Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
739ff181
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
739ff181
编写于
2月 27, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
V2.testing complete
上级
37d54cb7
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
104 addition
and
52 deletion
+104
-52
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+16
-15
python/paddle/v2/event.py
python/paddle/v2/event.py
+9
-1
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+79
-36
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
739ff181
...
...
@@ -21,28 +21,29 @@ def main():
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
trainer
=
paddle
.
trainer
.
SGD
(
topology
=
cost
,
parameters
=
parameters
,
update_equation
=
adam_optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
if
event
.
batch_id
%
1000
==
0
:
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
dataset
.
mnist
.
test_creator
(),
batch_size
=
256
))
print
"Pass %d, Batch %d, Cost %f, %s, Testing metrics %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
,
result
.
metrics
)
else
:
pass
trainer
=
paddle
.
trainer
.
SGD
(
update_equation
=
adam_optimizer
)
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train_creator
(),
buf_size
=
8192
),
batch_size
=
32
),
topology
=
cost
,
parameters
=
parameters
,
event_handler
=
event_handler
,
data_types
=
[
# data_types will be removed, It should be in
# network topology
(
'pixel'
,
images
.
type
),
(
'label'
,
label
.
type
)],
reader_dict
=
{
'pixel'
:
0
,
'label'
:
1
}
)
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train_creator
(),
buf_size
=
8192
),
batch_size
=
32
),
event_handler
=
event_handler
)
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/event.py
浏览文件 @
739ff181
...
...
@@ -11,7 +11,10 @@ There are:
TODO(yuyang18): Complete it!
"""
import
py_paddle.swig_paddle
as
api
__all__
=
[
'EndIteration'
,
'BeginIteration'
,
'BeginPass'
,
'EndPass'
]
__all__
=
[
'EndIteration'
,
'BeginIteration'
,
'BeginPass'
,
'EndPass'
,
'TestResult'
]
class
WithMetric
(
object
):
...
...
@@ -30,6 +33,11 @@ class WithMetric(object):
return
retv
class
TestResult
(
WithMetric
):
def
__init__
(
self
,
evaluator
):
super
(
TestResult
,
self
).
__init__
(
evaluator
)
class
BeginPass
(
object
):
"""
Event On One Pass Training Start.
...
...
python/paddle/v2/trainer.py
浏览文件 @
739ff181
...
...
@@ -23,6 +23,13 @@ def default_event_handler(event):
pass
def
__bfs_travel_topology__
(
callback
,
*
topologies
):
for
each_layer
in
topologies
:
callback
(
each_layer
)
__bfs_travel_topology__
(
callback
,
*
each_layer
.
__parent_layers__
.
values
())
class
ITrainer
(
object
):
"""
The interface of Trainer. The only exposed method is `train`.
...
...
@@ -43,26 +50,49 @@ class ITrainer(object):
class
SGD
(
ITrainer
):
def
__init__
(
self
,
update_equation
):
def
__init__
(
self
,
topology
,
parameters
,
update_equation
):
"""
Simple SGD Trainer.
:param update_equation: The optimizer object.
:type update_equation: v2_optimizer.Optimizer
"""
if
not
isinstance
(
parameters
,
v2_parameters
.
Parameters
):
raise
TypeError
(
'parameters should be parameters'
)
if
not
isinstance
(
update_equation
,
v2_optimizer
.
Optimizer
):
raise
Valu
eError
(
"update equation parameter must be "
raise
Typ
eError
(
"update equation parameter must be "
"paddle.v2.optimizer.Optimizer"
)
self
.
__optimizer__
=
update_equation
self
.
__topology__
=
topology
self
.
__parameters__
=
parameters
self
.
__topology_in_proto__
=
v2_layer
.
parse_network
(
topology
)
data_types
=
dict
()
def
__travel__
(
l
):
if
hasattr
(
l
,
'type'
):
data_types
[
l
.
name
]
=
l
.
type
if
not
isinstance
(
topology
,
collections
.
Sequence
):
topology
=
[
topology
]
__bfs_travel_topology__
(
__travel__
,
*
topology
)
self
.
__data_types__
=
[
(
iname
,
data_types
[
iname
])
for
iname
in
self
.
__topology_in_proto__
.
input_layer_names
]
if
not
isinstance
(
self
.
__topology_in_proto__
,
ModelConfig
):
raise
TypeError
(
'topology should be a model config'
)
def
train
(
self
,
reader
,
topology
,
parameters
,
num_passes
=
1
,
event_handler
=
None
,
data_types
=
None
,
reader_dict
=
None
):
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
self
.
__topology_in_proto__
,
api
.
CREATE_MODE_NORMAL
,
self
.
__optimizer__
.
enable_types
())
assert
isinstance
(
gm
,
api
.
GradientMachine
)
parameters
.
append_gradient_machine
(
gm
)
self
.
__gradient_machine__
=
gm
self
.
