Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
765085d2
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
765085d2
编写于
10月 21, 2018
作者:
J
jerrywgz
提交者:
GitHub
10月 21, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13904 from jerrywgz/roialign
Add RoI align operator.
上级
da722d6d
9a14ca91
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
1081 addition
and
0 deletion
+1081
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/roi_align_op.cc
paddle/fluid/operators/roi_align_op.cc
+166
-0
paddle/fluid/operators/roi_align_op.cu
paddle/fluid/operators/roi_align_op.cu
+353
-0
paddle/fluid/operators/roi_align_op.h
paddle/fluid/operators/roi_align_op.h
+332
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+49
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+10
-0
python/paddle/fluid/tests/unittests/test_roi_align_op.py
python/paddle/fluid/tests/unittests/test_roi_align_op.py
+170
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
765085d2
...
...
@@ -116,6 +116,7 @@ paddle.fluid.layers.pad ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], var
paddle.fluid.layers.pad_constant_like ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None))
paddle.fluid.layers.label_smooth ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None))
paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0))
paddle.fluid.layers.roi_align ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None))
paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,))
paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR'))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
...
...
paddle/fluid/operators/roi_align_op.cc
0 → 100644
浏览文件 @
765085d2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
class
ROIAlignOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of ROIAlignOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ROIs"
),
"Input(ROIs) of ROIAlignOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of ROIAlignOp should not be null."
);
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
rois_dims
=
ctx
->
GetInputDim
(
"ROIs"
);
PADDLE_ENFORCE
(
input_dims
.
size
()
==
4
,
"The format of input tensor is NCHW."
);
PADDLE_ENFORCE
(
rois_dims
.
size
()
==
2
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2], …]."
);
PADDLE_ENFORCE
(
rois_dims
[
1
]
==
4
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2], …]."
);
int
pooled_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_height"
);
int
pooled_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_width"
);
float
spatial_scale
=
ctx
->
Attrs
().
Get
<
float
>
(
"spatial_scale"
);
PADDLE_ENFORCE_GT
(
pooled_height
,
0
,
"The pooled output height must greater than 0"
);
PADDLE_ENFORCE_GT
(
pooled_width
,
0
,
"The pooled output width must greater than 0"
);
PADDLE_ENFORCE_GT
(
spatial_scale
,
0.0
f
,
"The spatial scale must greater than 0"
);
auto
out_dims
=
input_dims
;
out_dims
[
0
]
=
rois_dims
[
0
];
out_dims
[
1
]
=
input_dims
[
1
];
out_dims
[
2
]
=
pooled_height
;
out_dims
[
3
]
=
pooled_width
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
ROIAlignGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"The GRAD@Out of ROIAlignGradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
framework
::
GradVarName
(
"X"
)),
"The GRAD@X of ROIAlignGradOp should not be null."
);
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputsDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
ROIAlignOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), "
"The input of ROIAlignOp. "
"The format of input tensor is NCHW. Where N is batch size, "
"C is the number of input channels, "
"H is the height of the feature, and "
"W is the width of the feature."
);
AddInput
(
"ROIs"
,
"(LoDTensor), "
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2], …]. "
"(x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates."
);
AddOutput
(
"Out"
,
"(Tensor), "
"The output of ROIAlignOp is a 4-D tensor with shape "
"(num_rois, channels, pooled_h, pooled_w)."
);
AddAttr
<
float
>
(
"spatial_scale"
,
"(float, default 1.0), "
"Multiplicative spatial scale factor "
"to translate ROI coords from their input scale "
"to the scale used when pooling."
)
.
SetDefault
(
1.0
);
AddAttr
<
int
>
(
"pooled_height"
,
"(int, default 1), "
"The pooled output height."
)
.
SetDefault
(
1
);
AddAttr
<
int
>
(
"pooled_width"
,
"(int, default 1), "
"The pooled output width."
)
.
SetDefault
(
1
);
AddAttr
<
int
>
(
"sampling_ratio"
,
"(int,default -1),"
"number of sampling points in the interpolation grid"
"If <=0, then grid points are adaptive to roi_width "
"and pooled_w, likewise for height"
)
.
SetDefault
(
-
1
);
AddComment
(
R"DOC(
**RoIAlign Operator**
Region of interest align (also known as RoI align) is to perform
bilinear interpolation on inputs of nonuniform sizes to obtain
fixed-size feature maps (e.g. 7*7)
Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height. Location remains the origin
result.
