Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
74d3a550
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
74d3a550
编写于
10月 11, 2020
作者:
H
hong19860320
提交者:
GitHub
10月 11, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Swish and ThresholdedReLU for API 2.0 (#27758)
上级
a2d08aa9
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
288 addition
and
57 deletion
+288
-57
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+122
-31
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+2
-0
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+87
-14
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+77
-12
未找到文件。
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
74d3a550
...
@@ -1979,22 +1979,24 @@ class TestSoftsignAPI(unittest.TestCase):
...
@@ -1979,22 +1979,24 @@ class TestSoftsignAPI(unittest.TestCase):
F
.
softsign
(
x_fp16
)
F
.
softsign
(
x_fp16
)
def
ref_thresholded_relu
(
x
,
threshold
=
1.0
):
out
=
(
x
>
threshold
)
*
x
return
out
class
TestThresholdedRelu
(
TestActivation
):
class
TestThresholdedRelu
(
TestActivation
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"thresholded_relu"
self
.
op_type
=
"thresholded_relu"
self
.
init_dtype
()
self
.
init_dtype
()
threshold
=
0.25
threshold
=
15
self
.
delta
=
0.005
np
.
random
.
seed
(
1024
)
X
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
# Same reason as TestAbs
X
[
np
.
abs
(
X
-
threshold
)
<
self
.
delta
]
=
threshold
+
0.2
out
=
(
X
>
threshold
)
*
X
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
X
)}
np
.
random
.
seed
(
1024
)
self
.
attrs
=
{
'threshold'
:
threshold
}
x
=
np
.
random
.
uniform
(
-
20
,
20
,
[
10
,
12
]).
astype
(
self
.
dtype
)
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
out
=
ref_thresholded_relu
(
x
,
threshold
)
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
"threshold"
:
threshold
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
...
@@ -2003,17 +2005,61 @@ class TestThresholdedRelu(TestActivation):
...
@@ -2003,17 +2005,61 @@ class TestThresholdedRelu(TestActivation):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
class
TestThresholdedReluOpError
(
unittest
.
TestCase
):
class
TestThresholdedReluAPI
(
unittest
.
TestCase
):
# test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
def
setUp
(
self
):
self
.
threshold
=
15
np
.
random
.
seed
(
1024
)
self
.
x_np
=
np
.
random
.
uniform
(
-
20
,
20
,
[
10
,
12
]).
astype
(
np
.
float64
)
self
.
x_np
[
np
.
abs
(
self
.
x_np
)
<
0.005
]
=
0.02
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_static_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out1
=
F
.
thresholded_relu
(
x
,
self
.
threshold
)
thresholded_relu
=
paddle
.
nn
.
ThresholdedReLU
(
self
.
threshold
)
out2
=
thresholded_relu
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
ref_thresholded_relu
(
self
.
x_np
,
self
.
threshold
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
thresholded_relu
(
x
,
self
.
threshold
)
thresholded_relu
=
paddle
.
nn
.
ThresholdedReLU
(
self
.
threshold
)
out2
=
thresholded_relu
(
x
)
out_ref
=
ref_thresholded_relu
(
self
.
x_np
,
self
.
threshold
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_fluid_api
(
self
):
paddle
.
enable_static
()
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out
=
fluid
.
layers
.
thresholded_relu
(
x
,
self
.
threshold
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
out_ref
=
ref_thresholded_relu
(
self
.
x_np
,
self
.
threshold
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
res
[
0
]),
True
)
def
test_errors
(
self
):
def
test_errors
(
self
):
with
program_guard
(
Program
()):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
thresholded_relu
,
1
)
self
.
assertRaises
(
TypeError
,
F
.
thresholded_relu
,
1
)
# The input dtype must be float16, float32, float64.
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
x_int32
=
paddle
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
thresholded_relu
,
x_int32
)
self
.
assertRaises
(
TypeError
,
F
.
thresholded_relu
,
x_int32
)
# support the input dtype is float16
# support the input dtype is float16
x_fp16
=
fluid
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
x_fp16
=
paddle
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
fluid
.
layers
.
thresholded_relu
(
x_fp16
)
F
.
thresholded_relu
(
x_fp16
)
def
ref_hardsigmoid
(
x
,
slope
=
0.166666666666667
,
offset
=
0.5
):
def
ref_hardsigmoid
(
x
,
slope
=
0.166666666666667
,
offset
=
0.5
):
...
@@ -2115,37 +2161,82 @@ class TestHardsigmoidAPI(unittest.TestCase):
...
