diff --git a/paddle/fluid/operators/mean_op_xpu.cc b/paddle/fluid/operators/mean_op_xpu.cc new file mode 100644 index 0000000000000000000000000000000000000000..3d95609b726f7b1e9ffb9f965cf8f51311a23634 --- /dev/null +++ b/paddle/fluid/operators/mean_op_xpu.cc @@ -0,0 +1,66 @@ +/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/mean_op.h" +#ifdef PADDLE_WITH_XPU +#include +#include +#include + +namespace paddle { +namespace operators { + +template +class MeanXPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* input = context.Input("X"); + auto* output = context.Output("Out"); + output->mutable_data(context.GetPlace()); + auto& dev_ctx = context.template device_context(); + const float* x_data = input->data(); + float* y_data = output->data(); + int r = xpu::mean(dev_ctx.x_context(), x_data, y_data, input->numel()); + PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, + platform::errors::InvalidArgument("XPU kernel error!")); + } +}; +template +class MeanGradXPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto OG = context.Input(framework::GradVarName("Out")); + PADDLE_ENFORCE_EQ(OG->numel(), 1, platform::errors::InvalidArgument( + "Mean Gradient should be scalar")); + auto IG = context.Output(framework::GradVarName("X")); + IG->mutable_data(context.GetPlace()); + auto& dev_ctx = context.template device_context(); + float* dx = IG->data(); + const float* dy = OG->data(); + int r = xpu::mean_grad(dev_ctx.x_context(), dx, dy, IG->numel()); + PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, + platform::errors::InvalidArgument("XPU kernel error!")); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_XPU_KERNEL( + mean, ops::MeanXPUKernel); +REGISTER_OP_XPU_KERNEL( + mean_grad, + ops::MeanGradXPUKernel); +#endif diff --git a/paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc b/paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc new file mode 100644 index 0000000000000000000000000000000000000000..727b9ef812a64fb555ce23623aea5baae0fb89e7 --- /dev/null +++ b/paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc @@ -0,0 +1,96 @@ +/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h" +#ifdef PADDLE_WITH_XPU +#include +#include +#include +#include + +namespace paddle { +namespace operators { + +template +class SoftmaxWithCrossEntropyXPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + PADDLE_ENFORCE_EQ( + platform::is_xpu_place(context.GetPlace()), true, + platform::errors::InvalidArgument("This kernel only runs on XPU.")); + const Tensor* logits = context.Input("Logits"); + const Tensor* labels = context.Input("Label"); + Tensor* softmax = context.Output("Softmax"); + Tensor* loss = context.Output("Loss"); + const int rank = logits->dims().size(); + const int axis = CanonicalAxis(context.Attr("axis"), rank); + PADDLE_ENFORCE_EQ(axis, rank - 1, platform::errors::InvalidArgument( + "axis should == rank - 1")); + softmax->mutable_data(context.GetPlace()); + loss->mutable_data(context.GetPlace()); + const int n = SizeToAxis(axis, logits->dims()); + const int d = SizeFromAxis(axis, logits->dims()); + // softmax + auto& dev_ctx = + context.template device_context(); + int r = xpu::softmax2d_forward(dev_ctx.x_context(), logits->data(), + softmax->data(), n, d); + PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, + platform::errors::InvalidArgument("XPU kernel error!")); + // cross_entropy + auto ignore_index = context.Attr("ignore_index"); + const bool soft_label = context.Attr("soft_label"); + if (soft_label) { + PADDLE_THROW(platform::errors::InvalidArgument( + "XPU only support soft_label == false for now!")); + } else { + auto* p_labels = labels->data(); + int64_t* labels_int64_host = + reinterpret_cast(std::malloc(n * sizeof(int64_t))); + int* labels_int32_host = + reinterpret_cast(std::malloc(n * sizeof(int))); + int* labels_int32_device = NULL; + PADDLE_ENFORCE_EQ( + xpu_malloc(reinterpret_cast(&labels_int32_device), + n * sizeof(int)), + XPU_SUCCESS, platform::errors::InvalidArgument("XPU kernel error!")); + dev_ctx.Wait(); + memory::Copy(platform::CPUPlace(), labels_int64_host, + BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()), + p_labels, n * sizeof(int64_t)); + for (int i = 0; i < n; ++i) { + labels_int32_host[i] = labels_int64_host[i]; + } + memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()), + labels_int32_device, platform::CPUPlace(), labels_int32_host, + n * sizeof(int)); + int r = xpu::cross_entropy_forward( + dev_ctx.x_context(), n, d, softmax->data(), + labels_int32_device, loss->data(), nullptr, ignore_index); + PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, + platform::errors::InvalidArgument("XPU