Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
78910480
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
78910480
编写于
10月 13, 2019
作者:
Z
Zhang Ting
提交者:
Aurelius84
10月 13, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix conv_transpose's bug: compatible with Anylayout setting, test=develop (#20589)
上级
172e91c0
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
62 addition
and
62 deletion
+62
-62
paddle/fluid/operators/conv_transpose_op.cc
paddle/fluid/operators/conv_transpose_op.cc
+4
-4
paddle/fluid/operators/conv_transpose_op.h
paddle/fluid/operators/conv_transpose_op.h
+17
-17
paddle/fluid/operators/math/im2col.cc
paddle/fluid/operators/math/im2col.cc
+3
-3
paddle/fluid/operators/math/im2col_cfo_cpu.h
paddle/fluid/operators/math/im2col_cfo_cpu.h
+15
-15
paddle/fluid/operators/math/vol2col.cc
paddle/fluid/operators/math/vol2col.cc
+10
-10
paddle/fluid/operators/math/vol2col.cu
paddle/fluid/operators/math/vol2col.cu
+13
-13
未找到文件。
paddle/fluid/operators/conv_transpose_op.cc
浏览文件 @
78910480
...
@@ -64,7 +64,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -64,7 +64,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
"dimension should be the same."
);
"dimension should be the same."
);
const
int64_t
C
=
const
int64_t
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
in_dims
[
1
]
(
data_layout
!=
DataLayout
::
kNHWC
?
in_dims
[
1
]
:
in_dims
[
in_dims
.
size
()
-
1
]);
:
in_dims
[
in_dims
.
size
()
-
1
]);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
C
,
filter_dims
[
0
],
C
,
filter_dims
[
0
],
...
@@ -72,7 +72,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -72,7 +72,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
"be equal to the number of filter's channels."
);
"be equal to the number of filter's channels."
);
framework
::
DDim
in_data_dims
;
framework
::
DDim
in_data_dims
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
else
{
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
...
@@ -84,10 +84,10 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -84,10 +84,10 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
in_data_dims
,
strides
,
ksize
);
in_data_dims
,
strides
,
ksize
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
]});
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
]});
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
output_shape
.
push_back
(
filter_dims
[
1
]
*
groups
);
output_shape
.
push_back
(
filter_dims
[
1
]
*
groups
);
}
}
const
int
offset
=
(
data_layout
==
DataLayout
::
kNCHW
?
2
:
1
);
const
int
offset
=
(
data_layout
!=
DataLayout
::
kNHWC
?
2
:
1
);
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
auto
filter_extent
=
dilations
[
i
]
*
(
filter_dims
[
i
+
2
]
-
1
)
+
1
;
auto
filter_extent
=
dilations
[
i
]
*
(
filter_dims
[
i
+
2
]
-
1
)
+
1
;
auto
infer_shape
=
(
in_dims
[
i
+
offset
]
-
1
)
*
strides
[
i
]
-
auto
infer_shape
=
(
in_dims
[
i
+
offset
]
-
1
)
*
strides
[
i
]
-
...
...
paddle/fluid/operators/conv_transpose_op.h
浏览文件 @
78910480
...
@@ -176,7 +176,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -176,7 +176,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
framework
::
DDim
in_data_dims
;
framework
::
DDim
in_data_dims
;
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
else
{
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
...
@@ -198,7 +198,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -198,7 +198,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// col_shape_vec: {o_c/g, k_h, k_w, h, w} or {o_c/g, k_d, k_h, k_w, d, h, w}
// col_shape_vec: {o_c/g, k_h, k_w, h, w} or {o_c/g, k_d, k_h, k_w, d, h, w}
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
col_shape_vec
[
0
]
=
out_dims
[
1
]
/
groups
;
col_shape_vec
[
0
]
=
out_dims
[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
...