In each ROI bin, the value of the four regularly sampled locations
are computed directly through bilinear interpolation. The output is
the mean of four locations.
Thus avoid the misaligned problem.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
roi_align
,
ops
::
ROIAlignOp
,
ops
::
ROIAlignOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
roi_align_grad
,
ops
::
ROIAlignGradOp
);
REGISTER_OP_CPU_KERNEL
(
roi_align
,
ops
::
CPUROIAlignOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CPUROIAlignOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
roi_align_grad
,
ops
::
CPUROIAlignGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CPUROIAlignGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/roi_align_op.cu
0 → 100644
浏览文件 @
765085d2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
static
constexpr
int
kNumCUDAThreads
=
512
;
static
constexpr
int
kNumMaxinumNumBlocks
=
4096
;
static
inline
int
NumBlocks
(
const
int
N
)
{
return
std
::
min
((
N
+
kNumCUDAThreads
-
1
)
/
kNumCUDAThreads
,
kNumMaxinumNumBlocks
);
}
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
template
<
class
T
>
__device__
T
BilinearInterpolate
(
const
T
*
input_data
,
const
int
height
,
const
int
width
,
T
y
,
T
x
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
return
0
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
int
y_low
=
static_cast
<
int
>
(
y
);
int
x_low
=
static_cast
<
int
>
(
x
);
int
y_high
;
int
x_high
;
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
}
else
{
y_high
=
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
}
else
{
x_high
=
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
T
v1
=
input_data
[
y_low
*
width
+
x_low
];
T
v2
=
input_data
[
y_low
*
width
+
x_high
];
T
v3
=
input_data
[
y_high
*
width
+
x_low
];
T
v4
=
input_data
[
y_high
*
width
+
x_high
];
T
w1
=
hy
*
hx
,
w2
=
hy
*
lx
,
w3
=
ly
*
hx
,
w4
=
ly
*
lx
;
T
val
=
(
w1
*
v1
+
w2
*
v2
+
w3
*
v3
+
w4
*
v4
);
return
val
;
}
template
<
class
T
>
__device__
void
BilinearInterpolateGradient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
T
*
w1
,
T
*
w2
,
T
*
w3
,
T
*
w4
,
int
*
x_low
,
int
*
x_high
,
int
*
y_low
,
int
*
y_high
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
return
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
*
y_low
=
static_cast
<
int
>
(
y
);
*
x_low
=
static_cast
<
int
>
(
x
);
if
(
*
y_low
>=
height
-
1
)
{
*
y_high
=
*
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
*
y_low
);
}
else
{
*
y_high
=
*
y_low
+
1
;
}
if
(
*
x_low
>=
width
-
1
)
{
*
x_high
=
*
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
*
x_low
);
}
else
{
*
x_high
=
*
x_low
+
1
;
}
T
ly
=
y
-
*
y_low
,
lx
=
x
-
*
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
*
w1
=
hy
*
hx
,
*
w2
=
hy
*
lx
,
*
w3
=
ly
*
hx
,
*
w4
=
ly
*
lx
;
return
;
}
template
<
class
T
>
__global__
void
GPUROIAlignForward
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
sampling_ratio
,
int
*
roi_batch_id_data
,
T
*
output_data
)
{
CUDA_1D_KERNEL_LOOP
(
i
,
nthreads
)
{
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
const
T
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
offset_input_rois
[
0
]
*
spatial_scale
;
T
roi_ymin
=
offset_input_rois
[
1
]
*
spatial_scale
;
T
roi_xmax
=
offset_input_rois
[
2
]
*
spatial_scale
;
T
roi_ymax
=
offset_input_rois
[
3
]
*
spatial_scale
;
T
roi_width
=
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
const
T
*
offset_input_data
=
input_data
+
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
const
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