kernel error!")); + dev_ctx.Wait(); + std::free(labels_int32_host); + std::free(labels_int64_host); + xpu_free(labels_int32_device); + } + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_XPU_KERNEL(softmax_with_cross_entropy, + ops::SoftmaxWithCrossEntropyXPUKernel); +#endif diff --git a/python/paddle/fluid/tests/unittests/op_test.py b/python/paddle/fluid/tests/unittests/op_test.py index 96efc36ed0a5022ef7e1eae623a0eec02c4dcfef..649c12ea50f887f9ec283eed9fc38ee5b62c6f14 100644 --- a/python/paddle/fluid/tests/unittests/op_test.py +++ b/python/paddle/fluid/tests/unittests/op_test.py @@ -26,6 +26,7 @@ import itertools import collections from collections import defaultdict +import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.backward import append_backward @@ -1133,8 +1134,10 @@ class OpTest(unittest.TestCase): ) # Check inplace for given op, its grad op, its grad_grad op, etc. # No effect on original OpTest - self.check_inplace_output_with_place( - place, no_check_set=no_check_set, inplace_atol=inplace_atol) + # Currently not support ParallelExecutor on XPUPlace. + if not paddle.is_compiled_with_xpu(): + self.check_inplace_output_with_place( + place, no_check_set=no_check_set, inplace_atol=inplace_atol) if check_dygraph: return outs, dygraph_outs, fetch_list diff --git a/python/paddle/fluid/tests/unittests/xpu/test_mean_op_xpu.py b/python/paddle/fluid/tests/unittests/xpu/test_mean_op_xpu.py new file mode 100644 index 0000000000000000000000000000000000000000..f43516235c0578a4f8fc9dbf2ba34d2fb669cc2e --- /dev/null +++ b/python/paddle/fluid/tests/unittests/xpu/test_mean_op_xpu.py @@ -0,0 +1,144 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +import sys +sys.path.append("..") +from op_test import OpTest +import paddle +import paddle.fluid.core as core +import paddle.fluid as fluid +from paddle.fluid import Program, program_guard + +np.random.seed(10) + + +class TestMeanOp(OpTest): + def setUp(self): + self.op_type = "mean" + self.dtype = np.float64 + self.init_dtype_type() + self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)} + self.outputs = {'Out': np.mean(self.inputs["X"])} + + def init_dtype_type(self): + pass + + def test_check_output(self): + self.check_output() + + def test_checkout_grad(self): + self.check_grad(['X'], 'Out') + + +class TestMeanOpError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + # The input type of mean_op must be Variable. + input1 = 12 + self.assertRaises(TypeError, fluid.layers.mean, input1) + # The input dtype of mean_op must be float16, float32, float64. + input2 = fluid.layers.data( + name='input2', shape=[12, 10], dtype="int32") + self.assertRaises(TypeError, fluid.layers.mean, input2) + input3 = fluid.layers.data( + name='input3', shape=[4], dtype="float16") + fluid.layers.softmax(input3) + + +class TestXPUMeanOp(TestMeanOp): + def init_dtype_type(self): + self.dtype = np.float32 + + def test_check_output(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_output_with_place(place) + + def test_checkout_grad(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_grad_with_place(place, ['X'], 'Out') + + +class TestMeanAPI(unittest.TestCase): + # test paddle.tensor.stat.mean + + def setUp(self): + self.x_shape = [2, 3, 4, 5] + self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32) + self.place = paddle.XPUPlace(0) + + def test_api_static(self): + paddle.enable_static() + with paddle.static.program_guard(paddle.static.Program()): + x = paddle.data('X', self.x_shape) + out1 = paddle.mean(x) + out2 = paddle.tensor.mean(x) + out3 = paddle.tensor.stat.mean(x) + axis = np.arange(len(self.x_shape)).tolist() + out4 = paddle.mean(x, axis) + out5 = paddle.mean(x, tuple(axis)) + + exe = paddle.static.Executor(self.place) + res = exe.run(feed={'X': self.x}, + fetch_list=[out1, out2, out3, out4, out5]) + out_ref = np.mean(self.x) + for out in res: + self.assertEqual(np.allclose(out, out_ref, rtol=1e-04), True) + + def test_api_dygraph(self): + paddle.disable_static(self.place) + + def test_case(x, axis=None, keepdim=False): + x_tensor = paddle.to_tensor(x) + out = paddle.mean(x_tensor, axis, keepdim) + if isinstance(axis, list): + axis = tuple(axis) + if len(axis) == 0: + axis = None + out_ref = np.mean(x, axis, keepdims=keepdim) + self.assertEqual( + np.allclose( + out.numpy(), out_ref, rtol=1e-04), True) + + test_case(self.x) + test_case(self.x, []) + test_case(self.x, -1) + test_case(self.x, keepdim=True) + test_case(self.x, 2, keepdim=True) + test_case(self.x, [0, 2]) + test_case(self.x, (0, 2)) + test_case(self.x, [0, 1, 2, 3]) + paddle.enable_static() + + def