@@ -234,7 +234,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -234,7 +234,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// input matrix size: (i_c, h * w) or (i_c, d * h * w) for channel_first
// input matrix size: (i_c, h * w) or (i_c, d * h * w) for channel_first
// input matrix size: (h * w, i_c) or (d * h * w, i_c) for channel_last
// input matrix size: (h * w, i_c) or (d * h * w, i_c) for channel_last
DDim
input_matrix_shape
;
DDim
input_matrix_shape
;
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
input_matrix_shape
=
{
in_dims
[
1
],
col_matrix_shape
[
1
]};
input_matrix_shape
=
{
in_dims
[
1
],
col_matrix_shape
[
1
]};
}
else
{
}
else
{
input_matrix_shape
=
{
col_matrix_shape
[
1
],
in_dims
[
in_dims
.
size
()
-
1
]};
input_matrix_shape
=
{
col_matrix_shape
[
1
],
in_dims
[
in_dims
.
size
()
-
1
]};
...
@@ -242,7 +242,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -242,7 +242,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// filter size: (i_c, o_c/g * k_h * k_w) or (i_c, o_c/g * k_d * k_h * k_w)
// filter size: (i_c, o_c/g * k_h * k_w) or (i_c, o_c/g * k_d * k_h * k_w)
DDim
filter_matrix_shape
;
DDim
filter_matrix_shape
;
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
filter_matrix_shape
=
{
in_dims
[
1
],
col_matrix_shape
[
0
]};
filter_matrix_shape
=
{
in_dims
[
1
],
col_matrix_shape
[
0
]};
}
else
{
}
else
{
filter_matrix_shape
=
{
in_dims
[
in_dims
.
size
()
-
1
],
col_matrix_shape
[
0
]};
filter_matrix_shape
=
{
in_dims
[
in_dims
.
size
()
-
1
],
col_matrix_shape
[
0
]};
...
@@ -256,12 +256,12 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -256,12 +256,12 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
set_zero
(
dev_ctx
,
output
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
output
,
static_cast
<
T
>
(
0
));
int
in_step
=
int
in_step
=
(
data_layout
==
framework
::
DataLayout
::
kNCHW
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
?
static_cast
<
int
>
(
in_dims
[
1
])
/
groups
?
static_cast
<
int
>
(
in_dims
[
1
])
/
groups
:
static_cast
<
int
>
(
in_dims
[
in_dims
.
size
()
-
1
])
/
groups
);
:
static_cast
<
int
>
(
in_dims
[
in_dims
.
size
()
-
1
])
/
groups
);
int
out_step
=
int
out_step
=
(
data_layout
==
framework
::
DataLayout
::
kNCHW
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
?
static_cast
<
int
>
(
out_dims
[
1
])
/
groups
?
static_cast
<
int
>
(
out_dims
[
1
])
/
groups
:
static_cast
<
int
>
(
out_dims
[
out_dims
.
size
()
-
1
])
/
groups
);
:
static_cast
<
int
>
(
out_dims
[
out_dims
.
size
()
-
1
])
/
groups
);
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
DeviceContext
,
T
>
col2im
;
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
DeviceContext
,
T
>
col2im
;
...
@@ -284,14 +284,14 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -284,14 +284,14 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
int64_t
start
=
g
*
in_step
;
int64_t
start
=
g
*
in_step
;
int64_t
end
=
(
g
+
1
)
*
in_step
;
int64_t
end
=
(
g
+
1
)
*
in_step
;
int
axes
=
(
data_layout
==
framework
::
DataLayout
::
kNCHW
?
0
:
1
);
int
axes
=
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
?
0
:
1
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
in_slice
,
out_slice
;
Tensor
in_slice
,
out_slice
;
// col_matrix = filter_slice * input_slice
// col_matrix = filter_slice * input_slice
// of shape (o_c/g * k_h * k_w, h * w)
// of shape (o_c/g * k_h * k_w, h * w)
// or (o_c/g * k_d * k_h * k_w, d * h * w)
// or (o_c/g * k_d * k_h * k_w, d * h * w)
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
in_slice
=
input_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
in_slice
=
input_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
out_slice
=
output_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
out_slice
=
output_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
blas
.