T
output_val
=
0
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
T
val
=
BilinearInterpolate
(
offset_input_data
,
height
,
width
,
y
,
x
);
output_val
+=
val
;
}
}
output_val
/=
count
;
output_data
[
i
]
=
output_val
;
}
}
template
<
typename
T
>
__global__
void
GPUROIAlignBackward
(
const
int
nthreads
,
const
T
*
input_rois
,
const
T
*
out_grad
,
const
int
num_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
sampling_ratio
,
int
*
roi_batch_id_data
,
T
*
input_grad
)
{
CUDA_1D_KERNEL_LOOP
(
i
,
nthreads
)
{
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
const
T
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
offset_input_rois
[
0
]
*
spatial_scale
;
T
roi_ymin
=
offset_input_rois
[
1
]
*
spatial_scale
;
T
roi_xmax
=
offset_input_rois
[
2
]
*
spatial_scale
;
T
roi_ymax
=
offset_input_rois
[
3
]
*
spatial_scale
;
T
roi_width
=
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
T
*
offset_input_grad
=
input_grad
+
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
const
T
*
offset_out_grad
=
out_grad
+
(
n
*
channels
+
c
)
*
pooled_height
*
pooled_width
;
const
T
out_grad_this_bin
=
offset_out_grad
[
ph
*
pooled_width
+
pw
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
const
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
T
w1
=
0
,
w2
=
0
,
w3
=
0
,
w4
=
0
;
int
x_low
=
-
1
,
x_high
=
-
1
,
y_low
=
-
1
,
y_high
=
-
1
;
BilinearInterpolateGradient
(
height
,
width
,
y
,
x
,
&
w1
,
&
w2
,
&
w3
,
&
w4
,
&
x_low
,
&
x_high
,
&
y_low
,
&
y_high
);
T
diff1
=
out_grad_this_bin
*
w1
/
count
;
T
diff2
=
out_grad_this_bin
*
w2
/
count
;
T
diff3
=
out_grad_this_bin
*
w3
/
count
;
T
diff4
=
out_grad_this_bin
*
w4
/
count
;
if
(
x_low
>=
0
&&
x_high
>=
0
&&
y_low
>=
0
&&
y_high
>=
0
)
{
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_low
*
width
+
x_low
,
diff1
);
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_low
*
width
+
x_high
,
diff2
);
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_high
*
width
+
x_low
,
diff3
);
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_high
*
width
+
x_high
,
diff4
);
}
}
}
}
}
template
<
typename
Place
,
typename
T
>
class
GPUROIAlignOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
in_dims
=
in
->
dims
();
int
batch_size
=
in_dims
[
0
];
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
if
(
rois_num
==
0
)
return
;
int
output_size
=
out
->
numel
();
int
blocks
=
NumBlocks
(
output_size
);
int
threads
=
kNumCUDAThreads
;
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
"The rois_batch_size and imgs batch_size must be the same."
);
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
rois_num_with_lod
,
"The rois_num from input and lod must be the same."
);
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
Tensor
roi_batch_id_list_gpu
;
framework
::
TensorCopySync
(
roi_batch_id_list
,
ctx
.
GetPlace
(),
&
roi_batch_id_list_gpu
);
GPUROIAlignForward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_size
,
in
->
data
<
T
>
(),
rois
->
data
<
T
>
(),
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
sampling_ratio
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
};
template
<
typename
Place
,
typename
T
>
class
GPUROIAlignGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
int
rois_num
=
rois
->
dims
()[
0
];
int
channels
=
in
->
dims
()[
1
];
int
height
=
in
->
dims
()[
2
];
int
width
=
in
->
dims
()[
3
];
if
(
!
in_grad
)
{
return
;
}
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
Tensor
roi_batch_id_list_gpu
;
framework
::
TensorCopySync
(
roi_batch_id_list
,
ctx
.
