
])
trainer
.
accelerators
.
append
(
local_rank
)
trainer
.
endpoint
=
"%s"
%
(
cur_node_endpoints
[
i
])
# global mapped ranks
trainer
.
rank
=
ranks_per_node
[
i
]
pod
.
trainers
.
append
(
trainer
)
cluster
.
pods
.
append
(
pod
)
pod_rank
=
node_ips
.
index
(
node_ip
)
return
cluster
,
cluster
.
pods
[
pod_rank
]
def
get_mapped_cluster_from_args
(
args
,
device_mode
):
assert
device_mode
==
DeviceMode
.
GPU
,
\
"Only support get mapped cluster for gpu now."
gpus_num
=
fluid
.
core
.
get_cuda_device_count
()
# parse ip-ranks json file
json_data
=
None
with
args
.
rank_mapping_file
as
json_file
:
json_data
=
json
.
load
(
json_file
)
node_ips
=
[]
node_ranks_mapping
=
[]
ip_ranks_list
=
json_data
[
'ip_ranks'
]
for
ip_ranks
in
ip_ranks_list
:
node_ips
.
append
(
ip_ranks
[
'ip'
])
node_ranks_mapping
.
append
(
ip_ranks
[
'ranks'
])
if
len
(
node_ips
)
==
1
:
node_ip
=
node_ips
[
0
]
else
:
if
args
.
host
:
node_ip
=
args
.
host
else
:
_
,
node_ip
=
get_host_name_ip
()
assert
node_ip
in
node_ips
,
\
"Can't find your local ip {%s} in node_ips: {%s}"
%
(
node_ip
,
node_ips
)
node_rank
=
node_ips
.
index
(
node_ip
)
assert
len
(
node_ranks_mapping
[
node_rank
])
<=
gpus_num
,
\
"number of ranks mapped to one node should not exceed the avaiable ones."
assert
len
(
node_ranks_mapping
)
==
len
(
node_ips
),
\
"ranks length should be equal to ips length."
logger
.
debug
(
"parsed from args: node_ips:{} node_ip:{} "
"node_rank:{} node_ranks_mapping:{}"
.
format
(
node_ips
,
node_ip
,
node_rank
,
node_ranks_mapping
[
node_rank
]))
# NOTE: there are different number of global mapped ranks on each node.
free_ports
=
[]
trainer_endpoints
=
[]
for
ip
in
node_ips
:
node_rank
=
node_ips
.
index
(
ip
)
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
int
(
os
.
environ
.
get
(
'FLAGS_START_PORT'
))
free_ports
=
[
x
for
x
in
range
(
start_port
,
start_port
+
len
(
node_ranks_mapping
[
node_rank
]))
]
else
:
free_ports
=
find_free_ports
(
len
(
node_ranks_mapping
[
node_rank
]))
trainer_endpoints
.
append
([
"%s:%d"
%
(
ip
,
port
)
for
port
in
free_ports
])
return
get_mapped_cluster
(
node_ips
,
node_ip
,
trainer_endpoints
,
device_mode
,
node_ranks_mapping
)
class
ParameterServerLauncher
(
object
):
def
__init__
(
self
,
args
,
distribute_mode
):
self
.
args
=
args
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
7de3f81c
...
...
@@ -58,6 +58,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_run_random_port)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_async
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_cloud
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_ascend
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_rank_mapping
)
list
(
APPEND MIXED_DIST_TEST_OPS test_ascend_group
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_nproc
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_api_input
)
...
...
@@ -655,6 +656,7 @@ if(WITH_DISTRIBUTE)
bash_test_modules
(
test_fleet_launch_async START_BASH test_fleet_launch_async.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_cloud START_BASH test_fleet_launch_cloud.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_nproc START_BASH test_fleet_launch_nproc.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_rank_mapping START_BASH test_fleet_launch_rank_mapping.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
if
(
WITH_ASCEND OR WITH_ASCEND_CL
)
bash_test_modules
(
test_fleet_launch_ascend START_BASH test_fleet_launch_ascend.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_ascend_group START_BASH test_ascend_group.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
...
...
python/paddle/fluid/tests/unittests/test_fleet_launch_rank_mapping.sh
0 → 100755
浏览文件 @
7de3f81c
#!/bin/bash
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
# use single node
echo
"begin test"
RANK_MAPPING_FILE_NAME
=
"rank_mapping_file.json"
cat
>
${
RANK_MAPPING_FILE_NAME
}
<<
EOF
{
"ip_ranks": [
{
"ip": "127.0.0.1",
"ranks": [0,1]
}
]
}
EOF
export
FLAGS_START_PORT
=
35789
distributed_args
=
"--rank_mapping_file
${
RANK_MAPPING_FILE_NAME
}
--enable_auto_mapping true --log_dir=testlog"
CUDA_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
multi_process.py fleetlaunchcloud_rank_mapping
str1
=
"selected_gpus:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790 trainers_num:2 current_endpoint:127.0.0.1:35789 trainer_id:0"
str2
=
"selected_gpus:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790 trainers_num:2 current_endpoint:127.0.0.1:35790 trainer_id:1"
file_0
=
"multi_process_fleetlaunchcloud_rank_mapping.check_0.log"
file_1
=
"multi_process_fleetlaunchcloud_rank_mapping.check_1.log"
echo
"paddlecloud params test"
if
grep
-q
"
$str1
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
if
grep
-q
"
$str2
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
# test async poll process
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
if
[
-f
$file_1
]
;
then
rm
$file_1
fi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录