MatMul
(
filter_slice
,
true
,
in_slice
,
false
,
static_cast
<
T
>
(
1.0
),
blas
.
MatMul
(
filter_slice
,
true
,
in_slice
,
false
,
static_cast
<
T
>
(
1.0
),
...
@@ -372,7 +372,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -372,7 +372,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
framework
::
DDim
in_data_dims
;
framework
::
DDim
in_data_dims
;
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
else
{
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
...
@@ -394,7 +394,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -394,7 +394,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// col_shape_vec: {o_c, k_h, k_w, h, w} or {o_c, k_d, k_h, k_w, d, h, w} for
// col_shape_vec: {o_c, k_h, k_w, h, w} or {o_c, k_d, k_h, k_w, d, h, w} for
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
col_shape_vec
[
0
]
=
out_grad_dims
[
1
];
col_shape_vec
[
0
]
=
out_grad_dims
[
1
];
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
...
@@ -421,7 +421,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -421,7 +421,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// input matrix size: (i_c, h * w) or (i_c, d * h * w) for channel_first
// input matrix size: (i_c, h * w) or (i_c, d * h * w) for channel_first
// input matrix size: (h * w, i_c) or (d * h * w, i_c) for channel_last
// input matrix size: (h * w, i_c) or (d * h * w, i_c) for channel_last
DDim
input_matrix_shape
;
DDim
input_matrix_shape
;
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
input_matrix_shape
=
{
in_dims
[
1
],
col_matrix_shape
[
1
]};
input_matrix_shape
=
{
in_dims
[
1
],
col_matrix_shape
[
1
]};
}
else
{
}
else
{
input_matrix_shape
=
{
col_matrix_shape
[
1
],
in_dims
[
in_dims
.
size
()
-
1
]};
input_matrix_shape
=
{
col_matrix_shape
[
1
],
in_dims
[
in_dims
.
size
()
-
1
]};
...
@@ -429,7 +429,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -429,7 +429,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// filter size: (i_c, o_c/g * k_h * k_w) or (i_c, o_c/g * k_d * k_h * k_w)
// filter size: (i_c, o_c/g * k_h * k_w) or (i_c, o_c/g * k_d * k_h * k_w)
DDim
filter_matrix_shape
;
DDim
filter_matrix_shape
;
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
filter_matrix_shape
=
{
in_dims
[
1
],
col_matrix_shape
[
0
]
/
groups
};
filter_matrix_shape
=
{
in_dims
[
1
],
col_matrix_shape
[
0
]
/
groups
};
}
else
{
}
else
{
filter_matrix_shape
=
{
in_dims
[
in_dims
.
size
()
-
1
],
filter_matrix_shape
=
{
in_dims
[
in_dims
.
size
()
-
1
],
...
@@ -438,7 +438,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -438,7 +438,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
int
in_step
=
int
in_step
=
(
data_layout
==
framework
::
DataLayout
::
kNCHW
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
?
static_cast
<
int
>
(
in_dims
[
1
])
/
groups
?
static_cast
<
int
>
(
in_dims
[
1
])
/
groups
:
static_cast
<
int
>
(
in_dims
[
in_dims
.
size
()
-
1
])
/
groups
);
:
static_cast
<
int
>
(
in_dims
[
in_dims
.
size
()
-
1
])
/
groups
);
int
col_step
=
static_cast
<
int
>
(
col_matrix_shape
[
0
])
/
groups
;
int
col_step
=
static_cast
<
int
>
(
col_matrix_shape
[
0
])
/
groups
;
...
@@ -531,7 +531,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -531,7 +531,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// k_h * k_w, d * h * w)
// k_h * k_w, d * h * w)
Tensor
col_matrix_slice
=
Tensor
col_matrix_slice
=
col_matrix
.
Slice
(
g
*
col_step
,
(
g
+
1
)
*
col_step
);
col_matrix
.
Slice
(
g
*
col_step
,
(
g
+
1
)
*
col_step
);
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
Tensor
input_grad_slice
=
Tensor
input_grad_slice
=
input_grad_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
input_grad_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
blas
.