__gradient_machine__
.
randParameters
()
def
train
(
self
,
reader
,
num_passes
=
1
,
event_handler
=
None
,
reader_dict
=
None
):
"""
Training method. Will train num_passes of input data.
...
...
@@ -79,26 +109,21 @@ class SGD(ITrainer):
if
event_handler
is
None
:
event_handler
=
default_event_handler
topology
=
v2_layer
.
parse_network
(
topology
)
if
reader_dict
is
None
:
reader_dict
=
self
.
default_reader_dict
()
__check_train_args__
(
**
locals
())
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
topology
,
api
.
CREATE_MODE_NORMAL
,
self
.
__optimizer__
.
enable_types
())
assert
isinstance
(
gm
,
api
.
GradientMachine
)
parameters
.
append_gradient_machine
(
gm
)
gm
.
randParameters
()
updater
=
self
.
__optimizer__
.
create_local_updater
()
updater
.
init
(
gm
)
updater
.
init
(
self
.
__gradient_machine__
)
gm
.
start
()
batch_evaluator
=
gm
.
makeEvaluator
()
self
.
__gradient_machine__
.
start
()
batch_evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
assert
isinstance
(
batch_evaluator
,
api
.
Evaluator
)
pass_evaluator
=
gm
.
makeEvaluator
()
pass_evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
assert
isinstance
(
pass_evaluator
,
api
.
Evaluator
)
out_args
=
api
.
Arguments
.
createArguments
(
0
)
feeder
=
DataFeeder
(
data_types
,
reader_dict
)
feeder
=
DataFeeder
(
self
.
__data_types__
,
reader_dict
)
for
pass_id
in
xrange
(
num_passes
):
event_handler
(
v2_event
.
BeginPass
(
pass_id
))
...
...
@@ -106,16 +131,18 @@ class SGD(ITrainer):
updater
.
startPass
()
for
batch_id
,
data_batch
in
enumerate
(
reader
()):
pass_type
=
updater
.
startBatch
(
len
(
data_batch
))
gm
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
self
.
__gradient_machine__
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
batch_evaluator
.
start
()
event_handler
(
v2_event
.
BeginIteration
(
pass_id
=
pass_id
,
batch_id
=
batch_id
))
pass_type
=
updater
.
startBatch
(
len
(
data_batch
))
gm
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
gm
.
eval
(
pass_evaluator
)
gm
.
eval
(
batch_evaluator
)
for
each_param
in
gm
.
getParameters
():
self
.
__gradient_machine__
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
self
.
__gradient_machine__
.
eval
(
pass_evaluator
)
self
.
__gradient_machine__
.
eval
(
batch_evaluator
)
for
each_param
in
self
.
__gradient_machine__
.
getParameters
():
updater
.
update
(
each_param
)
# Get cost. We use numpy to calculate total cost for this batch.
cost_vec
=
out_args
.
getSlotValue
(
0
)
...
...
@@ -133,10 +160,32 @@ class SGD(ITrainer):
updater
.
finishPass
()
pass_evaluator
.
finish
()
event_handler
(
v2_event
.
EndPass
(
pass_id
,
evaluator
=
pass_evaluator
))
gm
.
finish
()
self
.
__gradient_machine__
.
finish
()
def
default_reader_dict
(
self
):
reader_dict
=
dict
()
for
i
,
tp
in
enumerate
(
self
.
__data_types__
):
reader_dict
[
tp
[
0
]]
=
i
return
reader_dict
def
test
(
self
,
reader
,
reader_dict
=
None
):
if
reader_dict
is
None
:
reader_dict
=
self
.
default_reader_dict
()
feeder
=
DataFeeder
(
self
.
__data_types__
,
reader_dict
)
evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
out_args
=
api
.
Arguments
.
createArguments
(
0
)
evaluator
.
start
()
for
data_batch
in
reader
():
self
.
__gradient_machine__
.
forward
(
feeder
(
data_batch
),
out_args
,
api
.
PASS_TEST
)
self
.
__gradient_machine__
.
eval
(
evaluator
)
evaluator
.
finish
()
return
v2_event
.
TestResult
(
evaluator
=
evaluator
)
def
__check_train_args__
(
reader
,
topology
,
parameters
,
event_handler
,
**
kwargs
):
def
__check_train_args__
(
reader
,
event_handler
,
**
kwargs
):
"""
Check train function's argument types
"""
...
...
@@ -144,11 +193,5 @@ def __check_train_args__(reader, topology, parameters, event_handler, **kwargs):
raise
TypeError
(
'train_data_reader should be a function, '
'which can return a iterator'
)
if
not
isinstance
(
topology
,
ModelConfig
):
raise
TypeError
(
'topology should be a model config'
)
if
not
isinstance
(
parameters
,
v2_parameters
.
Parameters
):
raise
TypeError
(
'parameters should be a parameter pool'
)
if
not
callable
(
event_handler
):
raise
TypeError
(
'event handler should be a function'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录