GetPlace
(),
&
roi_batch_id_list_gpu
);
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
cuda_device_context
(),
in_grad
,
static_cast
<
T
>
(
0
));
int
output_grad_size
=
out_grad
->
numel
();
int
blocks
=
NumBlocks
(
output_grad_size
);
int
threads
=
kNumCUDAThreads
;
if
(
output_grad_size
>
0
)
{
GPUROIAlignBackward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_grad_size
,
rois
->
data
<
T
>
(),
out_grad
->
data
<
T
>
(),
rois_num
,
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
sampling_ratio
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
roi_align
,
ops
::
GPUROIAlignOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GPUROIAlignOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
roi_align_grad
,
ops
::
GPUROIAlignGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GPUROIAlignGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/roi_align_op.h
0 → 100644
浏览文件 @
765085d2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <limits>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
static
constexpr
int
kROISize
=
4
;
template
<
class
T
>
void
PreCalcForBilinearInterpolate
(
const
platform
::
DeviceContext
&
ctx
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
iy_upper
,
const
int
ix_upper
,
T
roi_ymin
,
T
roi_xmin
,
T
bin_size_h
,
T
bin_size_w
,
int
roi_bin_grid_h
,
int
roi_bin_grid_w
,
Tensor
*
pre_pos
,
Tensor
*
pre_w
)
{
int
pre_calc_index
=
0
;
int
*
pre_pos_data
=
pre_pos
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
T
*
pre_w_data
=
pre_w
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
int
ph
=
0
;
ph
<
pooled_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
pooled_width
;
pw
++
)
{
for
(
int
iy
=
0
;
iy
<
iy_upper
;
iy
++
)
{
// calculate y of sample points
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
// calculate x of samle points
for
(
int
ix
=
0
;
ix
<
ix_upper
;
ix
++
)
{
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
// deal with elements out of map
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
for
(
int
i
=
0
;
i
<
kROISize
;
++
i
)
{
pre_pos_data
[
i
+
pre_calc_index
*
kROISize
]
=
0
;
pre_w_data
[
i
+
pre_calc_index
*
kROISize
]
=
0
;
}
pre_calc_index
+=
1
;
continue
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
int
y_low
=
static_cast
<
int
>
(
y
);
int
x_low
=
static_cast
<
int
>
(
x
);
int
y_high
;
int
x_high
;
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
}
else
{
y_high
=
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
}
else
{
x_high
=
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
pre_pos_data
[
pre_calc_index
*
kROISize
]
=
y_low
*
width
+
x_low
;
pre_pos_data
[
pre_calc_index
*
kROISize
+
1
]
=
y_low
*
width
+
x_high
;
pre_pos_data
[
pre_calc_index
*
kROISize
+
2
]
=
y_high
*
width
+
x_low
;
pre_pos_data
[
pre_calc_index
*
kROISize
+
3
]
=
y_high
*
width
+
x_high
;
pre_w_data
[
pre_calc_index
*
kROISize
]
=
hy
*
hx
;
pre_w_data
[
pre_calc_index
*
kROISize
+
1
]
=
hy
*
lx
;
pre_w_data
[
pre_calc_index
*
kROISize
+
2
]
=
ly
*
hx
;
pre_w_data
[
pre_calc_index
*
kROISize
+
3
]
=
ly
*
lx
;
pre_calc_index
+=
1
;
}
}
}
}
}
template
<
class
T
>
void
bilinear_interpolate_gradient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
const
T
out_grad_this_bin
,
const
T
count
,
T
*
batch_grad_data
)
{
int
x_low
,
y_low
,
x_high
,
y_high
;
T
w1
,
w2
,
w3
,
w4
;
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
w1
=
w2
=
w3
=
w4
=
0
;
x_low
=
x_high
=
y_low
=
y_high
=
-
1
;
return
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
y_low
=
static_cast
<
int
>
(
y
);
x_low
=
static_cast
<
int
>
(
x
);
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
}
else
{
y_high
=
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
}
else
{
x_high
=
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
w1
=
hy
*
hx
,
w2
=
hy
*
lx
,
w3
=
ly
*
hx
,
w4
=
ly
*
lx
;
T
diff1
=
out_grad_this_bin
*
w1
/
count
;
T
diff2
=
out_grad_this_bin
*
w2
/
count
;
T
diff3
=
out_grad_this_bin
*
w3
/
count
;
T
diff4
=
out_grad_this_bin
*
w4
/
count
;
if
(
x_low
>=
0
&&
x_high
>=
0
&&
y_low
>=
0
&&
y_high
>=
0
)
{
*
(
batch_grad_data
+
y_low
*
width
+
x_low
)
+=
diff1
;
*
(
batch_grad_data
+
y_low
*
width
+
x_high
)
+=
diff2
;
*
(
batch_grad_data
+
y_high
*
width
+
x_low
)
+=
diff3
;
*
(
batch_grad_data
+
y_high
*
width
+
x_high
)
+=
diff4
;
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
CPUROIAlignOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
in_dims
=
in
->
dims
();
int
batch_size
=
in_dims
[
0
];
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
auto
in_stride
=
framework
::
stride
(
in_dims
);
auto
roi_stride
=
framework
::
stride
(
rois
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
const
T
*
input_data
=
in
->
data
<
T
>
();
framework
::
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
"The rois_batch_size and imgs batch_size must be the same."