MatMul
(
filter_slice
,
false
,
col_matrix_slice
,
false
,
blas
.
MatMul
(
filter_slice
,
false
,
col_matrix_slice
,
false
,
...
@@ -579,7 +579,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -579,7 +579,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
filter_grad_
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
filter_grad_
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
col_matrix_slice
=
Tensor
col_matrix_slice
=
col_matrix
.
Slice
(
g
*
col_step
,
(
g
+
1
)
*
col_step
);
col_matrix
.
Slice
(
g
*
col_step
,
(
g
+
1
)
*
col_step
);
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
Tensor
in_batch_slice
=
Tensor
in_batch_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
blas
.
MatMul
(
in_batch_slice
,
false
,
col_matrix_slice
,
true
,
blas
.
MatMul
(
in_batch_slice
,
false
,
col_matrix_slice
,
true
,
...
@@ -629,7 +629,7 @@ class DepthwiseConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -629,7 +629,7 @@ class DepthwiseConvTransposeKernel : public framework::OpKernel<T> {
auto
filter_dims
=
filter
.
dims
();
auto
filter_dims
=
filter
.
dims
();
framework
::
DDim
in_data_dims
;
framework
::
DDim
in_data_dims
;
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
else
{
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
...
@@ -684,7 +684,7 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -684,7 +684,7 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> {
auto
filter_dims
=
filter
.
dims
();
auto
filter_dims
=
filter
.
dims
();
framework
::
DDim
in_data_dims
;
framework
::
DDim
in_data_dims
;
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
else
{
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
...
...
paddle/fluid/operators/math/im2col.cc
浏览文件 @
78910480
...
@@ -74,11 +74,11 @@ class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
...
@@ -74,11 +74,11 @@ class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
PADDLE_ENFORCE_EQ
(
col
.
dims
().
size
(),
5
,
PADDLE_ENFORCE_EQ
(
col
.
dims
().
size
(),
5
,
"The dimension of col should be 5."
);
"The dimension of col should be 5."
);
int
im_channels
=
int
im_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
->
dims
()[
0
]
:
im
->
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
->
dims
()[
0
]
:
im
->
dims
()[
2
]);
int
im_height
=
int
im_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
->
dims
()[
1
]
:
im
->
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
->
dims
()[
1
]
:
im
->
dims
()[
0
]);
int
im_width
=
int
im_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
->
dims
()[
2
]
:
im
->
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
->
dims
()[
2
]
:
im
->
dims
()[
1
]);
int
filter_height
=
col
.
dims
()[
1
];
int
filter_height
=
col
.
dims
()[
1
];
int
filter_width
=
col
.
dims
()[
2
];
int
filter_width
=
col
.
dims
()[
2
];
int
col_height
=
col
.
dims
()[
3
];
int
col_height
=
col
.
dims
()[
3
];
...
...
paddle/fluid/operators/math/im2col_cfo_cpu.h
浏览文件 @
78910480
...
@@ -33,11 +33,11 @@ inline void im2col_common(const framework::Tensor& im,
...
@@ -33,11 +33,11 @@ inline void im2col_common(const framework::Tensor& im,
framework
::
Tensor
*
col
,
framework
::
Tensor
*
col
,
const
DataLayout
data_layout
=
DataLayout
::
kNCHW
)
{
const
DataLayout
data_layout
=
DataLayout
::
kNCHW
)
{
int
im_channels
=
int
im_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
0
]
:
im
.
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
0
]
:
im
.
dims
()[
2
]);
int
im_height
=
int
im_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
1
]
:
im
.
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
1
]
:
im
.
dims
()[
0
]);
int
im_width
=
int
im_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
2
]
:
im
.
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
2
]
:
im
.
dims
()[
1
]);
int
filter_height
=
col
->
dims
()[
1
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
filter_width
=
col
->
dims
()[
2
];
int
output_height
=
col
->
dims
()[
3
];
int
output_height
=
col
->
dims
()[
3
];
...
