未验证 提交 73e3fc96 编写于 作者: 光明和真理's avatar 光明和真理 提交者: GitHub

[MLU]add mlu kernel for tril_triu (#43444)

上级 d1a53649
...@@ -2808,6 +2808,15 @@ MLUCnnlDCNDesc::~MLUCnnlDCNDesc() { ...@@ -2808,6 +2808,15 @@ MLUCnnlDCNDesc::~MLUCnnlDCNDesc() {
} }
} }
/* static */ void MLUCnnl::TrilTriu(
const ExecutionContext& ctx, const int diagonal_k, const bool tri_up_mode,
const cnnlTensorDescriptor_t input_desc, const void* input,
const cnnlTensorDescriptor_t output_desc, void* output) {
cnnlHandle_t handle = GetHandleFromCTX(ctx);
PADDLE_ENFORCE_MLU_SUCCESS(cnnlTri(handle, diagonal_k, tri_up_mode,
input_desc, input, output_desc, output));
}
/* static */ void MLUCnnl::MatrixBandPart( /* static */ void MLUCnnl::MatrixBandPart(
const ExecutionContext& ctx, const cnnlTensorDescriptor_t data_desc, const ExecutionContext& ctx, const cnnlTensorDescriptor_t data_desc,
const void* input, const int num_lower, const int num_upper, void* output) { const void* input, const int num_lower, const int num_upper, void* output) {
......
...@@ -1195,6 +1195,12 @@ class MLUCnnl { ...@@ -1195,6 +1195,12 @@ class MLUCnnl {
const void* input, const void* input,
const cnnlTensorDescriptor_t output_desc, void* output); const cnnlTensorDescriptor_t output_desc, void* output);
static void TrilTriu(const ExecutionContext& ctx, const int diagonal_k,
const bool tri_up_mode,
const cnnlTensorDescriptor_t input_desc,
const void* input,
const cnnlTensorDescriptor_t output_desc, void* output);
static void MatrixBandPart(const ExecutionContext& ctx, static void MatrixBandPart(const ExecutionContext& ctx,
const cnnlTensorDescriptor_t data_desc, const cnnlTensorDescriptor_t data_desc,
const void* input, const int num_lower, const void* input, const int num_lower,
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
template <typename T>
class TrilTriuMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
int diagonal = ctx.Attr<int>("diagonal");
bool lower = ctx.Attr<bool>("lower");
bool upper;
if (lower) {
upper = 0;
} else {
upper = 1;
}
out->mutable_data<T>(ctx.GetPlace());
MLUCnnlTensorDesc x_desc(*x);
MLUCnnlTensorDesc out_desc(*out);
MLUCnnl::TrilTriu(ctx, diagonal, upper, x_desc.get(), GetBasePtr(x),
out_desc.get(), GetBasePtr(out));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(tril_triu, ops::TrilTriuMLUKernel<float>,
ops::TrilTriuMLUKernel<int32_t>,
ops::TrilTriuMLUKernel<plat::float16>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import sys
sys.path.append('..')
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.tensor as tensor
from paddle.fluid.framework import Program, program_guard
paddle.enable_static()
class TrilTriuOpDefaultTest(OpTest):
""" the base class of other op testcases
"""
def setUp(self):
self.initTestCase()
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
self.python_api = paddle.tril if self.real_op_type == 'tril' else paddle.triu
self.real_np_op = getattr(np, self.real_op_type)
self.op_type = "tril_triu"
self.inputs = {'X': self.X}
self.attrs = {
'diagonal': self.diagonal,
'lower': True if self.real_op_type == 'tril' else False,
}
self.outputs = {
'Out':
self.real_np_op(self.X, self.diagonal)
if self.diagonal else self.real_np_op(self.X)
}
def test_check_output(self):
self.check_output_with_place(self.place)
def initTestCase(self):
self.real_op_type = np.random.choice(['triu', 'tril'])
self.diagonal = None
self.X = np.arange(1, 101, dtype="float32").reshape([10, -1])
def case_generator(op_type, Xshape, diagonal, expected):
"""
Generate testcases with the params shape of X, diagonal and op_type.
