diff --git a/python/paddle/fluid/tests/unittests/test_pairwise_distance.py b/python/paddle/fluid/tests/unittests/test_pairwise_distance.py index 085a717e659fa2526f16a54c6fb6cd53929a0101..baf0efa6ec2e7edafb8d331423a7b47155283c21 100644 --- a/python/paddle/fluid/tests/unittests/test_pairwise_distance.py +++ b/python/paddle/fluid/tests/unittests/test_pairwise_distance.py @@ -20,11 +20,11 @@ import numpy as np import unittest -def pairwise_distance(x, y, p=2.0, eps=1e-6, keepdim=False): +def pairwise_distance(x, y, p=2.0, epsilon=1e-6, keepdim=False): return np.linalg.norm(x - y, ord=p, axis=1, keepdims=keepdim) -def test_static(x_np, y_np, p=2.0, eps=1e-6, keepdim=False): +def test_static(x_np, y_np, p=2.0, epsilon=1e-6, keepdim=False): prog = paddle.static.Program() startup_prog = paddle.static.Program() @@ -35,7 +35,7 @@ def test_static(x_np, y_np, p=2.0, eps=1e-6, keepdim=False): x = paddle.data(name='x', shape=x_np.shape, dtype=x_np.dtype) y = paddle.data(name='y', shape=y_np.shape, dtype=x_np.dtype) dist = paddle.nn.layer.distance.PairwiseDistance( - p=p, eps=eps, keepdim=keepdim) + p=p, epsilon=epsilon, keepdim=keepdim) distance = dist(x, y) exe = paddle.static.Executor(place) static_ret = exe.run(prog, @@ -46,12 +46,12 @@ def test_static(x_np, y_np, p=2.0, eps=1e-6, keepdim=False): return static_ret -def test_dygraph(x_np, y_np, p=2.0, eps=1e-6, keepdim=False): +def test_dygraph(x_np, y_np, p=2.0, epsilon=1e-6, keepdim=False): paddle.disable_static() x = paddle.to_variable(x_np) y = paddle.to_variable(y_np) dist = paddle.nn.layer.distance.PairwiseDistance( - p=p, eps=eps, keepdim=keepdim) + p=p, epsilon=epsilon, keepdim=keepdim) distance = dist(x, y) dygraph_ret = distance.numpy() paddle.enable_static() diff --git a/python/paddle/nn/layer/distance.py b/python/paddle/nn/layer/distance.py index 73ad60b9796f4a509b7a1bf40bff7cb7312543b9..b0917441de3fea640204a3891ed03e9a451e3f0f 100644 --- a/python/paddle/nn/layer/distance.py +++ b/python/paddle/nn/layer/distance.py @@ -34,7 +34,7 @@ class PairwiseDistance(layers.Layer): Parameters: p (float): The order of norm. The default value is 2. - eps (float, optional): Add small value to avoid division by zero, + epsilon (float, optional): Add small value to avoid division by zero, default value is 1e-6. keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor is one dimension less than @@ -66,21 +66,21 @@ class PairwiseDistance(layers.Layer): """ - def __init__(self, p=2., eps=1e-6, keepdim=False, name=None): + def __init__(self, p=2., epsilon=1e-6, keepdim=False, name=None): super(PairwiseDistance, self).__init__() self.p = p - self.eps = eps + self.epsilon = epsilon self.keepdim = keepdim self.name = name check_type(self.p, 'porder', (float, int), 'PairwiseDistance') - check_type(self.eps, 'epsilon', (float), 'PairwiseDistance') + check_type(self.epsilon, 'epsilon', (float), 'PairwiseDistance') check_type(self.keepdim, 'keepdim', (bool), 'PairwiseDistance') def forward(self, x, y): if in_dygraph_mode(): sub = core.ops.elementwise_sub(x, y) return core.ops.p_norm(sub, 'axis', 1, 'porder', self.p, 'keepdim', - self.keepdim, 'epsilon', self.eps) + self.keepdim, 'epsilon', self.epsilon) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'PairwiseDistance') @@ -88,15 +88,14 @@ class PairwiseDistance(layers.Layer): 'PairwiseDistance') sub = paddle.elementwise_sub(x, y) - helper = LayerHelper("p_norm", name=self.name) + helper = LayerHelper("PairwiseDistance", name=self.name) attrs = { 'axis': 1, 'porder': self.p, 'keepdim': self.keepdim, - 'epsilon': self.eps, + 'epsilon': self.epsilon, } - out = helper.create_variable_for_type_inference( - dtype=self._helper.input_dtype(x)) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='p_norm', inputs={'X': sub}, outputs={'Out': out}, attrs=attrs)