diff --git a/paddle/fluid/operators/p_norm_op_npu.cc b/paddle/fluid/operators/p_norm_op_npu.cc new file mode 100644 index 0000000000000000000000000000000000000000..3c5d1a36e9c273f3a5b50d445b47dcb80dd79266 --- /dev/null +++ b/paddle/fluid/operators/p_norm_op_npu.cc @@ -0,0 +1,92 @@ +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/p_norm_op.h" +#include "paddle/fluid/operators/npu_op_runner.h" + +namespace paddle { +namespace operators { + +template +class PnormNPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in_x = ctx.Input("X"); + auto* out_norm = ctx.Output("Out"); + out_norm->mutable_data(ctx.GetPlace()); + + float porder = ctx.Attr("porder"); + int axis = ctx.Attr("axis"); + bool keepdim = ctx.Attr("keepdim"); + + auto xdim = in_x->dims(); + if (axis < 0) axis = xdim.size() + axis; + + auto stream = + ctx.template device_context() + .stream(); + + int p = 0; + bool combine_op = + !(porder == 0 || porder == INFINITY || porder == -INFINITY); + if (porder == INFINITY) { + p = INT_MAX; + } else if (porder == -INFINITY) { + p = INT_MIN; + } else { + p = static_cast(porder); + float t = 0; + float diff = abs(std::modf(porder, &t)); + if (diff < 1e-5) { + combine_op = false; + } + } + + if (!combine_op) { + const auto& runner = NpuOpRunner("LpNorm", {*in_x}, {*out_norm}, + {{"p", p}, + {"axes", std::vector({axis})}, + {"keep_dims", keepdim}}); + runner.Run(stream); + } else { + Tensor tmp_x; + tmp_x.mutable_data(xdim, ctx.GetPlace()); + + const auto& power_runner1 = + NpuOpRunner("Power", {*in_x}, {tmp_x}, + {{"power", porder}, {"scale", 1.0f}, {"shift", 0.0f}}); + power_runner1.Run(stream); + + const auto& reduce_runner = NpuOpRunner( + "ReduceSumD", {tmp_x}, {*out_norm}, + {{"axes", std::vector({axis})}, {"keep_dims", keepdim}}); + reduce_runner.Run(stream); + + const auto& power_runner2 = NpuOpRunner( + "Power", {*out_norm}, {*out_norm}, + {{"power", 1 / porder}, {"scale", 1.0f}, {"shift", 0.0f}}); + power_runner2.Run(stream); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +namespace plat = paddle::platform; + +REGISTER_OP_NPU_KERNEL( + p_norm, ops::PnormNPUKernel, + ops::PnormNPUKernel); diff --git a/python/paddle/fluid/tests/unittests/npu/test_p_norm_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_p_norm_op_npu.py new file mode 100644 index 0000000000000000000000000000000000000000..9f990c0e29f6eb1a04f66c6ab83855d21c3ce549 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/test_p_norm_op_npu.py @@ -0,0 +1,160 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys +import unittest +import numpy as np +sys.path.append("..") + +import paddle +from op_test import OpTest +from test_norm_all import p_norm + +paddle.enable_static() + + +class TestPnormOp(OpTest): + def set_npu(self): + self.__class__.use_npu = True + self.__class__.no_need_check_grad = True + + def setUp(self): + self.set_npu() + self.op_type = "p_norm" + self.init_test_case() + x = (np.random.random(self.shape) + 0.5).astype(self.dtype) + norm = p_norm(x, self.axis, self.porder, self.keepdim) + self.inputs = {'X': x} + self.attrs = { + 'epsilon': self.epsilon, + 'axis': self.axis, + 'keepdim': self.keepdim, + 'porder': float(self.porder) + } + self.outputs = {'Out': norm} + self.gradient = self.calc_gradient() + + def test_check_output(self): + if self.dtype == "float16": + self.check_output_with_place(paddle.NPUPlace(0), atol=5e-3) + else: + self.check_output_with_place(paddle.NPUPlace(0)) + + def init_test_case(self): + self.shape = [2, 3, 4, 5] + self.axis = 1 + self.epsilon = 1e-12 + self.porder = 2.0 + self.keepdim = False + self.init_dtype() + + def init_dtype(self): + self.dtype = "float32" + + def calc_gradient(self): + self.attrs = { + 'epsilon': self.epsilon, + 'axis': self.axis, + 'keepdim': self.keepdim, + 'porder': float(self.porder) + } + x = self.inputs["X"] + porder = self.attrs["porder"] + axis = self.attrs["axis"] + if porder == 0: + grad = np.zeros(x.shape).astype(x.dtype) + elif porder in [float("inf"), float("-inf")]: + norm = p_norm(x, axis=axis, porder=porder, keepdims=True) + x_abs = np.abs(x) + grad = np.sign(x) + grad[x_abs != norm] = 0.0 + else: + norm = p_norm(x, axis=axis, porder=porder, keepdims=True) + grad = np.power(norm, 1 - porder) * np.power( + np.abs(x), porder - 1) * np.sign(x) + + numel = 1 + for s in x.shape: + numel *= s + numel /= x.shape[axis] + return [grad.astype(x.dtype) * 1 / numel] + + +class TestPnormOp2(TestPnormOp): + def init_test_case(self): + self.shape = [3, 20, 3] + self.axis = 2 + self.epsilon = 1e-12 + self.porder = 2.0 + self.keepdim = True + self.init_dtype() + + +class TestPnormOp3(TestPnormOp): + def init_test_case(self): + self.shape = [3, 20, 3] + self.axis = 2 + self.epsilon = 1e-12 + self.porder = np.inf + self.keepdim = True + self.init_dtype() + + +class TestPnormOp4(TestPnormOp3): + def init_test_case(self): + self.shape = [3, 20, 3] + self.axis = 2 + self.epsilon = 1e-12 + self.porder = -np.inf + self.keepdim = True + self.init_dtype() + + +class TestPnormOp5(TestPnormOp3): + def init_test_case(self): + self.shape = [3, 20, 3] + self.axis = 2 + self.epsilon = 1e-12 + self.porder = 0 + self.keepdim = True + self.init_dtype() + + +class TestPnormOpfp16(TestPnormOp): + def init_dtype(self): + self.dtype = "float16" + + +class TestPnormOp2fp16(TestPnormOp2): + def init_dtype(self): + self.dtype = "float16" + + +class TestPnormOp3fp16(TestPnormOp3): + def init_dtype(self): + self.dtype = "float16" + + +class TestPnormOp4fp16(TestPnormOp4): + def init_dtype(self): + self.dtype = "float16" + + +class TestPnormOp5fp16(TestPnormOp5): + def init_dtype(self): + self.dtype = "float16" + + +if __name__ == "__main__": + unittest.main()