未验证 提交 7323be17 编写于 作者: X Xin Pan 提交者: GitHub

Merge pull request #10956 from panyx0718/infer2

paddle inference interface implementation
......@@ -13,10 +13,45 @@
# limitations under the License.
#
function(inference_api_test TARGET_NAME TEST_SRC DEP_TEST)
set(options "")
set(oneValueArgs "")
set(multiValueArgs ARGS)
cmake_parse_arguments(inference_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
set(arg_list "")
if(inference_test_ARGS)
foreach(arg ${inference_test_ARGS})
list(APPEND arg_list "_${arg}")
endforeach()
else()
list(APPEND arg_list "_")
endif()
foreach(arg ${arg_list})
string(REGEX REPLACE "^_$" "" arg "${arg}")
cc_test(${TARGET_NAME}
SRCS ${TEST_SRC}
DEPS paddle_fluid_api paddle_inference_api paddle_inference_api_impl
ARGS --dirname=${PYTHON_TESTS_DIR}/book/)
# set_tests_properties(${TARGET_NAME}
# PROPERTIES DEPENDS ${DEP_TEST})
endforeach()
endfunction(inference_api_test)
cc_library(paddle_inference_api
SRCS paddle_inference_api.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
cc_library(paddle_inference_api_impl
SRCS paddle_inference_api_impl.cc
DEPS paddle_inference_api paddle_fluid_api)
cc_test(test_paddle_inference_api
SRCS test_paddle_inference_api.cc
DEPS paddle_inference_api)
inference_api_test(test_paddle_inference_api_impl
test_paddle_inference_api_impl.cc
test_word2vec)
......@@ -27,29 +27,38 @@
namespace paddle {
enum PaddleDType {
FLOAT32,
INT64,
};
struct PaddleBuf {
void* data; // pointer to the data memory.
size_t length; // number of memory bytes.
};
struct PaddleTensor {
std::string name; // variable name.
std::vector<int> shape;
std::vector<unsigned char> data; // bytes of data.
size_t type{typeid(float).hash_code()}; // hash of type
PaddleBuf data; // blob of data.
PaddleDType dtype;
};
/*
* A simple Inference API for Paddle. Currently this API might just be used by
* non-sequence scenerios.
* TODO(Superjomn) Prepare another API for NLP-related usages.
*/
* A simple Inference API for Paddle. Currently this API might just be used by
* non-sequence scenerios.
* TODO(Superjomn) Prepare another API for NLP-related usages.
*/
class PaddlePredictor {
public:
struct Config;
PaddlePredictor() = default;
PaddlePredictor(const PaddlePredictor&) = delete;
// One drived class should has such a constructor
// PaddlePredictor(const XConfig& config);
// The XConfig is a derived class of Config.
// Predict an record.
// The caller should be responsible for allocating and releasing the memory of
// `inputs`. `inputs` should be alive until Run returns. caller should be
// responsible for releasing the memory of `output_data`.
virtual bool Run(const std::vector<PaddleTensor>& inputs,
std::vector<PaddleTensor>* output_data) = 0;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <sys/time.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "paddle/contrib/inference/paddle_inference_api_impl.h"
namespace paddle {
namespace {
// Timer for timer
class Timer {
public:
double start;
double startu;
void tic() {
struct timeval tp;
gettimeofday(&tp, NULL);
start = tp.tv_sec;
startu = tp.tv_usec;
}
double toc() {
struct timeval tp;
gettimeofday(&tp, NULL);
double used_time_ms =
(tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0;
return used_time_ms;
}
};
template <class T>
std::string num2str(T a) {
std::stringstream istr;
istr << a;
return istr.str();
}
} // namespace
bool PaddlePredictorImpl::Init() {
VLOG(3) << "Predictor::init()";
// TODO(panyx0718): Should CPU vs GPU device be decided by id?
if (config_.device >= 0) {
place_ = paddle::platform::CUDAPlace(config_.device);
} else {
place_ = paddle::platform::CPUPlace();
}
paddle::framework::InitDevices(false);
executor_.reset(new paddle::framework::Executor(place_));
scope_.reset(new paddle::framework::Scope());
// Initialize the inference program
if (!config_.model_dir.empty()) {
// Parameters are saved in separate files sited in
// the specified `dirname`.
inference_program_ = paddle::inference::Load(
executor_.get(), scope_.get(), config_.model_dir);
} else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
// All parameters are saved in a single file.