@@ -55,7 +55,7 @@ inline void im2col_common(const framework::Tensor& im,
...
@@ -55,7 +55,7 @@ inline void im2col_common(const framework::Tensor& im,
for
(
int
w
=
0
;
w
<
output_width
;
++
w
)
{
for
(
int
w
=
0
;
w
<
output_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
im_idx
;
int
im_idx
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
}
else
{
}
else
{
im_idx
=
(
im_row_idx
*
im_width
+
im_col_idx
)
*
im_channels
+
c_im
;
im_idx
=
(
im_row_idx
*
im_width
+
im_col_idx
)
*
im_channels
+
c_im
;
...
@@ -79,11 +79,11 @@ inline void im2col_sh1sw1dh1dw1ph0pw0(
...
@@ -79,11 +79,11 @@ inline void im2col_sh1sw1dh1dw1ph0pw0(
const
framework
::
Tensor
&
im
,
framework
::
Tensor
*
col
,
const
framework
::
Tensor
&
im
,
framework
::
Tensor
*
col
,
const
DataLayout
data_layout
=
DataLayout
::
kNCHW
)
{
const
DataLayout
data_layout
=
DataLayout
::
kNCHW
)
{
int
im_channels
=
int
im_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
0
]
:
im
.
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
0
]
:
im
.
dims
()[
2
]);
int
im_height
=
int
im_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
1
]
:
im
.
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
1
]
:
im
.
dims
()[
0
]);
int
im_width
=
int
im_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
2
]
:
im
.
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
2
]
:
im
.
dims
()[
1
]);
int
filter_height
=
col
->
dims
()[
1
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
filter_width
=
col
->
dims
()[
2
];
int
output_height
=
col
->
dims
()[
3
];
int
output_height
=
col
->
dims
()[
3
];
...
@@ -103,7 +103,7 @@ inline void im2col_sh1sw1dh1dw1ph0pw0(
...
@@ -103,7 +103,7 @@ inline void im2col_sh1sw1dh1dw1ph0pw0(
const
T
*
src_data
=
src_data_ic
;
const
T
*
src_data
=
src_data_ic
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
std
::
memcpy
(
dst_data
,
src_data
+
kw
,
copy_size
);
std
::
memcpy
(
dst_data
,
src_data
+
kw
,
copy_size
);
}
else
{
}
else
{
for
(
int
kow
=
0
;
kow
<
output_width
;
++
kow
)
{
for
(
int
kow
=
0
;
kow
<
output_width
;
++
kow
)
{
...
@@ -131,11 +131,11 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
...
@@ -131,11 +131,11 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
framework
::
Tensor
*
col
,
framework
::
Tensor
*
col
,
const
DataLayout
data_layout
)
{
const
DataLayout
data_layout
)
{
int
im_channels
=
int
im_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
0
]
:
im
.
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
0
]
:
im
.
dims
()[
2
]);
int
im_height
=
int
im_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
1
]
:
im
.
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
1
]
:
im
.
dims
()[
0
]);
int
im_width
=
int
im_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
2
]
:
im
.
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
2
]
:
im
.
dims
()[
1
]);
int
filter_height
=
col
->
dims
()[
1
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
filter_width
=
col
->
dims
()[
2
];
int
output_height
=
col
->
dims
()[
3
];
int
output_height
=
col
->
dims
()[
3
];
...
@@ -205,7 +205,7 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
...
@@ -205,7 +205,7 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
dst_data
=
dst_data
+
col_matrix_width
;
dst_data
=
dst_data
+
col_matrix_width
;
continue
;
continue
;
}
}
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
std
::
memcpy
(
dst_data
+
plw
,
src_data
,
copy_size
);
std
::
memcpy
(
dst_data
+
plw
,
src_data
,
copy_size
);
}
else
{
}
else
{
for
(
int
kow
=
0
;
kow
<
output_width
-
plw
-
prw
;
++
kow
)
{
for
(
int
kow
=
0
;
kow
<
output_width
-
plw
-
prw
;
++
kow
)
{
...