@@ -2115,37 +2161,82 @@ class TestHardsigmoidAPI(unittest.TestCase):
F
.
hardsigmoid
(
x_fp16
)
F
.
hardsigmoid
(
x_fp16
)
def
ref_swish
(
x
):
out
=
x
*
expit
(
x
)
return
out
class
TestSwish
(
TestActivation
):
class
TestSwish
(
TestActivation
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"swish"
self
.
op_type
=
"swish"
self
.
init_dtype
()
self
.
init_dtype
()
np
.
random
.
seed
(
1024
)
np
.
random
.
seed
(
1024
)
X
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
10
,
12
]).
astype
(
self
.
dtype
)
beta
=
2.3
out
=
ref_swish
(
x
)
out
=
X
*
expit
(
beta
*
X
)
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'slope'
:
1.0
}
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
X
)}
self
.
attrs
=
{
'beta'
:
beta
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
if
self
.
dtype
==
np
.
float16
:
return
return
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSwishAPI
(
unittest
.
TestCase
):
# test paddle.nn.Swish, paddle.nn.functional.swish
def
setUp
(
self
):
np
.
random
.
seed
(
1024
)
self
.
x_np
=
np
.
random
.
uniform
(
-
1
,
1
,
[
10
,
12
]).
astype
(
np
.
float64
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_static_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out1
=
F
.
swish
(
x
)
swish
=
paddle
.
nn
.
Swish
()
out2
=
swish
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
ref_swish
(
self
.
x_np
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
swish
(
x
)
swish
=
paddle
.
nn
.
Swish
()
out2
=
swish
(
x
)
out_ref
=
ref_swish
(
self
.
x_np
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_fluid_api
(
self
):
paddle
.
enable_static
()
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out
=
fluid
.
layers
.
swish
(
x
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
out_ref
=
ref_swish
(
self
.
x_np
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
res
[
0
]),
True
)
class
TestSwishOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_errors
(
self
):
with
program_guard
(
Program
()):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
swish
,
1
)
self
.
assertRaises
(
TypeError
,
F
.
swish
,
1
)
# The input dtype must be float16, float32, float64.
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
x_int32
=
paddle
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
swish
,
x_int32
)
self
.
assertRaises
(
TypeError
,
F
.
swish
,
x_int32
)
# support the input dtype is float16
# support the input dtype is float16
x_fp16
=
fluid
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
x_fp16
=
paddle
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
fluid
.
layers
.
swish
(
x_fp16
)
F
.
swish
(
x_fp16
)
#------------------ Test Error Activation----------------------
#------------------ Test Error Activation----------------------
...
...
python/paddle/nn/__init__.py
浏览文件 @
74d3a550
...
@@ -69,7 +69,9 @@ from .layer.activation import Softmax #DEFINE_ALIAS
...
@@ -69,7 +69,9 @@ from .layer.activation import Softmax #DEFINE_ALIAS
from
.layer.activation
import
Softplus
#DEFINE_ALIAS
from
.layer.activation
import
Softplus
#DEFINE_ALIAS
from
.layer.activation
import
Softshrink
#DEFINE_ALIAS
from
.layer.activation
import
Softshrink
#DEFINE_ALIAS
from
.layer.activation
import
Softsign
#DEFINE_ALIAS
from
.layer.activation
import
Softsign
#DEFINE_ALIAS
from
.layer.activation
import
Swish
#DEFINE_ALIAS
from
.layer.activation
import
Tanhshrink
#DEFINE_ALIAS
from
.layer.activation
import
Tanhshrink
#DEFINE_ALIAS
from
.layer.activation
import
ThresholdedReLU
#DEFINE_ALIAS
from
.layer.activation
import
LogSoftmax
#DEFINE_ALIAS
from
.layer.activation
import
LogSoftmax
#DEFINE_ALIAS
from
.layer.activation
import
HSigmoid
#DEFINE_ALIAS
from
.layer.activation
import
HSigmoid
#DEFINE_ALIAS
from
.layer.activation
import
Maxout
#DEFINE_ALIAS
from
.layer.activation
import
Maxout
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
74d3a550
...
@@ -15,9 +15,7 @@
...