test_errors(self): + paddle.disable_static() + x = np.random.uniform(-1, 1, [10, 12]).astype('float32') + x = paddle.to_tensor(x) + self.assertRaises(Exception, paddle.mean, x, -3) + self.assertRaises(Exception, paddle.mean, x, 2) + paddle.enable_static() + with paddle.static.program_guard(paddle.static.Program()): + x = paddle.data('X', [10, 12], 'int32') + self.assertRaises(TypeError, paddle.mean, x) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/xpu/test_softmax_with_cross_entropy_op_xpu.py b/python/paddle/fluid/tests/unittests/xpu/test_softmax_with_cross_entropy_op_xpu.py new file mode 100644 index 0000000000000000000000000000000000000000..80e83e030fed6f3f14e52acf83a548d2d3146216 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/xpu/test_softmax_with_cross_entropy_op_xpu.py @@ -0,0 +1,391 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +import sys +sys.path.append("..") +import paddle +import paddle.fluid.core as core + +from op_test import OpTest +from test_softmax_op import stable_softmax + + +def cross_entropy(softmax, label, soft_label, axis, ignore_index=-1): + if soft_label: + return (-label * np.log(softmax)).sum(axis=axis, keepdims=True) + + shape = softmax.shape + axis %= len(shape) + n = int(np.prod(shape[:axis])) + axis_dim = shape[axis] + remain = int(np.prod(shape[axis + 1:])) + softmax_reshape = softmax.reshape((n, axis_dim, remain)) + label_reshape = label.reshape((n, 1, remain)) + result = np.zeros_like(label_reshape, dtype=softmax.dtype) + for i in range(n): + for j in range(remain): + lbl = label_reshape[i, 0, j] + if lbl != ignore_index: + result[i, 0, j] -= np.log(softmax_reshape[i, lbl, j]) + return result.reshape(label.shape) + + +class TestSoftmaxWithCrossEntropyOp(OpTest): + """ + Test softmax with cross entropy operator with discreate one-hot labels. + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = False + self.soft_label = False + self.dtype = np.float64 + self.axis = -1 + self.ignore_index = -1 + self.shape = [41, 37] + + def setUp(self): + self.initParams() + + logits = getattr( + self, "logits", + np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)) + softmax = np.apply_along_axis(stable_softmax, self.axis, logits) + + if self.soft_label: + labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype) + labels /= np.sum(labels, axis=self.axis, keepdims=True) + else: + axis_dim = self.shape[self.axis] + self.shape[self.axis] = 1 + labels = np.random.randint(0, axis_dim, self.shape, dtype="int64") + + loss = cross_entropy(softmax, labels, self.soft_label, self.axis, + self.ignore_index) + + self.inputs = {"Logits": logits, "Label": labels} + self.outputs = { + "Softmax": softmax.astype(self.dtype), + "Loss": loss.astype(self.dtype) + } + self.attrs = { + "numeric_stable_mode": self.numeric_stable_mode, + "soft_label": self.soft_label, + } + if self.ignore_index >= 0: + self.attrs['ignore_index'] = self.ignore_index + if self.axis != -1: + self.attrs['axis'] = self.axis + + def test_check_output(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_output_with_place(place, atol=1e-2) + + def test_check_grad(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_grad_with_place( + place, ["Logits"], "Loss", max_relative_error=0.1) + + +class TestXPUSoftmaxWithCrossEntropyOp(TestSoftmaxWithCrossEntropyOp): + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.shape = [3, 5, 7, 11] + self.axis = -1 + self.ignore_index = -1 + self.dtype = np.float32 + + def test_check_output(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_output_with_place(place, atol=1e-2) + + def test_check_grad(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_grad_with_place( + place, ["Logits"], "Loss", max_relative_error=0.1) + + +class TestXPUSoftmaxWithCrossEntropyOp2(TestXPUSoftmaxWithCrossEntropyOp): + """ + Test softmax with cross entropy operator with soft labels. + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = True + self.dtype = np.float64 + self.axis = -1 + self.ignore_index = -1 + self.shape = [41, 37] + + def test_check_output(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_output_with_place(place, atol=1e-2) + + def test_check_grad(self): + if paddle.is_compiled_with_xpu(): + paddle.enable_static() + place = paddle.XPUPlace(0) + self.check_grad_with_place( + place, ["Logits"], "Loss", max_relative_error=0.1) + + +class TestXPUSoftmaxWithCrossEntropyOp3(TestXPUSoftmaxWithCrossEntropyOp): + """ + Test softmax with cross entropy operator with ignore_index. + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.shape = [41, 37] + self.ignore_index = 5 + self.axis = -1 + self.dtype = np.float64 + + +class