// The file names should be consistent with that used
// in Python API `fluid.io.save_inference_model`.
inference_program_ = paddle::inference::Load(
executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
} else {
LOG(ERROR) << "fail to load inference model.";
return false;
}
ctx_ = executor_->Prepare(*inference_program_, 0);
// Create variables
// TODO(panyx0718): Why need to test share_variables here?
if (config_.share_variables) {
executor_->CreateVariables(*inference_program_, scope_.get(), 0);
}
// Get the feed_target_names and fetch_target_names
feed_target_names_ = inference_program_->GetFeedTargetNames();
fetch_target_names_ = inference_program_->GetFetchTargetNames();
return true;
}
bool PaddlePredictorImpl::Run(const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data) {
VLOG(3) << "Predictor::predict";
Timer timer;
timer.tic();
// set feed variable
std::map<std::string, const paddle::framework::LoDTensor *> feed_targets;
std::vector<paddle::framework::LoDTensor> feeds;
if (!SetFeed(inputs, &feeds)) {
LOG(ERROR) << "fail to set feed";
return false;
}
for (size_t i = 0; i < feed_target_names_.size(); ++i) {
feed_targets[feed_target_names_[i]] = &feeds[i];
}
// get fetch variable
std::map<std::string, paddle::framework::LoDTensor *> fetch_targets;
std::vector<paddle::framework::LoDTensor> fetchs;
fetchs.resize(fetch_target_names_.size());
for (size_t i = 0; i < fetch_target_names_.size(); ++i) {
fetch_targets[fetch_target_names_[i]] = &fetchs[i];
}
// Run the inference program
// if share variables, we need not create variables
executor_->RunPreparedContext(ctx_.get(),
scope_.get(),
&feed_targets,
&fetch_targets,
!config_.share_variables);
if (!GetFetch(fetchs, output_data)) {
LOG(ERROR) << "fail to get fetchs";
return false;
}
VLOG(3) << "predict cost: " << timer.toc() << "ms";
return true;
}
std::unique_ptr<PaddlePredictor> PaddlePredictorImpl::Clone() {
VLOG(3) << "Predictor::clone";
std::unique_ptr<PaddlePredictorImpl> cls(new PaddlePredictorImpl(config_));
if (!cls->InitShared(this)) {
LOG(ERROR) << "fail to call InitShared";
return nullptr;
}
return cls;
}
// TODO(panyx0718): Consider merge with Init()?
bool PaddlePredictorImpl::InitShared(PaddlePredictorImpl *cls) {
VLOG(3) << "Predictor::init_shared";
// 1. Define place, executor, scope
if (this->config_.device >= 0) {
place_ = paddle::platform::CUDAPlace();
} else {
place_ = paddle::platform::CPUPlace();
}
this->executor_.reset(new paddle::framework::Executor(this->place_));
this->scope_.reset(new paddle::framework::Scope());
// Initialize the inference program
if (!this->config_.model_dir.empty()) {
// Parameters are saved in separate files sited in
// the specified `dirname`.
this->inference_program_ = paddle::inference::Load(
this->executor_.get(), this->scope_.get(), this->config_.model_dir);
} else if (!this->config_.prog_file.empty() &&
!this->config_.param_file.empty()) {
// All parameters are saved in a single file.