@@ -261,7 +261,7 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
...
@@ -261,7 +261,7 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
// TODO(TJ): reuse plw-kw outside this for
// TODO(TJ): reuse plw-kw outside this for
// try to unify
// try to unify
for
(
int
kw
=
0
;
kw
<
plw
;
++
kw
)
{
for
(
int
kw
=
0
;
kw
<
plw
;
++
kw
)
{
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
std
::
memcpy
(
dst_data
+
(
plw
-
kw
),
src_data
,
std
::
memcpy
(
dst_data
+
(
plw
-
kw
),
src_data
,
sizeof
(
T
)
*
(
output_width
-
(
plw
-
kw
)));
sizeof
(
T
)
*
(
output_width
-
(
plw
-
kw
)));
}
else
{
}
else
{
...
@@ -276,7 +276,7 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
...
@@ -276,7 +276,7 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
dst_data
=
dst_data
+
col_matrix_width
;
dst_data
=
dst_data
+
col_matrix_width
;
}
}
for
(
int
kw
=
plw
;
kw
<
filter_width
-
prw
;
++
kw
)
{
for
(
int
kw
=
plw
;
kw
<
filter_width
-
prw
;
++
kw
)
{
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
output_width
);
sizeof
(
T
)
*
output_width
);
}
else
{
}
else
{
...
@@ -292,7 +292,7 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
...
@@ -292,7 +292,7 @@ inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
}
}
int
i
=
1
;
int
i
=
1
;
for
(
int
kw
=
filter_width
-
prw
;
kw
<
filter_width
;
++
kw
,
++
i
)
{
for
(
int
kw
=
filter_width
-
prw
;
kw
<
filter_width
;
++
kw
,
++
i
)
{
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
(
output_width
-
i
));
sizeof
(
T
)
*
(
output_width
-
i
));
}
else
{
}
else
{
...
...
paddle/fluid/operators/math/vol2col.cc
浏览文件 @
78910480
...
@@ -40,13 +40,13 @@ class Vol2ColFunctor<platform::CPUDeviceContext, T> {
...
@@ -40,13 +40,13 @@ class Vol2ColFunctor<platform::CPUDeviceContext, T> {
"The dimension of col should be 7."
);
"The dimension of col should be 7."
);
int
input_channels
=
int
input_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
.
dims
()[
0
]
:
vol
.
dims
()[
3
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
.
dims
()[
0
]
:
vol
.
dims
()[
3
]);
int
input_depth
=
int
input_depth
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
.
dims
()[
1
]
:
vol
.
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
.
dims
()[
1
]
:
vol
.
dims
()[
0
]);
int
input_height
=
int
input_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
.
dims
()[
2
]
:
vol
.
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
.
dims
()[
2
]
:
vol
.
dims
()[
1
]);
int
input_width
=
int
input_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
.
dims
()[
3
]
:
vol
.
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
.
dims
()[
3
]
:
vol
.
dims
()[
2
]);
int
filter_depth
=
col
->
dims
()[
1
];
int
filter_depth
=
col
->
dims
()[
1
];
int
filter_height
=
col
->
dims
()[
2
];
int
filter_height
=
col
->
dims
()[
2
];
int
filter_width
=
col
->
dims
()[
3
];
int
filter_width
=
col
->
dims
()[
3
];
...
@@ -104,7 +104,7 @@ class Vol2ColFunctor<platform::CPUDeviceContext, T> {
...
@@ -104,7 +104,7 @@ class Vol2ColFunctor<platform::CPUDeviceContext, T> {
int
col_idx
=
int
col_idx
=
((
c
*
output_depth
+
d
)
*
output_height
+
h
)
*
output_width
+
w
;
((
c
*
output_depth
+
d
)
*
output_height
+
h
)
*
output_width
+
w
;
int
vol_idx
;
int
vol_idx
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
vol_idx
=
((
c_in
*
input_depth
+
d_pad
)
*
input_height
+
h_pad
)
*
vol_idx
=
((
c_in
*
input_depth
+
d_pad
)
*
input_height
+
h_pad
)
*
input_width
+
input_width
+
w_pad
;
w_pad
;
...