);
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
rois_num_with_lod
,
"The rois_num from input and lod must be the same."
);
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
T
*
output_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
rois_data
=
rois
->
data
<
T
>
();
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_id
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
rois_data
[
0
]
*
spatial_scale
;
T
roi_ymin
=
rois_data
[
1
]
*
spatial_scale
;
T
roi_xmax
=
rois_data
[
2
]
*
spatial_scale
;
T
roi_ymax
=
rois_data
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
const
T
*
batch_data
=
input_data
+
roi_batch_id
*
in_stride
[
0
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
const
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
Tensor
pre_pos
;
Tensor
pre_w
;
int
pre_size
=
count
*
out_stride
[
1
];
pre_pos
.
Resize
({
pre_size
,
kROISize
});
pre_w
.
Resize
({
pre_size
,
kROISize
});
PreCalcForBilinearInterpolate
(
dev_ctx
,
height
,
width
,
pooled_height
,
pooled_width
,
roi_bin_grid_h
,
roi_bin_grid_w
,
roi_ymin
,
roi_xmin
,
bin_size_h
,
bin_size_w
,
roi_bin_grid_h
,
roi_bin_grid_w
,
&
pre_pos
,
&
pre_w
);
const
int
*
pre_pos_data
=
pre_pos
.
data
<
int
>
();
const
T
*
pre_w_data
=
pre_w
.
data
<
T
>
();
for
(
int
c
=
0
;
c
<
channels
;
c
++
)
{
int
pre_calc_index
=
0
;
for
(
int
ph
=
0
;
ph
<
pooled_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
pooled_width
;
pw
++
)
{
const
int
pool_index
=
ph
*
pooled_width
+
pw
;
T
output_val
=
0
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
for
(
int
i
=
0
;
i
<
kROISize
;
i
++
)
{
int
pos
=
pre_pos_data
[
pre_calc_index
*
kROISize
+
i
];
T
w
=
pre_w_data
[
pre_calc_index
*
kROISize
+
i
];
output_val
+=
w
*
batch_data
[
pos
];
}
pre_calc_index
+=
1
;
}
}
output_val
/=
count
;
output_data
[
pool_index
]
=
output_val
;
}
}
batch_data
+=
in_stride
[
1
];
output_data
+=
out_stride
[
1
];
}
rois_data
+=
roi_stride
[
0
];
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
CPUROIAlignGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"ROIs"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
in_dims
=
in
->
dims
();
if
(
!
in_grad
)
{
return
;
}
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
const
T
*
rois_data
=
rois
->
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
T
*
in_grad_data
=
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
in_stride
=
framework
::
stride
(
in
->
dims
());
auto
roi_stride
=
framework
::
stride
(
rois
->
dims
());
auto
out_stride
=
framework
::
stride
(
out_grad
->
dims
());
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_idx
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
rois_data
[
0
]
*
spatial_scale
;
T
roi_ymin
=
rois_data
[
1
]
*
spatial_scale
;
T
roi_xmax
=
rois_data
[
2
]
*
spatial_scale
;
T
roi_ymax
=
rois_data
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
T
*
batch_grad_data
=
in_grad_data
+
roi_batch_idx
*
in_stride
[
0
]
+
c
*
in_stride
[
1
];
const
T
*
batch_out_grad_data
=
out_grad_data
+
n
*
out_stride
[
0
]
+
c
*
out_stride
[
1
];
for
(
int
ph
=
0
;
ph
<
pooled_height
;
++
ph
)
{
for
(
int
pw
=
0
;
pw
<
pooled_width
;
++
pw
)
{
int
pool_index
=
ph
*
pooled_width
+
pw
;
T
out_grad_this_bin
=
batch_out_grad_data
[
pool_index
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
bilinear_interpolate_gradient
(
height
,
width
,
y
,
x
,
out_grad_this_bin
,
count
,
batch_grad_data
);
}
}
}
}
}
rois_data
+=
roi_stride
[
0
];
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
765085d2
...
...
@@ -96,6 +96,7 @@ __all__ = [
'pad_constant_like'
,
'label_smooth'
,
'roi_pool'
,
'roi_align'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
...
...