@@ -15,9 +15,7 @@
# TODO: define activation functions of neural network
# TODO: define activation functions of neural network
from
...fluid.layers
import
erf
#DEFINE_ALIAS
from
...fluid.layers
import
erf
#DEFINE_ALIAS
from
...fluid.layers
import
soft_relu
#DEFINE_ALIAS
from
...fluid.layers
import
soft_relu
#DEFINE_ALIAS
from
...fluid.layers
import
swish
#DEFINE_ALIAS
from
...fluid.layers
import
sigmoid
#DEFINE_ALIAS
from
...fluid.layers
import
sigmoid
#DEFINE_ALIAS
from
...fluid.layers
import
thresholded_relu
#DEFINE_ALIAS
from
...tensor.math
import
tanh
#DEFINE_ALIAS
from
...tensor.math
import
tanh
#DEFINE_ALIAS
__all__
=
[
__all__
=
[
...
@@ -787,8 +785,6 @@ def relu6(x, name=None):
...
@@ -787,8 +785,6 @@ def relu6(x, name=None):
import paddle.nn.functional as F
import paddle.nn.functional as F
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
out = F.relu6(x) # [0, 0.3, 6]
out = F.relu6(x) # [0, 0.3, 6]
"""
"""
...
@@ -839,8 +835,6 @@ def selu(x,
...
@@ -839,8 +835,6 @@ def selu(x,
import paddle.nn.functional as F
import paddle.nn.functional as F
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
"""
"""
...
@@ -1054,8 +1048,6 @@ def softplus(x, beta=1, threshold=20, name=None):
...
@@ -1054,8 +1048,6 @@ def softplus(x, beta=1, threshold=20, name=None):
import paddle.nn.functional as F
import paddle.nn.functional as F
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
"""
"""
...
@@ -1103,8 +1095,6 @@ def softshrink(x, threshold=0.5, name=None):
...
@@ -1103,8 +1095,6 @@ def softshrink(x, threshold=0.5, name=None):
import paddle.nn.functional as F
import paddle.nn.functional as F
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
"""
"""
...
@@ -1151,8 +1141,6 @@ def softsign(x, name=None):
...
@@ -1151,8 +1141,6 @@ def softsign(x, name=None):
import paddle.nn.functional as F
import paddle.nn.functional as F
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
"""
"""
...
@@ -1167,6 +1155,47 @@ def softsign(x, name=None):
...
@@ -1167,6 +1155,47 @@ def softsign(x, name=None):
return
out
return
out
def
swish
(
x
,
name
=
None
):
"""
swish activation.
.. math::
swish(x) =
\\
frac{x}{1 + e^{-x}}
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
x = paddle.to_tensor(np.array([-2., 0., 1.]))
out = F.swish(x) # [-0.238406, 0., 0.731059]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
swish
(
x
,
'slop'
,
1.0
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'swish'
)
helper
=
LayerHelper
(
'swish'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'swish'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'slope'
:
1.0
})
return
out
def
tanhshrink
(
x
,
name
=
None
):
def
tanhshrink
(
x
,
name
=
None
):
"""
"""
tanhshrink activation
tanhshrink activation
...
@@ -1190,8 +1219,6 @@ def tanhshrink(x, name=None):
...
@@ -1190,8 +1219,6 @@ def tanhshrink(x, name=None):
import paddle.nn.functional as F
import paddle.nn.functional as F
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
"""
"""
...
@@ -1206,6 +1233,52 @@ def tanhshrink(x, name=None):
...
@@ -1206,6 +1233,52 @@ def tanhshrink(x, name=None):
return
out
return
out
def
thresholded_relu
(
x
,
threshold
=
1.0
,
name
=
None
):
"""
thresholded relu activation.
.. math::
thresholded
\\
_relu(x) =
\\
begin{cases}
x,
\\
text{if } x > threshold
\\\\
0,
\\
text{otherwise}
\\
end{cases}
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
x = paddle.to_tensor(np.array([2., 0., 1.]))
out = F.thresholded_relu(x) # [2., 0., 0.]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
thresholded_relu
(
x
,
'threshold'
,
threshold
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'thresholded_relu'
)
helper
=
LayerHelper
(
'thresholded_relu'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'thresholded_relu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'threshold'
:
threshold
})
return
out
def
log_softmax
(
x
,
axis
=-
1
,
dtype
=
None
,
name
=
None
):
def
log_softmax
(
x
,
axis
=-
1
,
dtype
=
None
,
name
=
None
):
"""
"""
This operator implements the log_softmax layer. The calculation process is
This operator implements the log_softmax layer. The calculation process is
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
74d3a550
...
@@ -32,7 +32,9 @@ __all__ = [
...