@@ -146,13 +146,13 @@ class Col2VolFunctor<platform::CPUDeviceContext, T> {
...
@@ -146,13 +146,13 @@ class Col2VolFunctor<platform::CPUDeviceContext, T> {
"The dimension of col should be 7."
);
"The dimension of col should be 7."
);
int
input_channels
=
int
input_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
->
dims
()[
0
]
:
vol
->
dims
()[
3
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
->
dims
()[
0
]
:
vol
->
dims
()[
3
]);
int
input_depth
=
int
input_depth
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
->
dims
()[
1
]
:
vol
->
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
->
dims
()[
1
]
:
vol
->
dims
()[
0
]);
int
input_height
=
int
input_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
->
dims
()[
2
]
:
vol
->
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
->
dims
()[
2
]
:
vol
->
dims
()[
1
]);
int
input_width
=
int
input_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
->
dims
()[
3
]
:
vol
->
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
->
dims
()[
3
]
:
vol
->
dims
()[
2
]);
int
filter_depth
=
col
.
dims
()[
1
];
int
filter_depth
=
col
.
dims
()[
1
];
int
filter_height
=
col
.
dims
()[
2
];
int
filter_height
=
col
.
dims
()[
2
];
int
filter_width
=
col
.
dims
()[
3
];
int
filter_width
=
col
.
dims
()[
3
];
...
@@ -209,7 +209,7 @@ class Col2VolFunctor<platform::CPUDeviceContext, T> {
...
@@ -209,7 +209,7 @@ class Col2VolFunctor<platform::CPUDeviceContext, T> {
if
(
h_pad
>=
0
&&
h_pad
<
input_height
&&
w_pad
>=
0
&&
if
(
h_pad
>=
0
&&
h_pad
<
input_height
&&
w_pad
>=
0
&&
w_pad
<
input_width
&&
d_pad
>=
0
&&
d_pad
<
input_depth
)
{
w_pad
<
input_width
&&
d_pad
>=
0
&&
d_pad
<
input_depth
)
{
int
vol_idx
;
int
vol_idx
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
vol_idx
=
((
cIm
*
input_depth
+
d_pad
)
*
input_height
+
h_pad
)
*
vol_idx
=
((
cIm
*
input_depth
+
d_pad
)
*
input_height
+
h_pad
)
*
input_width
+
input_width
+
w_pad
;
w_pad
;
...
...
paddle/fluid/operators/math/vol2col.cu
浏览文件 @
78910480
...
@@ -55,7 +55,7 @@ __global__ void vol2col(int num_kernels, const T* data_vol, int depth,
...
@@ -55,7 +55,7 @@ __global__ void vol2col(int num_kernels, const T* data_vol, int depth,
int
h
=
h_in
+
i
*
dilation_h
;
int
h
=
h_in
+
i
*
dilation_h
;
int
w
=
w_in
+
j
*
dilation_w
;
int
w
=
w_in
+
j
*
dilation_w
;
int
vol_idx
;
int
vol_idx
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
vol_idx
=
((
channel_in
*
depth
+
d
)
*
height
+
h
)
*
width
+
w
;
vol_idx
=
((
channel_in
*
depth
+
d
)
*
height
+
h
)
*
width
+
w
;
}
else
{
}
else
{
vol_idx
=
vol_idx
=
...
@@ -96,13 +96,13 @@ class Vol2ColFunctor<platform::CUDADeviceContext, T> {
...
@@ -96,13 +96,13 @@ class Vol2ColFunctor<platform::CUDADeviceContext, T> {
"The dimension of col should be 7."
);
"The dimension of col should be 7."