If arg`expercted` is 'success', it will register an Optest case and expect to pass.
Otherwise, it will register an API case and check the expect failure.
"""
cls_name = "{0}_{1}_shape_{2}_diag_{3}".format(expected, op_type, Xshape,
diagonal)
errmsg = {
"diagonal: TypeError":
"diagonal in {} must be a python Int".format(op_type),
"input: ValueError":
"x shape in {} must be at least 2-D".format(op_type),
}
class FailureCase(unittest.TestCase):
def test_failure(self):
paddle.enable_static()
data = fluid.data(shape=Xshape, dtype='float64', name=cls_name)
with self.assertRaisesRegexp(eval(expected.split(':')[-1]),
errmsg[expected]):
getattr(tensor, op_type)(x=data, diagonal=diagonal)
class SuccessCase(TrilTriuOpDefaultTest):
def initTestCase(self):
paddle.enable_static()
self.real_op_type = op_type
self.diagonal = diagonal
self.X = np.random.random(Xshape).astype("float32")
CLASS = locals()['SuccessCase' if expected == "success" else 'FailureCase']
CLASS.__name__ = cls_name
globals()[cls_name] = CLASS
## NOTE: meaningful diagonal is [1 - min(H, W), max(H, W) -1]
## test the diagonal just at the border, upper/lower the border,
## negative/positive integer within range and a zero
cases = {
'success': {
(2, 2, 3, 4, 5): [-100, -3, -1, 0, 2, 4, 100], # normal shape
(10, 10, 1, 1): [-100, -1, 0, 1, 100], # small size of matrix
},
'diagonal: TypeError': {
(20, 20): [
'2020',
[20],
{
20: 20
},
(20, 20),
20.20,
], # str, list, dict, tuple, float
},
'input: ValueError': {
(2020, ): [None],
},
}
for _op_type in ['tril', 'triu']:
for _expected, _params in cases.items():
for _Xshape, _diaglist in _params.items():
list(
map(
lambda _diagonal: case_generator(
_op_type, _Xshape, _diagonal, _expected), _diaglist))
class TestTrilTriuOpAPI(unittest.TestCase):
""" test case by using API and has -1 dimension
"""
def test_api(self):
paddle.enable_static()
dtypes = ['float16', 'float32', 'int32']
for dtype in dtypes:
prog = Program()
startup_prog = Program()
with program_guard(prog, startup_prog):
data = np.random.random([1, 9, 9, 4]).astype(dtype)
x = fluid.data(shape=[1, 9, -1, 4], dtype=dtype, name='x')
tril_out, triu_out = tensor.tril(x), tensor.triu(x)
place = fluid.MLUPlace(0)
exe = fluid.Executor(place)
tril_out, triu_out = exe.run(
fluid.default_main_program(),
feed={"x": data},
fetch_list=[tril_out, triu_out],
)
self.assertTrue(np.allclose(tril_out, np.tril(data)))
self.assertTrue(np.allclose(triu_out, np.triu(data)))
def test_api_with_dygraph(self):
paddle.disable_static()
dtypes = ['float16', 'float32', 'int32']
for dtype in dtypes:
with fluid.dygraph.guard():
data = np.random.random([1, 9, 9, 4]).astype(dtype)
x = fluid.dygraph.to_variable(data)
tril_out, triu_out = tensor.tril(x).numpy(), tensor.triu(
x).numpy()
self.assertTrue(np.allclose(tril_out, np.tril(data)))
self.assertTrue(np.allclose(triu_out, np.triu(data)))
def test_fluid_api(self):
paddle.enable_static()
dtypes = ['float16', 'float32', 'int32']
for dtype in dtypes:
prog = Program()
startup_prog = Program()
with program_guard(prog, startup_prog):
data = np.random.random([1, 9, 9, 4]).astype(dtype)
x = fluid.data(shape=[1, 9, -1, 4], dtype=dtype, name='x')
triu_out = fluid.layers.triu(x)
place = fluid.MLUPlace(0)
exe = fluid.Executor(place)
triu_out = exe.run(fluid.default_main_program(),
feed={"x": data},
fetch_list=[triu_out])
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册