@@ -32,7 +32,9 @@ __all__ = [
'Softplus'
,
'Softplus'
,
'Softshrink'
,
'Softshrink'
,
'Softsign'
,
'Softsign'
,
'Swish'
,
'Tanhshrink'
,
'Tanhshrink'
,
'ThresholdedReLU'
,
'LogSigmoid'
,
'LogSigmoid'
,
'LogSoftmax'
,
'LogSoftmax'
,
'Maxout'
,
'Maxout'
,
...
@@ -580,8 +582,6 @@ class ReLU6(layers.Layer):
...
@@ -580,8 +582,6 @@ class ReLU6(layers.Layer):
import paddle
import paddle
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
m = paddle.nn.ReLU6()
m = paddle.nn.ReLU6()
out = m(x) # [0, 0.3, 6]
out = m(x) # [0, 0.3, 6]
...
@@ -623,8 +623,6 @@ class SELU(layers.Layer):
...
@@ -623,8 +623,6 @@ class SELU(layers.Layer):
import paddle
import paddle
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
m = paddle.nn.SELU()
m = paddle.nn.SELU()
out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
...
@@ -801,8 +799,6 @@ class Softplus(layers.Layer):
...
@@ -801,8 +799,6 @@ class Softplus(layers.Layer):
import paddle
import paddle
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
m = paddle.nn.Softplus()
m = paddle.nn.Softplus()
out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
...
@@ -845,8 +841,6 @@ class Softshrink(layers.Layer):
...
@@ -845,8 +841,6 @@ class Softshrink(layers.Layer):
import paddle
import paddle
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
m = paddle.nn.Softshrink()
m = paddle.nn.Softshrink()
out = m(x) # [-0.4, 0, 0, 0.3]
out = m(x) # [-0.4, 0, 0, 0.3]
...
@@ -883,8 +877,6 @@ class Softsign(layers.Layer):
...
@@ -883,8 +877,6 @@ class Softsign(layers.Layer):
import paddle
import paddle
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
m = paddle.nn.Softsign()
m = paddle.nn.Softsign()
out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
...
@@ -898,6 +890,41 @@ class Softsign(layers.Layer):
...
@@ -898,6 +890,41 @@ class Softsign(layers.Layer):
return
F
.
softsign
(
x
,
self
.
_name
)
return
F
.
softsign
(
x
,
self
.
_name
)
class
Swish
(
layers
.
Layer
):
"""
Swish Activation.
.. math::
Swish(x) =
\\
frac{x}{1 + e^{-x}}
Parameters:
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
x = paddle.to_tensor(np.array([-2., 0., 1.]))
m = paddle.nn.Swish()
out = m(x) # [-0.238406, 0., 0.731059]
"""
def
__init__
(
self
,
name
=
None
):
super
(
Swish
,
self
).
__init__
()
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
swish
(
x
,
self
.
_name
)
class
Tanhshrink
(
layers
.
Layer
):
class
Tanhshrink
(
layers
.
Layer
):
"""
"""
Tanhshrink Activation
Tanhshrink Activation
...
@@ -920,8 +947,6 @@ class Tanhshrink(layers.Layer):
...
@@ -920,8 +947,6 @@ class Tanhshrink(layers.Layer):
import paddle
import paddle
import numpy as np
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
m = paddle.nn.Tanhshrink()
m = paddle.nn.Tanhshrink()
out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
...
@@ -935,6 +960,46 @@ class Tanhshrink(layers.Layer):
...
@@ -935,6 +960,46 @@ class Tanhshrink(layers.Layer):
return
F
.
tanhshrink
(
x
,
self
.
_name
)
return
F
.
tanhshrink
(
x
,
self
.
_name
)
class
ThresholdedReLU
(
layers
.
Layer
):
"""
Thresholded ReLU Activation
.. math::
ThresholdedReLU(x) =
\\
begin{cases}
x,
\\
text{if } x > threshold
\\\\
0,
\\
text{otherwise}
\\
end{cases}
Parameters:
threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
x = paddle.to_tensor(np.array([2., 0., 1.]))
m = paddle.nn.ThresholdedReLU()
out = m(x) # [2., 0., 0.]
"""
def
__init__
(
self
,
threshold
=
1.0
,
name
=
None
):
super
(
ThresholdedReLU
,
self
).
__init__
()
self
.
_threshold
=
threshold
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
thresholded_relu
(
x
,
self
.
_threshold
,
self
.
_name
)
class
LogSigmoid
(
layers
.
Layer
):
class
LogSigmoid
(
layers
.
Layer
):
"""
"""
LogSigmoid Activation.
LogSigmoid Activation.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录