@@ -5430,6 +5431,54 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
return
pool_out
@
templatedoc
()
def
roi_align
(
input
,
rois
,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
,
sampling_ratio
=-
1
,
name
=
None
):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
sampling_ratio(intger): ${sampling_ratio_comment} Default: -1
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
align_out = fluid.layers.roi_align(input=x,
rois=rois,
pooled_height=7,
pooled_width=7,
spatial_scale=0.5,
sampling_ratio=-1)
"""
helper
=
LayerHelper
(
'roi_align'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
align_out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"roi_align"
,
inputs
=
{
"X"
:
input
,
"ROIs"
:
rois
},
outputs
=
{
"Out"
:
align_out
},
attrs
=
{
"pooled_height"
:
pooled_height
,
"pooled_width"
:
pooled_width
,
"spatial_scale"
:
spatial_scale
,
"sampling_ratio"
:
sampling_ratio
})
return
align_out
def
dice_loss
(
input
,
label
,
epsilon
=
0.00001
):
"""
Dice loss for comparing the similarity of two batch of data,
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
765085d2
...
...
@@ -465,6 +465,16 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
def
test_roi_align
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
"x"
,
shape
=
[
256
,
30
,
30
],
dtype
=
"float32"
)
rois
=
layers
.
data
(
name
=
"rois"
,
shape
=
[
4
],
dtype
=
"float32"
,
lod_level
=
1
)
output
=
layers
.
roi_align
(
x
,
rois
,
14
,
14
,
0.5
,
2
)
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
def
test_resize_bilinear
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_roi_align_op.py
0 → 100644
浏览文件 @
765085d2
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
math
import
sys
from
op_test
import
OpTest
class
TestROIAlignOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_case
()
self
.
make_rois
()
self
.
calc_roi_align
()
self
.
inputs
=
{
'X'
:
self
.
x
,
'ROIs'
:
(
self
.
rois
[:,
1
:
5
],
self
.
rois_lod
)}
self
.
attrs
=
{
'spatial_scale'
:
self
.
spatial_scale
,
'pooled_height'
:
self
.
pooled_height
,
'pooled_width'
:
self
.
pooled_width
,
'sampling_ratio'
:
self
.
sampling_ratio
}
self
.
outputs
=
{
'Out'
:
self
.
out_data
}
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
channels
=
3
self
.
height
=
8
self
.
width
=
6
# n, c, h, w
self
.
x_dim
=
(
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
)
self
.
spatial_scale
=
1.0
/
2.0
self
.
pooled_height
=
2
self
.
pooled_width
=
2
self
.
sampling_ratio
=
-
1
self
.
x
=
np
.
random
.
random
(
self
.
x_dim
).
astype
(
'float32'
)
def
pre_calc
(
self
,
x_i
,
roi_xmin
,
roi_ymin
,
roi_bin_grid_h
,
roi_bin_grid_w
,
bin_size_h
,
bin_size_w
):
count
=
roi_bin_grid_h
*
roi_bin_grid_w
bilinear_pos
=
np
.
zeros
(
[
self
.
channels
,
self
.
pooled_height
,
self
.
pooled_width
,
count
,
4
],
np
.
float32
)
bilinear_w
=
np
.
zeros
(
[
self
.
pooled_height
,
self
.
pooled_width
,
count
,
4
],
np
.
float32
)
for
ph
in
range
(
self
.
pooled_width
):
for
pw
in
range
(
self
.
pooled_height
):
c
=
0
for
iy
in
range
(
roi_bin_grid_h
):
y
=
roi_ymin
+
ph
*
bin_size_h
+
(
iy
+
0.5
)
*
\
bin_size_h
/
roi_bin_grid_h
for
ix
in
range
(
roi_bin_grid_w
):
x
=
roi_xmin
+
pw
*
bin_size_w
+
(
ix
+
0.5
)
*
\
bin_size_w
/
roi_bin_grid_w
if
y
<
-
1.0
or
y
>
self
.
height
or
\
x
<
-
1.0
or
x
>
self
.
width
:
continue
if
y
<=
0
:
y
=
0
if
x
<=
0
:
x
=
0
y_low
=
int
(
y
)
x_low
=
int
(
x
)
if
y_low
>=
self
.
height
-
1
:
y
=
y_high
=
y_low
=
self
.
height
-
1
else
:
y_high
=
y_low
+
1
if
x_low
>=
self
.
width
-
1
:
x
=
x_high
=
x_low
=
self
.
width
-
1
else
:
x_high
=
x_low
+
1
ly
=
y
-
y_low
lx
=
x
-
x_low
hy
=
1
-
ly
hx
=
1
-
lx
for
ch
in
range
(
self
.