// The file names should be consistent with that used
// in Python API `fluid.io.save_inference_model`.
this->inference_program_ =
paddle::inference::Load(this->executor_.get(),
this->scope_.get(),
this->config_.prog_file,
this->config_.param_file);
}
this->ctx_ = this->executor_->Prepare(*this->inference_program_, 0);
// 3. create variables
// TODO(panyx0718): why test share_variables.
if (config_.share_variables) {
this->executor_->CreateVariables(
*this->inference_program_, this->scope_.get(), 0);
}
// 4. Get the feed_target_names and fetch_target_names
this->feed_target_names_ = this->inference_program_->GetFeedTargetNames();
this->fetch_target_names_ = this->inference_program_->GetFetchTargetNames();
return true;
}
bool PaddlePredictorImpl::SetFeed(
const std::vector<PaddleTensor> &inputs,
std::vector<paddle::framework::LoDTensor> *feeds) {
VLOG(3) << "Predictor::set_feed";
if (inputs.size() != feed_target_names_.size()) {
LOG(ERROR) << "wrong feed input size.";
return false;
}
for (size_t i = 0; i < feed_target_names_.size(); ++i) {
paddle::framework::LoDTensor input;
paddle::framework::DDim ddim =
paddle::framework::make_ddim(inputs[i].shape);
void *input_ptr;
if (inputs[i].dtype == PaddleDType::INT64) {
input_ptr =
input.mutable_data<int64_t>(ddim, paddle::platform::CPUPlace());
} else if (inputs[i].dtype == PaddleDType::FLOAT32) {
input_ptr = input.mutable_data<float>(ddim, paddle::platform::CPUPlace());
} else {
LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
return false;
}
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr),
inputs[i].data.data,
inputs[i].data.length);
feeds->push_back(input);
LOG(ERROR) << "Actual feed type " << feeds->back().type().name();
}
return true;
}
bool PaddlePredictorImpl::GetFetch(
const std::vector<paddle::framework::LoDTensor> &fetchs,
std::vector<PaddleTensor> *outputs) {
VLOG(3) << "Predictor::get_fetch";
outputs->resize(fetchs.size());
for (size_t i = 0; i < fetchs.size(); ++i) {
// TODO(panyx0718): Support fetch of other types.
if (fetchs[i].type() != typeid(float)) {
LOG(ERROR) << "only support fetching float now.";
return false;
}
std::vector<int> shape;
auto dims_i = fetchs[i].dims();
auto lod = fetchs[i].lod();
const float *output_ptr = fetchs[i].data<float>();
// const int64_t* output_ptr = fetchs[i].data<int64_t>();
auto num = fetchs[i].numel();
std::vector<float> data;
if (0 == lod.size()) {
std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
for (int j = 0; j < dims_i.size(); ++j) {
shape.push_back(dims_i[j]);
}
} else {
// for batch detection
// image[0] -> output[0] shape {145, 6}
// image[1] -> output[1] shape {176, 6}
// then,
// the batch output shape {321, 6}
// the lod {{0, 145, 321}}
// so we should append output[0] to {176, 6}
size_t max_dim = 0;
for (size_t j = 1; j < lod[0].size(); j++) {
max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
}
size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
if (max_dim > 0) {
data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
}
for (size_t j = 1; j < lod[0].size(); j++) {
size_t start = lod[0][j - 1] * common_dim;
size_t end = lod[0][j] * common_dim;
if (end > start) {
std::copy(output_ptr + start,
output_ptr + end,
data.begin() + (j - 1) * max_dim * common_dim);
}
}
shape.push_back(lod[0].size() - 1);
shape.push_back(max_dim);
for (int j = 1; j < dims_i.size(); ++j) {
shape.push_back(dims_i[j]);
}
}
outputs->at(i).shape = shape;
outputs->at(i).data.length = sizeof(float) * data.size();
outputs->at(i).data.data = malloc(outputs->at(i).data.length);
std::memcpy(
outputs->at(i).data.data, data.data(), outputs->at(i).data.length);
outputs->at(i).dtype = PaddleDType::FLOAT32;
// TODO(panyx0718): support other types? fill tensor name? avoid a copy.