TestXPUSoftmaxWithCrossEntropyOpAxis1(TestXPUSoftmaxWithCrossEntropyOp): + """ + Test softmax with cross entropy operator with discreate one-hot labels. + Given axis != -1 + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.dtype = np.float64 + self.axis = 0 + self.ignore_index = -1 + self.shape = [3, 5, 7, 11] + + +class TestXPUSoftmaxWithCrossEntropyOpAxis2(TestXPUSoftmaxWithCrossEntropyOp): + """ + Test softmax with cross entropy operator with discreate one-hot labels. + Given axis != -1 + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.dtype = np.float64 + self.axis = 1 + self.ignore_index = -1 + self.shape = [3, 5, 7, 11] + + +class TestXPUSoftmaxWithCrossEntropyOpAxis3(TestXPUSoftmaxWithCrossEntropyOp): + """ + Test softmax with cross entropy operator with discreate one-hot labels. + Given axis != -1 + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.dtype = np.float64 + self.axis = 2 + self.ignore_index = -1 + self.shape = [3, 5, 7, 11] + + +class TestXPUSoftmaxWithCrossEntropyOpAxis4(TestXPUSoftmaxWithCrossEntropyOp): + """ + Test softmax with cross entropy operator with discreate one-hot labels. + Given axis != -1 + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.dtype = np.float64 + self.axis = 3 + self.ignore_index = -1 + self.shape = [3, 5, 7, 11] + + +class TestXPUSoftmaxWithCrossEntropyOpAxisDimEqualOne( + TestXPUSoftmaxWithCrossEntropyOp): + """ + Test softmax with cross entropy operator with discreate one-hot labels. + Given axis != -1 + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.dtype = np.float64 + self.axis = -1 + self.ignore_index = -1 + self.shape = [3, 5, 7, 1] + + +class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis1( + TestXPUSoftmaxWithCrossEntropyOp): + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = True + self.shape = [3, 5, 7, 11] + self.axis = 0 + self.ignore_index = -1 + self.dtype = np.float64 + + +class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis2( + TestXPUSoftmaxWithCrossEntropyOp2): + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = True + self.shape = [3, 5, 7, 11] + self.axis = 1 + self.ignore_index = -1 + self.dtype = np.float64 + + +class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis3( + TestXPUSoftmaxWithCrossEntropyOp2): + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = True + self.shape = [3, 5, 7, 11] + self.axis = 2 + self.ignore_index = -1 + self.dtype = np.float64 + + +class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis4( + TestXPUSoftmaxWithCrossEntropyOp2): + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = True + self.shape = [3, 5, 7, 11] + self.axis = 3 + self.ignore_index = -1 + self.dtype = np.float64 + + +class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis1( + TestXPUSoftmaxWithCrossEntropyOp3): + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.shape = [3, 5, 7, 11] + self.ignore_index = 1 + self.axis = 0 + self.dtype = np.float64 + + +class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis2( + TestXPUSoftmaxWithCrossEntropyOp3): + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.shape = [3, 5, 7, 11] + self.ignore_index = 0 + self.axis = 1 + self.dtype = np.float64 + + +class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis3( + TestXPUSoftmaxWithCrossEntropyOp3): + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.shape = [3, 5, 7, 11] + self.ignore_index = 3 + self.axis = 2 + self.dtype = np.float64 + + +class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis4( + TestXPUSoftmaxWithCrossEntropyOp3): + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.shape = [3, 5, 7, 11] + self.ignore_index = 3 + self.axis = 3 + self.dtype = np.float64 + + +class TestXPUSoftmaxWithCrossEntropyOpBoundary0( + TestXPUSoftmaxWithCrossEntropyOp): + """ + Test stable softmax with cross entropy operator will not product INF + with small logits value. + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.shape = [3, 5, 7, 11] + self.axis = -1 + self.ignore_index = -1 + self.dtype = np.float64 + self.logits = np.full(self.shape, -500.0).astype(self.dtype) + + +class TestXPUSoftmaxWithCrossEntropyOpBoundary1( + TestXPUSoftmaxWithCrossEntropyOp): + """ + Test stable softmax with cross entropy operator will not product INF + with small logits value. + """ + + def initParams(self): + self.op_type = "softmax_with_cross_entropy" + self.numeric_stable_mode = True + self.soft_label = False + self.shape = [3, 5, 7, 11] + self.axis = -1 + self.ignore_index = -1 + self.dtype = np.float64 + self.logits = np.full(self.shape, 1000.0).astype(self.dtype) + self.logits[:, :, 0, :] = -1000.0 + + +if __name__ == "__main__": + unittest.main()