);
int
input_channels
=
int
input_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
.
dims
()[
0
]
:
vol
.
dims
()[
3
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
.
dims
()[
0
]
:
vol
.
dims
()[
3
]);
int
input_depth
=
int
input_depth
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
.
dims
()[
1
]
:
vol
.
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
.
dims
()[
1
]
:
vol
.
dims
()[
0
]);
int
input_height
=
int
input_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
.
dims
()[
2
]
:
vol
.
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
.
dims
()[
2
]
:
vol
.
dims
()[
1
]);
int
input_width
=
int
input_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
.
dims
()[
3
]
:
vol
.
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
.
dims
()[
3
]
:
vol
.
dims
()[
2
]);
int
filter_depth
=
col
->
dims
()[
1
];
int
filter_depth
=
col
->
dims
()[
1
];
int
filter_height
=
col
->
dims
()[
2
];
int
filter_height
=
col
->
dims
()[
2
];
int
filter_width
=
col
->
dims
()[
3
];
int
filter_width
=
col
->
dims
()[
3
];
...
@@ -170,16 +170,16 @@ __global__ void col2vol(int num_kernels, const T* data_col, int depth,
...
@@ -170,16 +170,16 @@ __global__ void col2vol(int num_kernels, const T* data_col, int depth,
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
num_kernels
;
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
num_kernels
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
src_val
=
0
;
T
src_val
=
0
;
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
int
w
=
(
data_layout
!=
DataLayout
::
kNHWC
?
index
%
width
+
padding_width
?
index
%
width
+
padding_width
:
(
index
/
input_channels
)
%
width
+
padding_width
);
:
(
index
/
input_channels
)
%
width
+
padding_width
);
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
int
h
=
(
data_layout
!=
DataLayout
::
kNHWC
?
(
index
/
width
)
%
height
+
padding_height
?
(
index
/
width
)
%
height
+
padding_height
:
(
index
/
input_channels
/
width
)
%
height
+
padding_height
);
:
(
index
/
input_channels
/
width
)
%
height
+
padding_height
);
int
d
=
(
data_layout
==
DataLayout
::
kNCHW
int
d
=
(
data_layout
!=
DataLayout
::
kNHWC
?
(
index
/
width
/
height
)
%
depth
+
padding_depth
?
(
index
/
width
/
height
)
%
depth
+
padding_depth
:
index
/
input_channels
/
width
/
height
+
padding_depth
);
:
index
/
input_channels
/
width
/
height
+
padding_depth
);
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
index
/
width
/
height
/
depth
int
c
=
(
data_layout
!=
DataLayout
::
kNHWC
?
index
/
width
/
height
/
depth
:
index
%
input_channels
);
:
index
%
input_channels
);
// compute the start and end of the output
// compute the start and end of the output
...
@@ -247,13 +247,13 @@ class Col2VolFunctor<platform::CUDADeviceContext, T> {
...
@@ -247,13 +247,13 @@ class Col2VolFunctor<platform::CUDADeviceContext, T> {
"The dimension of col should be 7."
);
"The dimension of col should be 7."
);
int
input_channels
=
int
input_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
->
dims
()[
0
]
:
vol
->
dims
()[
3
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
->
dims
()[
0
]
:
vol
->
dims
()[
3
]);
int
input_depth
=
int
input_depth
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
->
dims
()[
1
]
:
vol
->
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
->
dims
()[
1
]
:
vol
->
dims
()[
0
]);
int
input_height
=
int
input_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
->
dims
()[
2
]
:
vol
->
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
->
dims
()[
2
]
:
vol
->
dims
()[
1
]);
int
input_width
=
int
input_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
vol
->
dims
()[
3
]
:
vol
->
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
vol
->
dims
()[
3
]
:
vol
->
dims
()[
2
]);
int
filter_depth
=
col
.
dims
()[
1
];
int
filter_depth
=
col
.
dims
()[
1
];
int
filter_height
=
col
.
dims
()[
2
];
int
filter_height
=
col
.
dims
()[
2
];
int
filter_width
=
col
.
dims
()[
3
];
int
filter_width
=
col
.
dims
()[
3
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录