}
return true;
}
std::unique_ptr<PaddlePredictorImpl> CreatePaddlePredictorImpl(
const VisConfig &config) {
VLOG(3) << "create PaddlePredictorImpl";
// 1. GPU memeroy
std::vector<std::string> flags;
if (config.fraction_of_gpu_memory >= 0.0f ||
config.fraction_of_gpu_memory <= 0.95f) {
flags.push_back("dummpy");
std::string flag = "--fraction_of_gpu_memory_to_use=" +
num2str<float>(config.fraction_of_gpu_memory);
flags.push_back(flag);
VLOG(3) << "set flag: " << flag;
framework::InitGflags(flags);
}
std::unique_ptr<PaddlePredictorImpl> predictor(
new PaddlePredictorImpl(config));
if (!predictor->Init()) {
return nullptr;
}
return predictor;
}
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <glog/logging.h>
#include <memory>
#include <string>
#include <vector>
#include "paddle/contrib/inference/paddle_inference_api.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
struct VisConfig : public PaddlePredictor::Config {
int device;
float fraction_of_gpu_memory;
std::string prog_file;
std::string param_file;
bool share_variables;
};
/*
* Do not use this, just a demo indicating how to customize a Predictor.
*/
class PaddlePredictorImpl : public PaddlePredictor {
public:
explicit PaddlePredictorImpl(const VisConfig &config) : config_(config) {}
bool Init();
bool Run(const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data) override;
std::unique_ptr<PaddlePredictor> Clone() override;
~PaddlePredictorImpl() override{};
private:
bool InitShared(PaddlePredictorImpl *cls);
bool SetFeed(const std::vector<PaddleTensor> &input_datas,
std::vector<paddle::framework::LoDTensor> *feeds);
bool GetFetch(const std::vector<paddle::framework::LoDTensor> &fetchs,
std::vector<PaddleTensor> *output_data);
VisConfig config_;
paddle::platform::Place place_;
std::unique_ptr<paddle::framework::Executor> executor_;
std::unique_ptr<paddle::framework::Scope> scope_;
std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx_;
std::unique_ptr<paddle::framework::ProgramDesc> inference_program_;
std::vector<std::string> feed_target_names_;
std::vector<std::string> fetch_target_names_;
};
std::unique_ptr<PaddlePredictorImpl> CreatePaddlePredictorImpl(
const VisConfig &config);
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "paddle/contrib/inference/paddle_inference_api_impl.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
namespace paddle {
PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
PaddleTensor pt;
pt.data.data = t->data<void>();
if (t->type() == typeid(int64_t)) {
pt.data.length = t->numel() * sizeof(int64_t);
pt.dtype = PaddleDType::INT64;
} else if (t->type() == typeid(float)) {
pt.data.length = t->numel() * sizeof(float);
pt.dtype = PaddleDType::FLOAT32;
} else {
LOG(FATAL) << "unsupported type.";
}
pt.shape = framework::vectorize2int(t->dims());
return pt;
}
TEST(paddle_inference_api_impl, word2vec) {
VisConfig config;
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
LOG(INFO) << "dirname " << config.model_dir;
config.fraction_of_gpu_memory = 0.85;
config.device = 0;
config.share_variables = true;
std::unique_ptr<PaddlePredictorImpl> predictor =
CreatePaddlePredictorImpl(config);
framework::LoDTensor first_word, second_word, third_word, fourth_word;
framework::LoD lod{{0, 1}};
int64_t dict_size = 2073; // The size of dictionary
SetupLoDTensor(&first_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&second_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&third_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);
std::vector<PaddleTensor> cpu_feeds;
cpu_feeds.push_back(LodTensorToPaddleTensor(&first_word));
cpu_feeds.push_back(LodTensorToPaddleTensor(&second_word));
cpu_feeds.push_back(LodTensorToPaddleTensor(&third_word));
cpu_feeds.push_back(LodTensorToPaddleTensor(&fourth_word));
std::vector<PaddleTensor> outputs;
ASSERT_TRUE(predictor->Run(cpu_feeds, &outputs));
ASSERT_EQ(outputs.size(), 1);
for (size_t i = 0; i < outputs.size(); ++i) {
size_t len = outputs[i].data.length;
float* data = static_cast<float*>(outputs[i].data.data);
for (int j = 0; j < len / sizeof(float); ++j) {
ASSERT_LT(data[j], 1.0);
ASSERT_GT(data[j], -1.0);
}
free(outputs[i].data.data);
}
}
} // namespace paddle
set(FLUID_CORE_MODULES proto_desc memory lod_tensor executor init)
# TODO(panyx0718): Should this be called paddle_fluid_inference_api_internal?
cc_library(paddle_fluid_api
SRCS io.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册