channels
):
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
0
]
=
x_i
[
ch
,
y_low
,
x_low
]
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
1
]
=
x_i
[
ch
,
y_low
,
x_high
]
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
2
]
=
x_i
[
ch
,
y_high
,
x_low
]
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
3
]
=
x_i
[
ch
,
y_high
,
x_high
]
bilinear_w
[
ph
,
pw
,
c
,
0
]
=
hy
*
hx
bilinear_w
[
ph
,
pw
,
c
,
1
]
=
hy
*
lx
bilinear_w
[
ph
,
pw
,
c
,
2
]
=
ly
*
hx
bilinear_w
[
ph
,
pw
,
c
,
3
]
=
ly
*
lx
c
=
c
+
1
return
bilinear_pos
,
bilinear_w
def
calc_roi_align
(
self
):
self
.
out_data
=
np
.
zeros
(
(
self
.
rois_num
,
self
.
channels
,
self
.
pooled_height
,
self
.
pooled_width
)).
astype
(
'float32'
)
for
i
in
range
(
self
.
rois_num
):
roi
=
self
.
rois
[
i
]
roi_batch_id
=
int
(
roi
[
0
])
x_i
=
self
.
x
[
roi_batch_id
]
roi_xmin
=
roi
[
1
]
*
self
.
spatial_scale
roi_ymin
=
roi
[
2
]
*
self
.
spatial_scale
roi_xmax
=
roi
[
3
]
*
self
.
spatial_scale
roi_ymax
=
roi
[
4
]
*
self
.
spatial_scale
roi_width
=
max
(
roi_xmax
-
roi_xmin
,
1
)
roi_height
=
max
(
roi_ymax
-
roi_ymin
,
1
)
bin_size_h
=
float
(
roi_height
)
/
float
(
self
.
pooled_height
)
bin_size_w
=
float
(
roi_width
)
/
float
(
self
.
pooled_width
)
roi_bin_grid_h
=
self
.
sampling_ratio
if
self
.
sampling_ratio
>
0
else
\
math
.
ceil
(
roi_height
/
self
.
pooled_height
)
roi_bin_grid_w
=
self
.
sampling_ratio
if
self
.
sampling_ratio
>
0
else
\
math
.
ceil
(
roi_width
/
self
.
pooled_width
)
count
=
int
(
roi_bin_grid_h
*
roi_bin_grid_w
)
pre_size
=
count
*
self
.
pooled_width
*
self
.
pooled_height
bilinear_pos
,
bilinear_w
=
self
.
pre_calc
(
x_i
,
roi_xmin
,
roi_ymin
,
int
(
roi_bin_grid_h
),
int
(
roi_bin_grid_w
),
bin_size_h
,
bin_size_w
)
for
ch
in
range
(
self
.
channels
):
align_per_bin
=
(
bilinear_pos
[
ch
]
*
bilinear_w
).
sum
(
axis
=-
1
)
output_val
=
align_per_bin
.
mean
(
axis
=-
1
)
self
.
out_data
[
i
,
ch
,
:,
:]
=
output_val
def
make_rois
(
self
):
rois
=
[]
self
.
rois_lod
=
[[]]
for
bno
in
range
(
self
.
batch_size
):
self
.
rois_lod
[
0
].
append
(
bno
+
1
)
for
i
in
range
(
bno
+
1
):
x1
=
np
.
random
.
random_integers
(
0
,
self
.
width
//
self
.
spatial_scale
-
self
.
pooled_width
)
y1
=
np
.
random
.
random_integers
(
0
,
self
.
height
//
self
.
spatial_scale
-
self
.
pooled_height
)
x2
=
np
.
random
.
random_integers
(
x1
+
self
.
pooled_width
,
self
.
width
//
self
.
spatial_scale
)
y2
=
np
.
random
.
random_integers
(
y1
+
self
.
pooled_height
,
self
.
height
//
self
.
spatial_scale
)
roi
=
[
bno
,
x1
,
y1
,
x2
,
y2
]
rois
.
append
(
roi
)
self
.
rois_num
=
len
(
rois
)
self
.
rois
=
np
.
array
(
rois
).
astype
(
"float32"
)
def
setUp
(
self
):
self
.
op_type
=
"roi_align"
self
.
set_data
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录